1
|
The influenza virus neuraminidase protein transmembrane and head domains have coevolved. J Virol 2014; 89:1094-104. [PMID: 25378494 DOI: 10.1128/jvi.02005-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical "old" TMD (1933) with a "recent" (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37°C compared to at 33°C, at which NA folds more efficiently. Passaging the chimera viruses at 37°C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. IMPORTANCE The neuraminidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an "old" N1 head domain from 1933 is incompatible with a "recent" (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved.
Collapse
|
2
|
Basler CF, García-Sastre A, Palese P. Mutation of neuraminidase cysteine residues yields temperature-sensitive influenza viruses. J Virol 1999; 73:8095-103. [PMID: 10482558 PMCID: PMC112825 DOI: 10.1128/jvi.73.10.8095-8103.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The influenza virus neuraminidase (NA) is a tetrameric, virus surface glycoprotein possessing receptor-destroying activity. This enzyme facilitates viral release and is a target of anti-influenza virus drugs. The NA structure has been extensively studied, and the locations of disulfide bonds within the NA monomers have been identified. Because mutation of cysteine residues in other systems has resulted in temperature-sensitive (ts) proteins, we asked whether mutation of cysteine residues in the influenza virus NA would yield ts mutants. The ability to rationally design tight and stable ts mutations could facilitate the creation of efficient helper viruses for influenza virus reverse genetics experiments. We generated a series of cysteine-to-glycine mutants in the influenza A/WSN/33 virus NA. These were assayed for neuraminidase activity in a transient expression system, and active mutants were rescued into infectious virus by using established reverse genetics techniques. Mutation of two cysteines not involved in intrasubunit disulfide bonds, C49 and C146, had modest effects on enzymatic activity and on viral replication. Mutation of two cysteines, C303 and C320, which participate in a single disulfide bond located in the beta5L0,1 loop, produced ts enzymes. Additionally, the C303G and C320G transfectant viruses were found to be attenuated and ts. Because both the C303G and C320G viruses exhibited stable ts phenotypes, they were tested as helper viruses in reverse genetics experiments. Efficiently rescued were an N1 neuraminidase from an avian H5N1 virus, an N2 neuraminidase from a human H3N2 virus, and an N7 neuraminidase from an H7N7 equine virus. Thus, these cysteine-to-glycine NA mutants allow the rescue of a variety of wild-type and mutant NAs into influenza virus.
Collapse
Affiliation(s)
- C F Basler
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
3
|
Goto H, Bethell RC, Kawaoka Y. Mutations affecting the sensitivity of the influenza virus neuraminidase to 4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid. Virology 1997; 238:265-72. [PMID: 9400599 DOI: 10.1006/viro.1997.8810] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (4-guanidino-Neu5Ac2en) specifically inhibits the influenza virus neuraminidase (NA) through interaction of the guanidino group with conserved Glu 119 and Glu 227 residues in the substrate binding pocket of the enzyme. To understand the mechanism by which influenza viruses become resistant to 4-guanidino-Neu5Ac2en, we investigated mutations at amino acid residues 119 and 227 in the influenza virus NA for their effects on this compound and on NA activity. The NA gene was cloned from the NWS-G70c virus, and mutations were introduced at the codon for amino acid residue 119 or 227. All of the 13 mutants containing a change at residue 119 were transported to the cell surface, although their expression levels ranged from 68.2 to 91.3% of wild type. Mutant NAs that retained at least 20% of the wild-type enzymatic activity were tested for their sensitivity to 4-guanidino-Neu5Ac2en and found to be sevenfold less sensitive to this compound than was the wild-type NA. By contrast, only 6 of 13 mutants defined by modifications at residue 227 were transported to the cell surface, and those NAs lacked substantial enzymatic activity (9% of wild type, at most). These results suggest that only a limited number of resistant viruses arise through mutations at Glu 119 and Glu 227 under selective pressure from 4-guanidino-Neu5Ac2en and that the development of compounds which interact with 227 Glu more strongly than does 4-guanidino-Neu5Ac2en may reduce the likelihood of drug-resistant viruses still further.
Collapse
Affiliation(s)
- H Goto
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| | | | | |
Collapse
|
4
|
Yamamoto-Goshima F, Aoki H, Takada T, Toda S, Yoshii S, Maeno K. Isolation and classification of temperature-sensitive mutants of influenza B virus. Microbiol Immunol 1994; 38:757-61. [PMID: 7854217 DOI: 10.1111/j.1348-0421.1994.tb01853.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We isolated 25 temperature-sensitive mutants of B/Kanagawa/73 strain generated by mutagenesis with 5-fluorouracil and classified them into seven recombination groups by pair-wise crosses. All mutants showed a ratio of plaquing efficiency at the nonpermissive temperature (37.5 C) to the permissive temperature (32 C) of 10(-4) or less. At 37.5 C most of group I, II, and III mutants did not produce appreciable amounts of protein, but all other group mutants were protein synthesis-positive. A group VII mutant produced active hemagglutinin (HA) and neuraminidase (NA) at the nonpermissive temperature, but Group V mutants produced only active NA and were defective in the HA molecule. The other group mutants, including group IV mutants with mutation only in the NA gene (8, 10), lacked both activities at the nonpermissive temperature. One of nine influenza B virus isolates in 1989 had EOP 37.5/32 of 1/3 x 10(-2) and belonged to recombination group VII.
Collapse
Affiliation(s)
- F Yamamoto-Goshima
- Laboratory of Virology, Nagoya University School of Medicine, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Yamamoto-Goshima F, Maeno K, Morishita T, Ueda M, Fujita Y, Nakajima K, Yoshii S. Role of neuraminidase in the morphogenesis of influenza B virus. J Virol 1994; 68:1250-4. [PMID: 8289360 PMCID: PMC236571 DOI: 10.1128/jvi.68.2.1250-1254.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
When ts7, a temperature-sensitive (ts) mutant of influenza B/Kanagawa/73 virus, infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating activity and enzymatic activity of neuraminidase (NA) were negligible. However, viral protein synthesis and transport of hemadsorption-active hemagglutinin to the cell surface were not affected. When the cell lysate was treated with bacterial NA, hemagglutinating activity was recovered but infectivity was not, even after further treatment with trypsin. It was found that ts7 was defective in transport of NA to the cell surface and formation of virus particles. Analysis of the genomes of non-ts recombinants obtained by crossing ts7 and UV-inactivated B/Lee showed that ts7 had the ts mutation only in RNA segment 6 coding for NA and the glycoprotein NB. Nucleotide sequence analysis of the RNA segment revealed that ts7 had four amino acid changes in the NA molecule but not in NB. We suggest that assembly or budding of influenza B virus requires the presence of NA at the plasma membrane, unlike influenza A virus.
Collapse
Affiliation(s)
- F Yamamoto-Goshima
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Shibata S, Yamamoto-Goshima F, Maeno K, Hanaichi T, Fujita Y, Nakajima K, Imai M, Komatsu T, Sugiura S. Characterization of a temperature-sensitive influenza B virus mutant defective in neuraminidase. J Virol 1993; 67:3264-73. [PMID: 8497050 PMCID: PMC237667 DOI: 10.1128/jvi.67.6.3264-3273.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.
Collapse
Affiliation(s)
- S Shibata
- Laboratory of Virology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cell surface transport, oligomerization, and endocytosis of chimeric type II glycoproteins: role of cytoplasmic and anchor domains. Mol Cell Biol 1991. [PMID: 1826760 DOI: 10.1128/mcb.11.5.2675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of cytoplasmic and anchor domains of type II glycoproteins in intracellular transport, oligomerization, and endocytosis by expressing the wild-type and chimeric genes in mammalian cells. Chimeric genes were constructed by exchanging the DNA segments that encode the cytoplasmic and anchor domains between the human influenza virus (A/WSN/33) neuraminidase (NA) and transferrin receptor (TR). The chimeric proteins in which domains were exchanged precisely were productively targeted to the cell surface. However, the proteins appeared to assemble differently in the intracellular compartment. For example, while TR existed predominantly as a dimer, NATR delta 90, containing the cytoplasmic and signal-anchor domains of NA and the ectodomain of TR, was present as a tetramer, a dimer, and a monomer. Similarly, the influenza virus NA existed predominantly as a tetramer but TRNA delta 35, in which the cytoplasmic and signal-anchor domains of TR were joined to the ectodomain of NA, existed predominantly as a dimer, suggesting that the cytoplasmic and anchor domains of type II glycoproteins affect the subunit assembly of heterologous ectodomains. In addition, we analyzed the role of the cytoplasmic domain in endocytosis. NA and NATR delta 90 did not undergo endocytosis, whereas both TR and TRNA delta 35 were internalized efficiently, demonstrating that the NH2 cytoplasmic domain of TR was capable of internalizing a heterologous ectodomain (NA) from the cell surface.
Collapse
|
8
|
Kundu A, Jabbar MA, Nayak DP. Cell surface transport, oligomerization, and endocytosis of chimeric type II glycoproteins: role of cytoplasmic and anchor domains. Mol Cell Biol 1991; 11:2675-85. [PMID: 1826760 PMCID: PMC360037 DOI: 10.1128/mcb.11.5.2675-2685.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the role of cytoplasmic and anchor domains of type II glycoproteins in intracellular transport, oligomerization, and endocytosis by expressing the wild-type and chimeric genes in mammalian cells. Chimeric genes were constructed by exchanging the DNA segments that encode the cytoplasmic and anchor domains between the human influenza virus (A/WSN/33) neuraminidase (NA) and transferrin receptor (TR). The chimeric proteins in which domains were exchanged precisely were productively targeted to the cell surface. However, the proteins appeared to assemble differently in the intracellular compartment. For example, while TR existed predominantly as a dimer, NATR delta 90, containing the cytoplasmic and signal-anchor domains of NA and the ectodomain of TR, was present as a tetramer, a dimer, and a monomer. Similarly, the influenza virus NA existed predominantly as a tetramer but TRNA delta 35, in which the cytoplasmic and signal-anchor domains of TR were joined to the ectodomain of NA, existed predominantly as a dimer, suggesting that the cytoplasmic and anchor domains of type II glycoproteins affect the subunit assembly of heterologous ectodomains. In addition, we analyzed the role of the cytoplasmic domain in endocytosis. NA and NATR delta 90 did not undergo endocytosis, whereas both TR and TRNA delta 35 were internalized efficiently, demonstrating that the NH2 cytoplasmic domain of TR was capable of internalizing a heterologous ectodomain (NA) from the cell surface.
Collapse
Affiliation(s)
- A Kundu
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | | |
Collapse
|
9
|
Penn C. The role of RNA segment 1 in an in vitro host restriction occurring in an avian influenza virus mutant. Virus Res 1989; 12:349-59. [PMID: 2728618 DOI: 10.1016/0168-1702(89)90092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A temperature sensitive mutant, ts C47, derived from A/FPV/Rostock/34 and with a ts mutation in RNA segment 8, fails to form plaques in MDCK cells. From data obtained with reassortant viruses using the human influenza isolate A/FM/1/47 it was apparent that more than one mutation contributed to the temperature-sensitive (ts) and host range (hr) phenotypes of ts C47, and the phenotype of reassortants containing RNA segment 1 from A/FM/1/47 indicated that this segment was involved. A single nucleotide substitution at nucleotide 1961, resulting in valine instead of methionine in the predicted amino acid sequence of polypeptide PB2, was found in RNA segment 1 of ts C47, but this mutation did not segregate with the attenuated phenotype on gene reassortment. The following conclusions are drawn: (a) that ts C47 has at least two mutations in addition to that already known to exist in RNA segment 8, one of which (that in RNA segment 1) does not contribute to the observed ts hr phenotypes and (b) that the hr phenotype can be suppressed by substitution of RNA segment 1 by that of another strain.
Collapse
Affiliation(s)
- C Penn
- AFRC Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, U.K
| |
Collapse
|
10
|
Lentz MR, Webster RG, Air GM. Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism. Biochemistry 1987; 26:5351-8. [PMID: 3314986 DOI: 10.1021/bi00391a020] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Different isolates of influenza virus show a high degree of amino acid sequence variation in their surface glycoproteins. Conserved residues located in the substrate-binding pocket of the influenza virus neuraminidase are therefore likely to be involved in substrate binding or enzyme catalysis. In order to study the structure and function of the active site of this protein, a full-length cDNA clone of the neuraminidase gene from influenza A/Tokyo/3/67 was subcloned into aN M13 vector and amino acid substitutions were made in selected residues by using the oligonucleotide mismatch technique. The mutant neuraminidase genes were expressed from a recombinant SV40 vector, and the proteins were analyzed for synthesis, transport to the cell surface, and proper three-dimensional folding by internal and surface immunofluorescence. The mutant neuraminidase proteins were then assayed to determine the effect of the amino acid substitution on enzyme activity. Twelve of the 14 mutant proteins were correctly folded and were transported to the cell surface in a manner identical with that of the wild type. Two of these have full enzyme activity, but seven mutants, despite correct three-dimensional structure, have completely lost neuraminidase activity. Two mutants were active at low pH. The properties of the mutant enzymes suggest a possible mechanism of neuraminidase action.
Collapse
Affiliation(s)
- M R Lentz
- Department of Microbiology, University of Alabama at Birmingham, 35294
| | | | | |
Collapse
|
11
|
Pattnaik AK, Brown DJ, Nayak DP. Formation of influenza virus particles lacking hemagglutinin on the viral envelope. J Virol 1986; 60:994-1001. [PMID: 3783822 PMCID: PMC253338 DOI: 10.1128/jvi.60.3.994-1001.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.
Collapse
|