1
|
Varble AJ, Ried CD, Hammond WJ, Marquis KA, Woodruff MC, Ferran MC. The vesicular stomatitis virus matrix protein inhibits NF-κB activation in mouse L929 cells. Virology 2016; 499:99-104. [PMID: 27643886 DOI: 10.1016/j.virol.2016.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/03/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
Abstract
A previous study found that NF-κB activation is delayed in L929 cells infected with wild-type (wt) strains of VSV, while activation occurred earlier in cells infected with mutant strain T1026R1 (R1) that encodes a mutation in the cytotoxic matrix (M) protein. The integrity of the other R1 proteins is unknown; therefore our goal was to identify the viral component responsible for preventing NF-κB activation in L929 cells. We found that the M protein inhibits viral-mediated activation of NF-κB in the context of viral infection and when expressed alone via transfection, and that the M51R mutation in M abrogates this function. Addition of an IκB kinase (IKK) inhibitor blocked NF-κB activation and interferon-β mRNA expression in cells infected with viruses encoding the M51R mutation in M. These results indicate that the VSV M protein inhibits activation of NF-κB by targeting an event upstream of IKK in the canonical pathway.
Collapse
Affiliation(s)
- Andrew J Varble
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Christopher D Ried
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Warren J Hammond
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Kaitlin A Marquis
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Matthew C Woodruff
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Maureen C Ferran
- Thomas Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA.
| |
Collapse
|
2
|
Das SC, Pattnaik AK. Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth. J Virol 2004; 78:6420-30. [PMID: 15163735 PMCID: PMC416541 DOI: 10.1128/jvi.78.12.6420-6430.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase (RdRp) complex. It is phosphorylated at two different domains. Using defective interfering (DI) RNA or minigenomic RNA templates, we previously demonstrated that phosphorylation within the amino-terminal domain I is essential for transcription, whereas phosphorylation within the carboxy-terminal domain II is necessary for replication. For the present study, we examined the role of the phosphorylation of residues in these domains in the life cycle of VSV. Various mutant P coding sequences were inserted into a full-length cDNA clone of VSV, and the virus recovery, kinetics of growth, and mRNA and protein synthesis were examined. We observed that virus recovery was completely abolished when all three phosphate acceptor sites in domain I or both sites in domain II were replaced with alanine. Single or double mutations in domain I (with the exception of P60/64) or single mutations in domain II had no adverse effect on virus recovery. VSVP227, carrying alanine at position 227, showed reduced kinetics of virus growth but increased kinetics of viral mRNA synthesis in infected cells. More interestingly, this particular virus exhibited a significantly reduced cytopathic effects and apoptosis in infected cells, implying that P may be involved in these processes. Furthermore, we found that DI RNAs of different sizes were generated by high-multiplicity passaging of various mutant VSVs, indicating that the viral RdRp may play a significant role in the process of DI particle generation. Taken together, our results suggest that the phosphorylation of residues in domains I and II of VSV P is indispensable for virus growth.
Collapse
Affiliation(s)
- Subash C Das
- Department of Veterinary and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, E126 Beadle Center, 1901 Vine Street, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
3
|
Kopecky SA, Lyles DS. Contrasting effects of matrix protein on apoptosis in HeLa and BHK cells infected with vesicular stomatitis virus are due to inhibition of host gene expression. J Virol 2003; 77:4658-69. [PMID: 12663772 PMCID: PMC152120 DOI: 10.1128/jvi.77.8.4658-4669.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a potent inducer of apoptosis in host cells. Recently, it has been shown that two VSV products are involved in the induction of apoptosis, the matrix (M) protein, and another viral product that has yet to be identified (S. A. Kopecky et. al., J. Virol. 75:12169-12181, 2001). Comparison of recombinant viruses containing wild-type (wt) or mutant M proteins showed that wt M protein accelerates VSV-induced apoptosis in HeLa cells, while wt M protein delays apoptosis in VSV-infected BHK cells. Our hypothesis to explain these results is that both effects of M protein are due to the ability of M protein to inhibit host gene expression. This hypothesis was tested by infecting cells with an M protein mutant virus defective in the inhibition of host gene expression (rM51R-M virus) in the presence or absence of actinomycin D, another inhibitor of host gene expression. Actinomycin D accelerated induction of apoptosis of HeLa cells infected with rM51R-M virus and delayed apoptosis in BHK cells infected with rM51R-M virus, similar to the effects of wt M protein. The idea that the induction of apoptosis by M protein in HeLa cells is due to its ability to inhibit host gene expression was further tested by comparing the activation of upstream caspase pathways by M protein versus that by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB). Expression of M protein activated both caspase-8 and caspase-9-like enzymes, as did treatment with actinomycin D or DRB. Induction of apoptosis by M protein, actinomycin D, and DRB was inhibited in stably transfected HeLa cell lines that overexpress Bcl-2, an antiapoptotic protein that inhibits the caspase-9 pathway. A synthetic inhibitor of caspase-8, Z-IETD-FMK, did not inhibit induction of apoptosis by M protein, actinomycin D, or DRB. Taken together, our data support the hypothesis that the induction of apoptosis by M protein is caused by the inhibition of host gene expression and that the caspase-9 pathway is more important than the caspase-8 pathway for the induction of apoptosis by M protein and other inhibitors of host gene expression.
Collapse
Affiliation(s)
- Sarah A Kopecky
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
4
|
Kopecky SA, Willingham MC, Lyles DS. Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 2001; 75:12169-81. [PMID: 11711608 PMCID: PMC116113 DOI: 10.1128/jvi.75.24.12169-12181.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.
Collapse
Affiliation(s)
- S A Kopecky
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| | | | | |
Collapse
|
5
|
Abstract
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.
Collapse
Affiliation(s)
- D S Lyles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| |
Collapse
|
6
|
Yuan H, Yoza BK, Lyles DS. Inhibition of host RNA polymerase II-dependent transcription by vesicular stomatitis virus results from inactivation of TFIID. Virology 1998; 251:383-92. [PMID: 9837802 DOI: 10.1006/viro.1998.9413] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During infection with vesicular stomatitis virus (VSV), host-cell mRNA synthesis is inhibited due to shut off of host-cell transcription. The transcriptional activity of nuclear extracts prepared from VSV-infected cells was compared to the activity of nuclear extracts from uninfected cells. An exogenous DNA template was used which contained an adenovirus major late promoter (AdMLP) but lacked upstream activating sequences, so that only basal transcription activity was assayed in these experiments. AdMLP-initiated transcription was decreased by 75% in nuclear extracts from infected cells as early as 3 h p.i. and by >90% by 6 h p.i. Mixing nuclear extracts from uninfected and VSV-infected cells revealed that the inhibition was caused by lack of an active form of a host factor involved in basal transcription rather than by the presence of an excess of inhibitory factor. To determine which transcription factors were lacking from nuclear extracts of infected cells, host transcription initiation factors isolated from uninfected cells by ion-exchange chromatography were added separately to nuclear extracts inactivated by VSV infection. A phosphocellulose column fraction from uninfected cells eluted with 0. 8 M KCl, which contained transcription factor IID (TFIID), overcame the inhibition. The corresponding fraction from infected cells had no detectable activity in a TFIID-dependent in vitro transcription assay. TATA-binding protein (TBP) is the DNA-binding subunit of TFIID and has been shown previously to substitute for TFIID in basal transcription. Purified recombinant TBP also reconstituted the transcription activity of nuclear extracts from infected cells, supporting the idea that TFIID is the target of virus-induced inhibition. Western blot analysis showed that the level of TBP in nuclear extracts or in the 0.8 M KCl column fraction was not changed by VSV infection. These results indicated that VSV infection leads to an inhibition of host transcription by inactivation of TFIID rather than reduction in the level of TFIID.
Collapse
Affiliation(s)
- H Yuan
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | | | | |
Collapse
|
7
|
Ahmed M, Lyles DS. Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases I, II, and III. J Virol 1998; 72:8413-9. [PMID: 9733895 PMCID: PMC110232 DOI: 10.1128/jvi.72.10.8413-8419.1998] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 06/16/1998] [Indexed: 12/14/2022] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) functions in virus assembly and inhibits host-directed gene expression independently of other viral components. Experiments in this study were carried out to determine the ability of M protein to inhibit transcription directed by each of the three host RNA polymerases (RNA polymerase I [RNAPI], RNAPII, and RNAPIII). The effects of wild-type (wt) VSV, v6 (a VSV mutant isolated from persistently infected cells), and tsO82 viruses on poly(A)+ and poly(A)- RNA synthesis were measured by incorporation of [3H]uridine. v6 and tsO82 viruses, which contain M-gene mutations, had a decreased ability to inhibit synthesis of both poly(A)+ and poly(A)- RNA. Nuclear runoff analysis showed that VSV inhibited transcription of 18S rRNA and alpha-tubulin genes, which was dependent on RNAPI and RNAPII, respectively, but infection with wt virus enhanced transcription of 5S rRNA by RNAPIII. The effect of M protein alone on transcription by RNAPI-, RNAPII-, and RNAPIII-dependent promoters was measured by cotransfection assays. M protein inhibited transcription from RNAPI- and RNAPII-dependent promoters in the absence of other viral gene products. RNAPIII-dependent transcription of the adenovirus VA promoters was also inhibited by M protein. However, as observed during wt VSV infection, M protein enhanced endogenous 5S rRNA transcription, indicating that the inhibition of transcription by RNAPIII was dependent on the nature of the promoter.
Collapse
Affiliation(s)
- M Ahmed
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
8
|
Marcus PI, Rodriguez LL, Sekellick MJ. Interferon induction as a quasispecies marker of vesicular stomatitis virus populations. J Virol 1998; 72:542-9. [PMID: 9420257 PMCID: PMC109406 DOI: 10.1128/jvi.72.1.542-549.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interferon (IFN)-inducing capacity of different isolates of vesicular stomatitis virus (VSV) of the Indiana (IN) and New Jersey (NJ) serotypes were measured to assess the extent of variability of this phenotype. Over 200 preparations of wild-type field isolates, laboratory strains, and plaque-derived subpopulations were examined. Marked heterogeneity was found in the ability of these viruses to induce IFN, covering a 10,000-fold range. A good fit to a normal distribution for the log of the IFN yields suggests a continuum of incremental changes in the viral genome may govern the IFN-inducing capacity of consensus populations derived from independently arising infections. A broad range in the magnitude of these changes, skewed towards inducers of high IFN yields, is consistent with a comparable series of ribonucleotide changes in the VSV genome, a sine qua non of a quasispecies population. Plaque- or vesicle-derived populations displayed standard deviations less than the mean IFN yields, though skewed to higher yielders, whereas populations from field and laboratory samples which differed widely in time and origin of isolation gave standard deviations greater than the means. The plaque isolation of IFN-inducing particles of VSV-IN, normally masked in populations by the predominance of non-IFN-inducing particles that suppress IFN induction, and the isolation of potent wild-type IFN-inducing VSV-IN from cows during an outbreak of vesicular stomatitis in a region that had yielded only virus expressing the non-IFN-inducing phenotype in prior and subsequent years, supports the view that genetic bottlenecks are operative in the natural transmission of this disease.
Collapse
Affiliation(s)
- P I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044, USA.
| | | | | |
Collapse
|
9
|
Bovolenta C, Lou J, Kanno Y, Park BK, Thornton AM, Coligan JE, Schubert M, Ozato K. Vesicular stomatitis virus infection induces a nuclear DNA-binding factor specific for the interferon-stimulated response element. J Virol 1995; 69:4173-81. [PMID: 7539506 PMCID: PMC189154 DOI: 10.1128/jvi.69.7.4173-4181.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vesicular stomatitis virus (VSV) has a broad host range. It replicates in the cytoplasm and causes rapid cytopathic effects. We show that following VSV infection, a nuclear factor that binds to a select set of interferon-stimulated responsive elements (ISRE) is induced in many cell types. This factor, tentatively called VSV-induced binding protein (VIBP), was estimated to have an approximate molecular mass of 50 kDa and was distinct from known members of the interferon regulatory factor family, that are known to bind to the ISRE. Induction of VIBP required tyrosine kinase activity but did not require cellular transcription. Treatment of cells with cycloheximide, which inhibits translation, only partially inhibited induction of VIBP. However, type I interferons and staurosporine, both of which inhibit VSV transcription, inhibited VIBP induction. Moreover, a double-stranded RNA analog, poly(I)-poly(C) also induced a DNA-binding activity very similar to that of VIBP. These results indicate that a preexisting cellular protein is activated upon VSV infection and that this activation requires primary viral transcripts. The functional activity of VIBP was analyzed in cells stably transfected with a herpesvirus thymidine kinase-luciferase reporter gene that is under control of the ISRE. While activity of the control promoter without ISRE was strongly inhibited following VSV infection (as a result of virus-mediated transcriptional shutdown of the host cell), the inhibition was reversed by the ISRE-containing promoter, albeit partially, which suggests that VSV infection differentially affects transcription of host genes. Although VIBP was induced in all other cells tested, it was not induced in embryonal carcinoma cells after VSV infection, suggesting developmental regulation of VIBP inducibility.
Collapse
Affiliation(s)
- C Bovolenta
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Black BL, Brewer G, Lyles DS. Effect of vesicular stomatitis virus matrix protein on host-directed translation in vivo. J Virol 1994; 68:555-60. [PMID: 8254771 PMCID: PMC236321 DOI: 10.1128/jvi.68.1.555-560.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vesicular stomatitis virus infection causes a rapid and potent inhibition of both host transcription and translation. Recently, the viral matrix (M) protein was shown to inhibit host-directed transcription in vivo in the absence of any other viral component (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). The goal of this study was to determine the effect of M protein on host-directed translation. In vitro-transcribed mRNAs encoding M protein and chloramphenicol acetyltransferase (CAT) were cotransfected into BHK cells to determine the effect of M protein expression on translation of CAT mRNA. The results presented here show that M protein did not inhibit host-directed translation of CAT mRNA. On the contrary, this study gave the unexpected result that M protein actually stimulated host-directed translation under the same conditions in which it potently inhibited host-directed transcription. Under these conditions, the combined effect on host gene expression was a greater-than-20-fold inhibition. Furthermore, the enhancement of host translation mediated by M protein was genetically correlated with M protein's ability to inhibit host transcription. Thus, the results of this study establish that M protein does not inhibit host protein synthesis under the same conditions in which it potently inhibits host transcription and suggest that the inhibition of transcription and that of translation by vesicular stomatitis virus require separate viral gene products.
Collapse
Affiliation(s)
- B L Black
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157
| | | | | |
Collapse
|
11
|
Marcus PI, Sekellick MJ, Spiropoulou CF, Nichol ST. Interferon induction by viruses. XXII. Vesicular stomatitis virus-Indiana: M-protein and leader RNA do not regulate interferon induction in chicken embryo cells. JOURNAL OF INTERFERON RESEARCH 1993; 13:413-8. [PMID: 8151135 DOI: 10.1089/jir.1993.13.413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several field isolates, strains, mutants, and revertants of vesicular stomatitis virus (VSV), Indiana (IN) serotype, were studied that differed greatly in their capacity to induce interferon (IFN) in aged chick embryo cells. The predicted M-protein amino acid sequence of a wild-type field isolate that induced > or = 10,000 units/ml IFN in chicken embryo cells was identical to that of a wild-type field isolate that induced < 2 units/ml and of a noninducing wild-type laboratory strain. The 47-base plus-strand leader RNA sequences were the same for five IFN-inducing, and eight noninducing independent isolates of wild-type VSV IN. Our data show that the M-protein and plus-strand leader RNA do not of themselves regulate the induction of IFN in this system. Because the capacity of VSV IN to induce IFN resides in virion-associated elements (Marcus and Sekellick, 1987, J. Interferon Res. 7, 269-284), the differences in IFN yield observed with various isolates must result from changes in other virion components that remain to be determined.
Collapse
Affiliation(s)
- P I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | | | | | |
Collapse
|
12
|
Black BL, Rhodes RB, McKenzie M, Lyles DS. The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly. J Virol 1993; 67:4814-21. [PMID: 8392615 PMCID: PMC237868 DOI: 10.1128/jvi.67.8.4814-4821.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, the vesicular stomatitis virus matrix (M) protein has been shown to be capable of inhibition of host cell-directed transcription in the absence of other viral components (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). M protein is a major structural protein that is known to play a critical role in virus assembly by binding the helical ribonucleoprotein core of the virus to the cytoplasmic surface of the cell plasma membrane during budding. In this study, two M protein mutants were tested to determine whether the inhibition of host transcription by M protein is an indirect effect of its function in virus assembly or whether it represents an independent function of M protein. The mutant M protein of the conditionally temperature-sensitive (ts) vesicular stomatitis virus mutant, tsO82, was found to be defective in its ability to inhibit host-directed gene expression, as shown by its inability to inhibit expression of a cotransfected target gene encoding chloramphenicol acetyltransferase. The ability of the tsO82 M protein to function in virus assembly was similar to that of wild-type M protein, as shown by its ability to complement the group III ts M protein mutant, tsO23. Another mutant, MN1, which lacks amino acids 4 to 21 of M protein demonstrated that the abilities of M protein to inhibit chloramphenicol acetyltransferase gene expression and to localize to the nucleus were unaffected by deletion of this lysine-rich amino-terminal region but that the ability to function in virus assembly was ablated. Thus, the two M protein mutants examined in this study exhibited complementary phenotypes: tsO82 M protein functioned in virus assembly but was defective in inhibition of host-directed gene expression, while MN1 M protein functioned in inhibiting gene expression but was unable to function in virus assembly. These data demonstrate that the role of M protein in inhibition of host transcription can be separated genetically from its role in virus assembly.
Collapse
Affiliation(s)
- B L Black
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157
| | | | | | | |
Collapse
|
13
|
Marcus PI, Sekellick MJ, Nichol ST. Interferon induction by viruses. XXI. Vesicular stomatitis virus: interferon inducibility as a phylogenetic marker. JOURNAL OF INTERFERON RESEARCH 1992; 12:297-305. [PMID: 1331259 DOI: 10.1089/jir.1992.12.297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Forty-five vesiculovirus isolates were systematically compared for their capacity to induce interferon (IFN) in chick embryo cells under conditions such that the maximum (quantum) yield of IFN per cell and the titer of IFN-inducing particles (IFP) could validly be determined. Twelve isolates of the New Jersey (NJ) serotype of vesicular stomatitis virus (VSV) were good inducers, yielding amounts of IFN that ranged in a continuum from 300 to more than 8,000 units per 10(7) cells. These must reflect genetic differences between the closely related viruses. These differences were not reflected in the nucleotide sequence of the viral 3' leader RNA, for analysis of eight of the NJ isolates showed no correlation with the IFN yields. As found in previous smaller surveys, 28 out of 32 VSV isolates of the Indiana (IN) serotype produced little or no IFN, or even suppressed its induction. However, four exceptional IN strains were isolated during 1984 and 1985 from cattle within a relatively circumscribed geographical area in Costa Rica and Panama; all belonged to Indiana virus, type 1, subtype IV, in the proposed G-protein gene evolutionary tree. This is the first example of an IFN-inducing phenotype serving as a phylogenetic marker.
Collapse
Affiliation(s)
- P I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | | | |
Collapse
|
14
|
Black BL, Lyles DS. Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol 1992; 66:4058-64. [PMID: 1318397 PMCID: PMC241208 DOI: 10.1128/jvi.66.7.4058-4064.1992] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection by vesicular stomatitis virus (VSV) results in a rapid inhibition of host cell transcription and translation. To determine whether the viral matrix (M) protein was involved in this inhibition of host cell gene expression, an M protein expression vector was cotransfected with a target gene vector, encoding the target gene, encoding chloramphenicol acetyltransferase (CAT). Expression of M protein caused a decrease in CAT activity in a gene dosage-dependent manner, and inhibition was apparent by 12 h posttransfection. The inhibitory effect of M protein was quite potent. The level of M protein required for a 10-fold inhibition of CAT activity was less than 1% of the level of M protein produced during the sixth hour of VSV infection. Northern (RNA) analysis of cotransfected cells showed that expression of M protein caused a reduction in the steady-state level of the vector-encoded mRNAs. Expression of both CAT and M mRNAs was reduced in cells cotransfected with a plasmid encoding M protein, indicating that expression of small amounts of M protein from plasmid DNA inhibits further expression of both M and CAT mRNAs. Nuclear runoff transcription analysis demonstrated that expression of M protein inhibited transcription of the target genes. This is the first report of a viral gene product which is capable of inhibiting transcription in vivo in the absence of any other viral component.
Collapse
Affiliation(s)
- B L Black
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157
| | | |
Collapse
|
15
|
Peeples ME, Wang C, Gupta KC, Coleman N. Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 1992; 66:3263-9. [PMID: 1560547 PMCID: PMC241099 DOI: 10.1128/jvi.66.5.3263-3269.1992] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A large proportion of the Newcastle disease virus (NDV) matrix (M) protein is found in the nuclei of infected chicken embryo cells. Kinetic analysis indicated that much of the M protein enters the nucleus early in infection, concentrating in discrete regions of the nucleus and remaining there throughout infection. The M protein was found in localized regions of the nuclei of a variety of cell lines infected with NDV. Immunostaining for both M protein and nucleolar antigens indicated that most of these regions represent nucleoli. Moreover, this nucleolar localization of the M protein was observed in chicken embryo cells infected with 11 different strains of NDV. Only the M protein of strain HP displayed a modified pattern, concentrating in the nucleolus early in infection but in the cytoplasm late in infection. M protein transiently expressed in COS-1 cells also localized to the nucleus and nucleolus, indicating that the M protein does not require other NDV proteins for this localization.
Collapse
Affiliation(s)
- M E Peeples
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612
| | | | | | | |
Collapse
|
16
|
Zan M, Evans P, Lucas-Lenard J. The inhibition of mouse L-cell 45 S ribosomal RNA processing is a highly uv-resistant property of vesicular stomatitis virus. Virology 1990; 177:75-84. [PMID: 2162117 DOI: 10.1016/0042-6822(90)90461-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mouse L cells infected with vesicular stomatitis virus (VSV), the synthesis of 45 S rRNA and its conversion to 28 S and 18 S rRNA are inhibited during the course of infection. Evidence is presented that the lack of accumulation of stable rRNA species results not only from the decreased transcription and processing of 45 S rRNA, but also from an increased breakdown of pre-rRNA or stable rRNA during processing. In cells prelabeled with [3H]uridine and then infected, the 28 S and 18 S rRNA species remain unaffected. Studies using uv-irradiated VSV indicate that the viral function involved in rRNA synthesis inhibition is slightly more sensitive to uv irradiation than the function involved in processing inhibition. These results suggest that the VSV functions involved in 45 S rRNA synthesis and processing inhibition may be related, or overlapping, but not identical. In cells infected by VSV mutant T1026R1, total RNA synthesis is inhibited, but the distribution of precursor and stable rRNA species remains nearly normal for up to 5 hr after infection. The function of the mutant virus involved in the inhibition of rRNA processing appears to be defective. In mengovirus-infected L cells, 45 S rRNA synthesis, but not processing, is severely inhibited soon after infection, indicating that a decrease in rRNA transcription is not necessarily accompanied by a decrease in processing.
Collapse
Affiliation(s)
- M Zan
- Molecular and Cell Biology Department, University of Connecticut, Storrs 6269-3125
| | | | | |
Collapse
|
17
|
Crone DE, Keene JD. Viral transcription is necessary and sufficient for vesicular stomatitis virus to inhibit maturation of small nuclear ribonucleoproteins. J Virol 1989; 63:4172-80. [PMID: 2550663 PMCID: PMC251031 DOI: 10.1128/jvi.63.10.4172-4180.1989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infection of baby hamster kidney cells with vesicular stomatitis virus (VSV) results in the accumulation of immature U1 and U2 small nuclear ribonucleoproteins (snRNPs) that contain precursor U RNAs and at least some of the proteins specific for U1 and U2 snRNAs but lack the Sm complex of proteins that is common to these U snRNAs. The VSV function required for this effect is not known, but direct inhibition of cellular transcription did not alter the maturation of U1 and U2 snRNPs. On the other hand, viral transcription but not viral translation was required to inhibit U1 and U2 snRNP maturation. Temperature shift experiments with the mutant G114 showed that ongoing viral transcription was necessary, but that viral mRNA was not required for this inhibition. Furthermore, the VSV function involved in the inhibition of maturation of U1 and U2 snRNPs had a small UV target size of approximately 10 to 20 nucleotides. We demonstrate that temperature-sensitive mutants of VSV can be used as a tool to initiate the assembly of snRNPs in infected cells. These results are compatible with the suggestion that perturbation of snRNP metabolism by VSV precedes and is distinct from the effect of VSV on cellular RNA synthesis, although VSV leader RNA may be involved in both these functions.
Collapse
Affiliation(s)
- D E Crone
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
18
|
Gaccione C, Marcus PI. Interferon induction by viruses. XVIII. Vesicular stomatitis virus-New Jersey: a single infectious particle can both induce and suppress interferon production. JOURNAL OF INTERFERON RESEARCH 1989; 9:603-14. [PMID: 2477474 DOI: 10.1089/jir.1989.9.603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to wild-type vesicular stomatitis virus (VSV) of Indiana (Ind.) origin which express interferon (IFN) inducing- and IFN induction-suppressing activities as mutually exclusive properties, individual particles of wild-type VSV of the New Jersey (N.J.) serotype (Hazelhurst [H] isolate) paradoxically can both induce IFN and suppress its induction in cells coinfected with a potent inducer of IFN. The properties of IFN induction, and its suppression, appear to reside in the particle that manifests infectivity. Analyses of IFN induction dose-response curves to measure IFN-inducing particles (IFP), and IFN yield-reduction curves to measure IFN induction-suppressing particles (ISP) generated by VSV-N.J.(H) in aged chick embryo cells revealed that (i) a single particle per cell sufficed to induce a quantum (full) yield of IFN, or to suppress fully IFN production by a coinfecting inducing virus, and (ii) the addition of one or more IFP per cell did not suppress the yield of IFN beyond the plateau level. The time-course of IFN production in chick cells infected with VSV-N.J. (H) revealed about a 4-h lag, even when the cells were coinfected with a potent inducer that normally induced IFN 1 or 2 h sooner. Thus, VSV-N.J.(H) appears to regulate the production of IFN in cells--even that initiated by other inducers. Expression of IFP and ISP activities both required primary transcription, with respective genomic targets similar to those reported for VSV-Ind. N.J.(H) is the first wild-type VSV observed to express IFP and ISP activities concomitantly. A model is presented to suggest how these two antagonistic properties might be expressed by a single infectious particle.
Collapse
Affiliation(s)
- C Gaccione
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3004
| | | |
Collapse
|
19
|
Frielle DW, Kim PB, Keene JD. Inhibitory effects of vesicular stomatitis virus on cellular and influenza viral RNA metabolism and protein synthesis. Virology 1989; 172:274-84. [PMID: 2549715 DOI: 10.1016/0042-6822(89)90129-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infection with vesicular stomatitis virus (VSV) results in the rapid inhibition of cellular macromolecular synthesis, including transcription, translation, and maturation of the U1 and U2 snRNPs. Unlike infection with VSV, influenza virus infection did not result in the inhibition of either the processing of U1 and U2 snRNAs or the assembly of the RNPs. Although influenza virus relies on the cellular splicing apparatus to generate viral mRNAs, the maturation of snRNPs was inhibited during double infections with VSV. However, this inhibition of snRNP maturation had no effect on the splicing of a cellular pre mRNA in extracts prepared from VSV-infected HeLa cells. Thus, the effects of VSV on the processing and assembly of snRNPs appear to involve virus-specific functions and unique cellular targets. Coinfection with VSV and influenza virus resulted in the dramatic inhibition of influenza virus transcription; polyadenylated mRNAs corresponding to the influenza virus NP and NS1 proteins could not be detected by Northern blot analysis. However, reduced levels of the influenza virus replicative templates were still synthesized during double infection. Coinfection with VSV also resulted in the inhibition of influenza viral mRNA translation, even when superinfection with VSV was delayed until 3 or 6 hr after influenza virus infection. VSV required at least 2 hr to affect the inhibition of translation; this corresponded to the time after VSV infection when inhibition of cellular protein synthesis was evident. These results demonstrate that, in contrast to adenovirus, the VSV-mediated inhibition of cellular macromolecular synthesis may be effective against influenza virus.
Collapse
Affiliation(s)
- D W Frielle
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
20
|
Abstract
The M protein of vesicular stomatitis virus (VSV) was localized in the nuclei and cytoplasm of VSV-infected cells by subcellular fractionation and immunofluorescence microscopy. Nuclei isolated from VSV-infected Friend erythroleukemia cells were fractionated into a nuclear membrane and a nucleoplasm fraction by DNase digestion and differential centrifugation. G protein was present in the membrane fraction, and M protein was present in the nucleoplasm fraction. Immunofluorescence detection of M protein in the nucleus required that fixed cells be permeabilized with higher concentrations of detergent than were required for detection of M protein in the cytoplasm of VSV-infected BHK cells.
Collapse
Affiliation(s)
- D S Lyles
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103
| | | | | |
Collapse
|
21
|
Pasternak CA, Whitaker-Dowling PA, Widnell CC. Stress-induced increase of hexose transport as a novel index of cytopathic effects in virus-infected cells: role of the L protein in the action of vesicular stomatitis virus. Virology 1988; 166:379-86. [PMID: 2845651 DOI: 10.1016/0042-6822(88)90508-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The VSV-specific increase in hexose transport by BHK cells has been measured by assay of the [3H]dGlc/[14C]AIB uptake ratio. The effect was abolished by uv-irradiation of the virus, indicating that viral gene expression is required. Cells infected with the T1026 R1 mutant of VSV, which causes only slight cytopathic changes, exhibited only a slight increase in hexose uptake. Cells infected with temperature-sensitive (ts) mutants of VSV that are defective in the function of the viral N, NS, G, or M proteins at the restrictive temperature (39.5 degrees) exhibited increased [3H]dGLC/[14C]AIB uptake ratios typical of wild-type virus at either restrictive (39.5 degrees) or permissive temperature (34 degrees). Cells infected with a mutant defective in the function of the viral L protein exhibited an increased [3H]dGlc/[14C]AIB uptake ratio at permissive temperature (34 degrees) only; at restrictive temperature (39.5 degrees) the uptake ratio was essentially the same as that of mock-infected cells. Temperature-shift experiments indicated that the effect on hexose transport persisted for at least 6 hr in cells which no longer expressed function L protein, and that when expression of L was restricted to the first 2 hr of infection, an almost complete stimulation of hexose transport was observed 4 hr later. These results indicate that expression of the L gene is a necessary factor for inducing an increased hexose uptake in VSV-infected BHK cells. They also suggest that the action of the L protein on hexose transport is indirect, and is presumably mediated by other cellular constituents. The studies support the concept that an increased dGlc uptake may be a useful index of the cytopathic consequences of virus infection.
Collapse
Affiliation(s)
- C A Pasternak
- Department of Biochemistry, St. George's Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
22
|
Whitaker-Dowling P, Youngner JS. Alteration of vesicular stomatitis virus L and NS proteins by uv irradiation: implications for the mechanism of host cell shut-off. Virology 1988; 164:171-5. [PMID: 2834868 DOI: 10.1016/0042-6822(88)90633-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When purified, [35S]methionine-labeled vesicular stomatitis virus (VSV) was exposed to ultraviolet light, an irradiation-induced change in the viral proteins was detected by SDS-polyacrylamide gel electrophoresis and immunoblotting. With dose of uv irradiation in the same range as that required to inactivate VSV leader RNA, a loss occurred in the bands corresponding to the L and NS proteins concomitant with the appearance of several new bands of radioactivity throughout the gel. This alteration of viral proteins correlated with the loss of ability of the virus to inhibit host macromolecular synthesis. In light of these results, the role that has been ascribed to the VSV leader RNA in VSV-mediated host shut-off needs to be reevaluated.
Collapse
Affiliation(s)
- P Whitaker-Dowling
- Department of Microbiology, Biochemistry and Molecular Biology, School of Medicine, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
23
|
|
24
|
Francoeur AM, Poliquin L, Stanners CP. The isolation of interferon-inducing mutants of vesicular stomatitis virus with altered viral P function for the inhibition of total protein synthesis. Virology 1987; 160:236-45. [PMID: 2820131 DOI: 10.1016/0042-6822(87)90065-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously reported that T1026, a temperature-sensitive (ts) noncytocidal mutant of VSV, and its ts revertant, T1026-R1, are nonconditional mutants in the VSV function "P" for the inhibition of total protein synthesis (viral plus cellular) in infected cells (C. P. Stanners, A. M. Francoeur, and T. Lam, 1977, Cell 11, 273-281; C. P. Stanners, S. Kennedy, and L. Poliquin, 1987, Virology 160, 255-258). We have also shown that P- mutants such as these are superior interferon inducers relative to their parental P+ wild-type virus, HR, and that P- mutants may be distinguished from P+ virus using the plaque interferon production of PIF assay. (A. M. Francoeur, T. Lam, and C. P. Stanners, 1980, Virology 105, 526-536). In order to carry the analysis of VSV P function further, a number of independent mutants in the VSV P function are required. We show here that the PIF assay may be used to isolate spontaneously occurring interferon-inducing mutants (PIF+ mutants) from wild-type VSV (PIF- virus) populations. About one-half of the PIF+ mutants isolated with the PIF assay were found to have alterations in the VSV P function. As well as mutants that were defective for the inhibition of total protein synthesis, the assay yielded a new class of VSV P function mutants which appear to inhibit protein synthesis more severely than does P+ virus. The majority of newly isolated PIF+ mutants was also found to be temperature sensitive for growth. The ts phenotype, however, could be reverted for most PIF+ mutants with little effect on the PIF or P phenotype. These findings show that interferon induction and P function are related functions of VSV; this fact has allowed the isolation of a repertoire of mutants with widely varying P function.
Collapse
|
25
|
Marcus PI, Sekellick MJ. Interferon induction by viruses. XV. Biological characteristics of interferon induction-suppressing particles of vesicular stomatitis virus. JOURNAL OF INTERFERON RESEARCH 1987; 7:269-84. [PMID: 2440958 DOI: 10.1089/jir.1987.7.269] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A single interferon (IFN) induction-suppressing particle (ISP) of vesicular stomatitis virus (VSV) blocked completely the yield of IFN in a cell otherwise programmed to produce IFN. With mouse L cells as hosts, one lethal hit of UV radiation (D37 = 52.5 ergs/mm2) to the VSV genome sufficed to inactivate ISP activity; however, with "aged" primary chick embryo cells as hosts, it took 198 lethal hits (D37 = 10,395 ergs/mm2). ISP expression in chick cells did not require virus replication or amplified RNA synthesis, but did involve functional virion-associated L protein. ISP in chick cells also were capable of inhibiting, in a multiplicity-dependent manner, the plaquing efficiency of two viruses that require cellular polymerase II (pol II) for replication, e.g., pseudorabies and influenza. The refractory state to IFN inducibility that resulted from infection of chick cells with ISP (VSV tsO5 [UV = 100 hits]) was still extant after 6 days. In contrast, the plaquing efficiency of pseudorabies virus returned to control levels by 5 h after ISP infection. Chick cells infected with UV ISP remained viable, served as hosts for the replication of other viruses, and could be subcultured. Models are presented to account for these contrasting effects. The involvement of viral plus-strand leader RNA as an inhibitor of cellular pol II-dependent RNA synthesis, and the multifunctional activities of the virion-associated L protein, are discussed as possible molecules involved in the action of ISP in chick cells.
Collapse
|
26
|
Dezélée S, Blondel D, Wyers F, Petitjean AM. Vesicular stomatitis virus in Drosophila melanogaster cells: lack of leader RNA transport into the nuclei and frequent abortion of the replication step. J Virol 1987; 61:1391-7. [PMID: 3033267 PMCID: PMC254114 DOI: 10.1128/jvi.61.5.1391-1397.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In cultured Drosophila melanogaster cells, vesicular stomatitis virus (VSV) establishes a persistent, noncytopathic infection. No inhibition of host macromolecular synthesis occurs. We studied the synthesis of VSV plus-strand leader RNA, which may be directly involved in vertebrate host synthesis shut-off. Leader RNA accumulated in Drosophila cell cytoplasm, but in low amounts, it was either free or associated to structures larger than the leader RNA-N protein complexes found in vertebrate cells. Only a few leader RNA copies migrated into the cell nucleus; no increase of this transport was observed at any time during the virus cycle. Viral RNAs complementary to the 3' end of the genome and ranging in size from the leader to several hundred nucleotides were found to accumulate in Drosophila cell cytoplasm. Their synthesis was inhibited in the presence of cycloheximide, which blocks all protein synthesis and VSV replication. Correlation between the absence of VSV cytopathogenicity in Drosophila cells and the lack of leader RNA transport into their nuclei is discussed, as well as the possible relationship between the restriction of viral synthesis and the frequent initiation of an abortive replication step.
Collapse
|
27
|
Abstract
Sequence analysis of the RNA genome termini of various vesiculovirus standard and defective interfering (DI) particles demonstrated that some virus regulatory sequences and domains of virus N protein are highly conserved while others show considerable divergence. Clearly, distinct RNA signal sequences and protein-coding regions of these virus genomes have quite different evolutionary pressures or constraints. Terminal regions of DI-particle RNA genomes of these viruses were found to possess self-complementary stems at the RNA termini, demonstrating the conservation of this DI-particle structural feature throughout the vesiculovirus group. A high degree of conservation of the 3'-terminal sequences of recent and historic isolates of vesicular stomatitis virus New Jersey was also demonstrated.
Collapse
|