1
|
Muhle AA, Palmer NA, Edme SJ, Sarath G, Yuen G, Mitchell RB, Tatineni S. Effect of cultivar and temperature on the synergistic interaction between panicum mosaic virus and satellite panicum mosaic virus in switchgrass. Arch Virol 2022; 167:1247-1256. [PMID: 35344095 DOI: 10.1007/s00705-022-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/02/2022]
Abstract
Panicum mosaic virus (PMV), the type member of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in coinfected millets to exacerbate the disease phenotype and increase the accumulation of PMV compared to plants infected with PMV alone. In this study, we examined the reaction of switchgrass cvs. Summer and Kanlow to PMV and PMV+SPMV infections at 24°C and 32°C. Switchgrass cv. Summer was susceptible to PMV at both temperatures. In contrast, cv. Kanlow was tolerant to PMV at 24°C, but not at 32°C, suggesting that Kanlow harbors temperature-sensitive resistance to PMV. At 24°C, PMV was readily detected in inoculated leaves, but not in upper uninoculated leaves of Kanlow, suggesting that resistance to PMV was likely mediated by abrogation of long-distance virus transport. Coinfection by PMV and SPMV at 24°C and 32°C in cv. Summer, but not in Kanlow, caused increased symptomatic systemic infection and mild disease synergism with slightly increased PMV accumulation compared to plants infected with PMV alone. These data suggest that the interaction between PMV and SPMV in switchgrass is cultivar-dependent, manifested in Summer but not in Kanlow. However, co-inoculation of cv. Kanlow with PMV+SPMV caused an enhanced asymptomatic infection, suggesting a role of SPMV in enhancement of symptomless infection in a tolerant cultivar. These data suggest that enhanced asymptomatic infections in a virus-tolerant switchgrass cultivar could serve as a source of virus spread and play an important role in panicum mosaic disease epidemiology under field conditions. Our data reveal that the cultivar, coinfection with SPMV, and temperature influence the severity of symptoms elicited by PMV in switchgrass.
Collapse
Affiliation(s)
- Anthony A Muhle
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Nathan A Palmer
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA
| | - Serge J Edme
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Gautam Sarath
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Gary Yuen
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Robert B Mitchell
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA. .,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
3
|
Chowda-Reddy RV, Palmer N, Edme S, Sarath G, Kovacs F, Yuen G, Mitchell R, Tatineni S. A Two-Amino Acid Difference in the Coat Protein of Satellite panicum mosaic virus Isolates Is Responsible for Differential Synergistic Interactions with Panicum mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:479-490. [PMID: 30379112 DOI: 10.1094/mpmi-09-18-0247-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Panicum mosaic virus (PMV) (genus Panicovirus, family Tombusviridae) and its molecular parasite, Satellite panicum mosaic virus (SPMV), synergistically interact in coinfected proso and pearl millet (Panicum miliaceum L.) plants resulting in a severe symptom phenotype. In this study, we examined synergistic interactions between the isolates of PMV and SPMV by using PMV-NE, PMV85, SPMV-KS, and SPMV-Type as interacting partner viruses in different combinations. Coinfection of proso millet plants by PMV-NE and SPMV-KS elicited severe mosaic, chlorosis, stunting, and eventual plant death compared with moderate mosaic, chlorotic streaks, and stunting by PMV85 and SPMV-Type. In reciprocal combinations, coinfection of proso millet by either isolate of PMV with SPMV-KS but not with SPMV-Type elicited severe disease synergism, suggesting that SPMV-KS was the main contributor for efficient synergistic interaction with PMV isolates. Coinfection of proso millet plants by either isolate of PMV and SPMV-KS or SPMV-Type caused increased accumulation of coat protein (CP) and genomic RNA copies of PMV, compared with infections by individual PMV isolates. Additionally, CP and genomic RNA copies of SPMV-KS accumulated at substantially higher levels, compared with SMPV-Type in coinfected proso millet plants with either isolate of PMV. Hybrid viruses between SPMV-KS and SPMV-Type revealed that SPMV isolates harboring a CP fragment with four differing amino acids at positions 18, 35, 59, and 98 were responsible for differential synergistic interactions with PMV in proso millet plants. Mutation of amino acid residues at these positions in different combinations in SPMV-KS, similar to those as in SPMV-Type or vice-versa, revealed that A35 and R98 in SPMV-KS CP play critical roles in enhanced synergistic interactions with PMV isolates. Taken together, these data suggest that the two distinct amino acids at positions 35 and 98 in the CP of SPMV-KS and SPMV-Type are involved in the differential synergistic interactions with the helper viruses.
Collapse
Affiliation(s)
- R V Chowda-Reddy
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Nathan Palmer
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Serge Edme
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Gautam Sarath
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Frank Kovacs
- 3 Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, U.S.A.; and
| | - Gary Yuen
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| | - Robert Mitchell
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Satyanarayana Tatineni
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
4
|
Pyle JD, Scholthof KBG. De novo generation of helper virus-satellite chimera RNAs results in disease attenuation and satellite sequence acquisition in a host-dependent manner. Virology 2018; 514:182-191. [PMID: 29197268 DOI: 10.1016/j.virol.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022]
Abstract
Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, United States.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
5
|
Wołek K, Cieplak M. Self-assembly of model proteins into virus capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:474003. [PMID: 29027904 PMCID: PMC7104874 DOI: 10.1088/1361-648x/aa9351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
We consider self-assembly of proteins into a virus capsid by the methods of molecular dynamics. The capsid corresponds either to SPMV or CCMV and is studied with and without the RNA molecule inside. The proteins are flexible and described by the structure-based coarse-grained model augmented by electrostatic interactions. Previous studies of the capsid self-assembly involved solid objects of a supramolecular scale, e.g. corresponding to capsomeres, with engineered couplings and stochastic movements. In our approach, a single capsid is dissociated by an application of a high temperature for a variable period and then the system is cooled down to allow for self-assembly. The restoration of the capsid proceeds to various extent, depending on the nature of the dissociated state, but is rarely complete because some proteins depart too far unless the process takes place in a confined space.
Collapse
Affiliation(s)
- Karol Wołek
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
6
|
Complete nucleotide sequences and virion particle association of two satellite RNAs of panicum mosaic virus. Virus Res 2017; 240:87-93. [PMID: 28673868 DOI: 10.1016/j.virusres.2017.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 11/23/2022]
Abstract
Over six decades ago, panicum mosaic virus (PMV) was identified as the first viral pathogen of cultivated switchgrass (Panicum virgatum). Subsequently, PMV was demonstrated to support the replication of both a satellite RNA virus (SPMV) and satellite RNA (satRNA) agents during natural infections of host grasses. In this study, we report the isolation and full-length sequences of two PMV satRNAs identified in 1988 from St. Augustinegrass (Stenotaphrum secundatum) and centipedegrass (Eremochloa ophiuroides) hosts. Each of these satellites have sequence relatedness at their 5'- and 3'-ends. In addition, satC has a region of ∼100 nt complementary to the 3'-end of the PMV genome. These agents are associated with purified virions of SPMV infections. Additionally, satS and satC RNAs contain conserved in-frame open reading frames in the complementary-sense sequences that could potentially generate 6.6- and 7.9-kDa proteins, respectively. In protoplasts and plants satS is infectious, when co-inoculated with the PMV RNA alone or PMV+SPMV RNAs, and negatively affects their accumulation.
Collapse
|
7
|
Complete Nucleotide Sequence of an Isolate of Grapevine Satellite Virus and Evidence for the Presence of Multimeric Forms in an Infected Grapevine. GENOME ANNOUNCEMENTS 2017; 5:5/16/e01703-16. [PMID: 28428317 PMCID: PMC5399276 DOI: 10.1128/genomea.01703-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete nucleotide sequence of an isolate of grapevine satellite virus (GV-Sat) was determined by next-generation sequencing (NGS) and compared with the single available complete sequence. The NGS data unexpectedly provided evidence for the existence of multimeric forms of GV-Sat, which were experimentally confirmed, allowing the redefinition of GV-Sat genomic ends.
Collapse
|
8
|
Krupovic M, Kuhn JH, Fischer MG. A classification system for virophages and satellite viruses. Arch Virol 2015; 161:233-47. [PMID: 26446887 DOI: 10.1007/s00705-015-2622-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
Satellite viruses encode structural proteins required for the formation of infectious particles but depend on helper viruses for completing their replication cycles. Because of this unique property, satellite viruses that infect plants, arthropods, or mammals, as well as the more recently discovered satellite-like viruses that infect protists (virophages), have been grouped with other, so-called "sub-viral agents." For the most part, satellite viruses are therefore not classified. We argue that possession of a coat-protein-encoding gene and the ability to form virions are the defining features of a bona fide virus. Accordingly, all satellite viruses and virophages should be consistently classified within appropriate taxa. We propose to create four new genera - Albetovirus, Aumaivirus, Papanivirus, and Virtovirus - for positive-sense single-stranded (+) RNA satellite viruses that infect plants and the family Sarthroviridae, including the genus Macronovirus, for (+)RNA satellite viruses that infect arthopods. For double-stranded DNA virophages, we propose to establish the family Lavidaviridae, including two genera, Sputnikvirus and Mavirus.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | |
Collapse
|
9
|
Stewart CL, Pyle JD, Jochum CC, Vogel KP, Yuen GY, Scholthof KBG. Multi-Year Pathogen Survey of Biofuel Switchgrass Breeding Plots Reveals High Prevalence of Infections by Panicum mosaic virus and Its Satellite Virus. PHYTOPATHOLOGY 2015; 105:1146-1154. [PMID: 25894317 DOI: 10.1094/phyto-03-15-0062-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Switchgrass (Panicum virgatum) cultivars are currently under development as lignocellulosic feedstock. Here we present a survey of three established switchgrass experimental nurseries in Nebraska in which we identified Panicum mosaic virus (PMV) as the most prevalent virus. In 2012, 72% of 139 symptomatic plants tested positive for PMV. Of the PMV-positive samples, 19% were coinfected with its satellite virus (SPMV). Less than 14% of all sampled plants in 2012 were positive for four additional viruses known to infect switchgrass. In 2013, randomized sampling of switchgrass individuals from the same 2012 breeding plots revealed that infection by PMV or PMV+SPMV was both more prevalent and associated with more severe symptoms in the cultivar Summer, and experimental lines with Summer parentage, than populations derived from the cultivar Kanlow. A 3-year analysis, from 2012 to 2014, showed that previously uninfected switchgrass plants acquire PMV or PMV+SPMV between harvest cycles. In contrast, some plants apparently did not maintain PMV infections at detectable levels from year-to-year. These findings suggest that PMV and SPMV should be considered important pathogens of switchgrass and serious potential threats to biofuel crop production efficiency.
Collapse
Affiliation(s)
- Catherine L Stewart
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Jesse D Pyle
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Charlene C Jochum
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Kenneth P Vogel
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Gary Y Yuen
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Karen-Beth G Scholthof
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| |
Collapse
|
10
|
Abstract
This chapter discusses the astonishing discovery of the Sputnik virophage, a new virus infecting giant viruses of the genera Mimivirus and Mamavirus. While other virophages have also since been described, this chapter focuses mainly on Sputnik, which is the best described. We detail the general properties of the virophage life cycle, as well as its hosts, genomic characteristics, ecology, and origin. In addition to genetic, phylogenetic, and structural evidence, the existence of virophages has deeply altered our view of the tripartite division of life to include the addition of a fourth domain constituted of the nucleocytoplasmic large DNA viruses, an important point that is discussed.
Collapse
Affiliation(s)
- Christelle Desnues
- URMITE, Centre National de la Recherche Scientifique UMR IRD 6236, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
11
|
Gene from a novel plant virus satellite from grapevine identifies a viral satellite lineage. Virus Genes 2013; 47:114-8. [DOI: 10.1007/s11262-013-0921-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/11/2013] [Indexed: 11/30/2022]
|
12
|
Ford RJ, Barker AM, Bakker SE, Coutts RH, Ranson NA, Phillips SEV, Pearson AR, Stockley PG. Sequence-specific, RNA-protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J Mol Biol 2013; 425:1050-64. [PMID: 23318955 PMCID: PMC3593212 DOI: 10.1016/j.jmb.2013.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
We have examined the roles of RNA–coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a β-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem–loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T = 1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3 Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8–11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal–CP interactions.
Collapse
Affiliation(s)
- Robert J Ford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Makino DL, Larson SB, McPherson A. The crystallographic structure of Panicum Mosaic Virus (PMV). J Struct Biol 2013; 181:37-52. [PMID: 23123270 PMCID: PMC3525795 DOI: 10.1016/j.jsb.2012.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/25/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022]
Abstract
The structure of Panicum Mosaic Virus (PMV) was determined by X-ray diffraction analysis to 2.9Å resolution. The crystals were of pseudo symmetry F23; the true crystallographic unit cell was of space group P2(1) with a=411.7Å, b=403.9Å and c=412.5Å, with β=89.7°. The asymmetric unit was two entire T=3 virus particles, or 360 protein subunits. The structure was solved by conventional molecular replacement from two distant homologues, Cocksfoot Mottle Virus (CfMV) and Tobacco Necrosis Virus (TNV), of ∼20% sequence identity followed by phase extension. The model was initially refined with exact icosahedral constraints and then with icosahedral restraints. The virus has Ca(++) ions octahedrally coordinated by six aspartic acid residues on quasi threefold axes, which is completely different than for either CfMV or TNV. Amino terminal residues 1-53, 1-49 and 1-21 of the A, B and C subunits, respectively, and the four C-terminal residues (239-242) are not visible in electron density maps. The additional ordered residues of the C chain form a prominent "arm" that intertwines with symmetry equivalent "arms" at icosahedral threefold axes, as was seen in both CfMV and TNV. A 17 nucleotide hairpin segment of genomic RNA is icosahedrally ordered and bound at 60 equivalent sites at quasi twofold A-B subunit interfaces at the interior surface of the capsid. This segment of RNA may serve as a conformational switch for coat protein subunits, as has been proposed for similar RNA segments in other viruses.
Collapse
Affiliation(s)
- Debora L. Makino
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| | - Steven B. Larson
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| | - Alexander McPherson
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| |
Collapse
|
14
|
Mandadi KK, Scholthof KBG. Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. PLANT PHYSIOLOGY 2012; 160:1432-52. [PMID: 22961132 PMCID: PMC3490591 DOI: 10.1104/pp.112.204362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/30/2012] [Indexed: 05/05/2023]
Abstract
Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism.
Collapse
Affiliation(s)
- Kranthi K. Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| |
Collapse
|
15
|
Abstract
Cross-protection is a phenomenon in which infection of a plant with a mild virus or viroid strain protects it from disease resulting from a subsequent encounter with a severe strain of the same virus or viroid. In this chapter, we review the history of cross-protection with regard to the development of ideas concerning its likely mechanisms, including RNA silencing and exclusion, and its influence on the early development of genetically engineered virus resistance. We also examine examples of the practical use of cross-protection in averting crop losses due to viruses, as well as the use of satellite RNAs to ameliorate the impact of virus-induced diseases. We also discuss the potential of cross-protection to contribute in future to the maintenance of crop health in the face of emerging virus diseases and related threats to agricultural production.
Collapse
|
16
|
Satellite RNAs and Satellite Viruses of Plants. Viruses 2009; 1:1325-50. [PMID: 21994595 PMCID: PMC3185516 DOI: 10.3390/v1031325] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022] Open
Abstract
The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites.
Collapse
|
17
|
Qi D, Scholthof KBG. Multiple activities associated with the capsid protein of satellite panicum mosaic virus are controlled separately by the N- and C-terminal regions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:613-621. [PMID: 18393621 DOI: 10.1094/mpmi-21-5-0613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 17-kDa capsid protein (CP) of satellite panicum mosaic virus (SPMV) contains a distinct N-terminal arginine-rich motif (N-ARM) which is required for SPMV virion assembly and the activity of SPMV CP to promote systemic accumulation of its cognate RNA. The present study indicates that SPMV CP also is involved in SPMV RNA accumulation in inoculated leaves and that this activity is also dependent on a functional N-ARM. In addition, deletions of a C-terminal region abolish virion assembly and impair SPMV RNA accumulation in both inoculated and systemic leaves. Unlike the N-ARM mutations, substantial deletions of the SPMV CP C-terminus do not affect SPMV RNA binding activity. Interestingly, SPMV CP also binds Panicum mosaic virus genomic RNA via N-ARM-mediated CP:RNA interactions. Mutations of the N-ARM and the C-terminal regions significantly reduce SPMV CP titers and result in symptom attenuation. In contrast, virions were not associated per se with symptom exacerbation or successful SPMV RNA accumulation. The results show the existence of a correlation between N- and C-termini-mediated contributions for CP accumulation, symptom induction, defective-interfering RNA accumulation, and temperature sensitivity of SPMV RNA maintenance. The data provide further evidence that SPMV CP has multiple roles during infection, which might involve the formation of nonvirion CP:RNA complexes whose stability is controlled in a biologically relevant manner by the N- and C-termini of the CP.
Collapse
Affiliation(s)
- Dong Qi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
18
|
The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 2008; 376:154-64. [PMID: 18440039 DOI: 10.1016/j.virol.2008.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/02/2008] [Accepted: 03/16/2008] [Indexed: 11/20/2022]
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport.
Collapse
|
19
|
Makino DL, Day J, Larson SB, McPherson A. Investigation of RNA structure in satellite panicum mosaic virus. Virology 2006; 351:420-31. [PMID: 16677679 DOI: 10.1016/j.virol.2006.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 02/15/2006] [Accepted: 03/06/2006] [Indexed: 11/23/2022]
Abstract
Three new crystal forms of satellite panicum mosaic virus (SPMV) were grown and their structures solved from X-ray diffraction data using molecular replacement techniques. The crystals were grown under conditions of pH and ionic strength that were appreciably different then those used for the original structure determination. In rhombohedral crystals grown at pH 8.5 and low ionic strength PEG 3350 solutions, Fourier syntheses revealed segments, ten amino acid residues long, of amino-terminal polypeptides not previously seen, as well as masses of electron density within concavities on the interior of the capsid, which appeared in the neighborhoods of icosahedral five- and threefold axes. The densities were compatible with secondary structural domains of RNA, and they included a segment of double helical RNA of about four to five base pairs oriented, at least approximately, along the fivefold axes. The distribution of RNA observed for SPMV appears to be distinctly different than the encapsidated nucleic acid conformation previously suggested for another satellite virus, satellite tobacco mosaic virus. This study further shows that analysis of viruses in crystals grown under different chemical conditions may reveal additional information regarding the structure of encapsidated RNA.
Collapse
Affiliation(s)
- D L Makino
- Department of Molecular Biology and Biochemistry, University of California-Irvine, 560 Steinhaus Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
20
|
Omarov RT, Qi D, Scholthof KBG. The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 2005; 79:9756-64. [PMID: 16014937 PMCID: PMC1181559 DOI: 10.1128/jvi.79.15.9756-9764.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus (PMV) for replication and spread in host plants. The SPMV RNA encodes a 17-kDa capsid protein (CP) that is essential for formation of its 16-nm virions. The results of this study indicate that in addition to the expression of the full-length SPMV CP from the 5'-proximal AUG start codon, SPMV RNA also expresses a 9.4-kDa C-terminal protein from the third in-frame start codon. Differences in solubility between the full-length protein and its C-terminal product were observed. Subcellular fractionation of infected plant tissues showed that SPMV CP accumulates in the cytosol, cell wall-, and membrane-enriched fractions. However, the 9.4-kDa protein exclusively cofractionated with cell wall- and membrane-enriched fractions. Earlier studies revealed that the 5'-untranslated region (5'-UTR) from nucleotides 63 to 104 was associated with systemic infection in a host-specific manner in millet plants. This study shows that nucleotide deletions and insertions in the 5'-UTR plus simultaneous truncation of the N-terminal part of the CP impaired SPMV spread in foxtail millet, but not in proso millet plants. In contrast, the expression of the full-length version of SPMV CP efficiently compensated the negative effect of the 5'-UTR deletions in foxtail millet. Finally, immunoprecipitation assays revealed the presence of a specific interaction between the capsid proteins of SPMV and its helper virus (PMV). Our findings show that the SPMV CP has several biological functions, including facilitating efficient satellite virus infection and movement in millet plants.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843-2132, USA
| | | | | |
Collapse
|
21
|
Qiu W, Scholthof KB. Defective interfering RNAs of a satellite virus. J Virol 2001; 75:5429-32. [PMID: 11333930 PMCID: PMC114954 DOI: 10.1128/jvi.75.11.5429-5432.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Accepted: 03/07/2001] [Indexed: 11/20/2022] Open
Abstract
Panicum mosaic virus (PMV) is a recently molecularly characterized RNA virus with the unique feature of supporting the replication of two subviral RNAs in a few species of the family Gramineae. The subviral agents include a satellite RNA (satRNA) that is devoid of a coding region and the unrelated satellite panicum mosaic virus (SPMV) that encodes its own capsid protein. Here we report the association of this complex with a new entity in the RNA world, a defective-interfering RNA (DI) of a satellite virus. The specificity of interactions governing this four-component viral system is illustrated by the ability of the SPMV DIs to strongly interfere with the accumulation of the parental SPMV. The SPMV DIs do not interfere with PMV satRNA, but they do slightly enhance the rate of spread and titer of PMV. The SPMV-derived DIs provide an additional avenue by which to investigate fundamental biological questions, including the evolution and interactions of infectious RNAs.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
22
|
Qiu W, Scholthof KB. Genetic identification of multiple biological roles associated with the capsid protein of satellite panicum mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:21-30. [PMID: 11194868 DOI: 10.1094/mpmi.2001.14.1.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Satellite panicum mosaic virus (SPMV), an 824-nucleotide, positive-sense, single-stranded RNA virus, depends on Panicum mosaic virus (PMV) for replication and spread in host plants. Compared with PMV infection alone, symptoms are intensified and develop faster on millet plants infected with SPMV and PMV. SPMV encodes a 157 amino acid capsid protein (CP) (17.5 kDa) to encapsidate SPMV RNA and form T = 1 satellite virions. The present study identifies additional biological activities of the SPMV CP, including the induction of severe chlorosis on proso millet plants (Panicum miliaceum cv. Sunup or Red Turghai). Initial deletion mutagenesis experiments mapped the chlorosis-inducing domain to amino acids 50 to 157 on the C-terminal portion of the SPMV CP. More defined analyses revealed that amino acids 124 to 135 comprised a critical domain associated with chlorosis induction and virion formation, whereas the extreme C-terminal residues 148 to 157 were not strictly essential for either role. The results also demonstrated that the absence of SPMV CP tended to stimulate the accumulation of defective RNAs. This suggests that the SPMV CP plays a significant role in maintaining the structural integrity of the full-length satellite virus RNA and harbors multiple functions associated with pathogenesis in SPMV-infected host plants.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
23
|
Abstract
The interactions between satellite panicum mosaic virus (SPMV) capsid protein (CP) and its 824 nucleotide (nt) single stranded RNA were investigated by gel mobility shift assay and Northwestern blot assay. SPMV CP has specificity for its RNA at high affinity, but little affinity for non-viral RNA. The SPMV CP also bound a 350 nt satellite RNA (satRNA) that, like SPMV, is dependent on panicum mosaic virus for its replication. SPMV CP has the novel property of encapsidating SPMV RNA and satRNA. Competition gel mobility shift assays performed with a non-viral RNA and unlabeled SPMV RNA and satRNA revealed that these RNA:protein interactions were in part sequence specific.
Collapse
Affiliation(s)
- B Desvoyes
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845-2132, USA
| | | |
Collapse
|
24
|
Qiu W, Scholthof KB. In vitro- and in vivo-generated defective RNAs of satellite panicum mosaic virus define cis-acting RNA elements required for replication and movement. J Virol 2000; 74:2247-54. [PMID: 10666255 PMCID: PMC111706 DOI: 10.1128/jvi.74.5.2247-2254.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3' untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5' UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5' UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential "trigger" for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
25
|
Turina M, Desvoyes B, Scholthof KB. A gene cluster encoded by panicum mosaic virus is associated with virus movement. Virology 2000; 266:120-8. [PMID: 10612666 DOI: 10.1006/viro.1999.0069] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A subgenomic RNA (sgRNA) of about 1500 nucleotides has been detected in millet plants and protoplasts infected with panicum mosaic virus (PMV). This sgRNA expressed p8, p6.6, p15, and the 26-kDa capsid protein (CP) genes during in vitro translation assays, as determined by using mutants inactivated for expression of each open reading frame. Abolishing expression of p8 and p6.6, the two 5'-proximal genes on the sgRNA, did not affect the replication of PMV in millet protoplasts, but obstructed spread in plants. As predicted for a typical cell-to-cell movement protein, p8 localized to the cell wall fraction of PMV-infected millet plants. The introduction of premature stop codons downstream of the PMV p15 start codon (p15*) abolished infectivity in planta, but did not impair replication in protoplasts. However, a delayed systemic infection in millet plants was supported by the p15aug(-) start codon mutant, which may reflect very low levels of expression from a suboptimal start codon context and/or leaky scanning to a second inframe AUG codon to express the C-terminal portion of the 15-kDa protein. PMV CP mutants had little effect on sgRNA accumulation, but were correlated with a reduction of the gRNA and the decreased expression of the 8-kDa protein in protoplasts as well as abolishment of cell-to-cell spread in plants. These results imply that the successful establishment of a PMV systemic infection in millet host plants appears to be dependent on the concerted expression of the p8, p6.6, p15, and CP genes.
Collapse
Affiliation(s)
- M Turina
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843-2132, USA
| | | | | |
Collapse
|
26
|
Cabrera O, Scholthof KBG. The Complex Viral Etiology of St. Augustine Decline. PLANT DISEASE 1999; 83:902-904. [PMID: 30841070 DOI: 10.1094/pdis.1999.83.10.902] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
St. Augustine decline is a viral disease of St. Augustinegrass, a turfgrass grown in the Gulf Coast region of the United States. Analyses of 204 plants in two locations in southeast Texas indicate that the disease is caused by an infection with panicum mosaic virus (PMV), alone or in any combination with satellite panicum mosaic virus (SPMV) and/or its satellite RNAs (satRNAs). This is the first report of the incidence of PMV satRNAs in field samples of St. Augustinegrass. Leaf symptoms of plants collected from the field ranged from severe bleaching to a mild chlorotic mottle, but after 5 months in the greenhouse, the plants had a relatively homogeneous chlorotic mottle phenotype, suggesting that environmental conditions have a significant influence on the development of this disease.
Collapse
Affiliation(s)
- Over Cabrera
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| | - Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| |
Collapse
|
27
|
Tsai MS, Hsu YH, Lin NS. Bamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA. J Virol 1999; 73:3032-9. [PMID: 10074153 PMCID: PMC104063 DOI: 10.1128/jvi.73.4.3032-3039.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A satellite RNA of 836 nucleotides [excluding the poly(A) tail] depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsidation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein (P20). The P20 protein with eight histidine residues at the C terminus was overexpressed in Escherichia coli. Experiments of gel retardation, UV cross-linking, and Northwestern hybridization demonstrated that purified P20 was a nucleic-acid-binding protein. The binding of P20 to nucleic acids was strong and highly cooperative. P20 preferred binding to satBaMV- or BaMV-related sequences rather than to nonrelated sequences. By deletion analysis, the P20 binding sites were mainly located at the 5' and 3' untranslated regions of satBaMV RNA, and the RNA-protein interactions could compete with the poly(G) and, less efficiently, with the poly(U) homopolymers. The N-terminal arginine-rich motif of P20 was the RNA binding domain, as shown by in-frame deletion analysis. This is the first report that a plant virus satellite RNA-encoded nonstructural protein preferentially binds with nucleic acids.
Collapse
Affiliation(s)
- M S Tsai
- Graduate Institute of Life Science, National Defence Medical Center, Taipei, Taiwan 100
| | | | | |
Collapse
|
28
|
Scholthof KB, Jones RW, Jackson AO. Biology and structure of plant satellite viruses activated by icosahedral helper viruses. Curr Top Microbiol Immunol 1999; 239:123-43. [PMID: 9893372 DOI: 10.1007/978-3-662-09796-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- K B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | | | |
Collapse
|
29
|
Turina M, Maruoka M, Monis J, Jackson AO, Scholthof KB. Nucleotide sequence and infectivity of a full-length cDNA clone of panicum mosaic virus. Virology 1998; 241:141-55. [PMID: 9454725 DOI: 10.1006/viro.1997.8939] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sequence of an infectious cDNA clone of panicum mosaic virus (PMV) showed that the single-stranded RNA genome is 4326 nucleotides (nt) and a single highly abundant subgenomic (sg) RNA of 1475 nt was synthesized during PMV infection of pearl millet plants and protoplasts. Computer comparisons revealed strong similarities between the predicted amino acid sequences of the p48 and p112 open reading frames (ORFs) and replicase proteins of members of the Tombusviridae. The sgRNA has the potential to encode five proteins. Three small ORFs, p8, p8-FS, and/or p6.6 have similarity to ORFs of carmo-, necro-, and machlomoviruses thought to be involved in virus spread in plants. The sgRNA also has the potential to encode a 26-kDa capsid protein and a 15-kDa nested gene (p15) of unknown function. PMV transcripts also supported replication and movement of SPMV, the satellite virus. Genome organization, physicochemical properties, and biological features indicate that PMV is a member of the Tombusviridae family. However, PMV differs sufficiently from previously described members to warrant its placement in a new genus provisionally designated Panicovirus.
Collapse
Affiliation(s)
- M Turina
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843, USA
| | | | | | | | | |
Collapse
|
30
|
Ban N, McPherson A. The structure of satellite panicum mosaic virus at 1.9 A resolution. NATURE STRUCTURAL BIOLOGY 1995; 2:882-90. [PMID: 7552713 DOI: 10.1038/nsb1095-882] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structure of satellite panicum mosaic virus (SPMV) has been solved by multiple isomorphous replacement and molecular replacement and refined at 1.9 A resolution. SPMV, a T = 1 icosahedral virus, is the smallest virus structure determined. The coat protein is an eight-stranded 'jelly roll' beta-barrel with an amino-terminal strand that extends into the interior of the virus, presumably interacting with the RNA. Regions of electron density on the interior of the protein capsid may be RNA, although it is not possible to construct any detailed model of the nucleic acid. Basic amino acid residues in contact with the nucleic acid show a considerable degree of disorder. The carboxy-terminal strand of the virus coat protein interacts with adjacent subunits, forming an additional beta-strand.
Collapse
Affiliation(s)
- N Ban
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | |
Collapse
|
31
|
Liu JS, Lin NS. Satellite RNA associated with bamboo mosaic potexvirus shares similarity with satellites associated with sobemoviruses. Arch Virol 1995; 140:1511-4. [PMID: 7544972 DOI: 10.1007/bf01322678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A putative nonstructural protein encoded by a satellite RNA associated with bamboo mosaic potexvirus shares 46% identity with the capsid protein of satellite virus of panicum mosaic sobemovirus. The sequence similarity among satellite plant viruses which have no apparent relationship implies a common origin.
Collapse
Affiliation(s)
- J S Liu
- Institute of Botany, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
32
|
Danthinne X, Seurinck J, Van Montagu M, Pleij CW, van Emmelo J. Structural similarities between the RNAs of two satellites of tobacco necrosis virus. Virology 1991; 185:605-14. [PMID: 1962441 DOI: 10.1016/0042-6822(91)90531-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The complete nucleotide sequence of satellite tobacco necrosis virus 2 (STNV-2) RNA has been determined. It has the same organization as the previously studied STNV-1 RNA. The 5' untranslated regions (about 30 nt) are nearly identical, while the coat protein coding regions (about 600 nt) have 55% nucleotide sequence similarity. The 620-nt-long trailer sequences, with 64% nucleotide sequence conservation, can fold into a phylogenetically conserved secondary structure consisting of three pseudoknots followed by a long-range interaction-born hairpin structure. The significance of these elements is discussed in view of the particular properties (stability, translational competitiveness, and replication) that characterize these RNAs.
Collapse
|
33
|
Zhang L, Zitter TA, Palukaitis P. Helper virus-dependent replication, nucleotide sequence and genome organization of the satellite virus of maize white line mosaic virus. Virology 1991; 180:467-73. [PMID: 1989380 DOI: 10.1016/0042-6822(91)90060-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Virus like particles (17 nm in diameter) associated with maize white line mosaic virus (MWLMV) were shown to be a satellite virus of MWLMV (SV-MWLMV) on the basis of the following properties: (1) The SV-MWLMV was dependent upon the presence of MWLMV for replication in maize, while the latter virus could replicate independently of the SV particles. (2) No nucleotide sequence homology was detected between the SV-MWLMV and MWLMV, using complementary DNA probes prepared to the two RNAs, in a Northern blot hybridization analysis. (3) The RNA of the SV-MWLMV translated in vitro to produce a protein of the same Mr (24,000) as that found associated with the SV particles. This protein could be immunoprecipitated with an antiserum to the SV particles. And (4), there was no serological relationship between the coat proteins of MWLMV and the SV-MWLMV. The complete nucleotide sequence of the SV-MWLMV RNA (1168 nucleotides) was determined. The SV-MWLMV RNA contains a single open reading frame encoding a polypeptide of Mr 23,961. Computer analysis revealed no significant homology between SV-MWLMV RNA and any other viral or satellite RNAs. However, the putative SV-MWLMV capsid protein is predicted to share some structural features with the capsid protein of the satellite virus of panicum mosaic virus.
Collapse
Affiliation(s)
- L Zhang
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
34
|
Mirkov TE, Mathews DM, Du Plessis DH, Dodds JA. Nucleotide sequence and translation of satellite tobacco mosaic virus RNA. Virology 1989; 170:139-46. [PMID: 2718378 DOI: 10.1016/0042-6822(89)90361-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Satellite tobacco mosaic virus (STMV) is a plant virus with a 17-nm icosahedral particle encapsidating a 0.3 X 10(6) Mr ssRNA genome that depends on tobamoviruses for its replication. The complete nucleotide sequence of STMV RNA deduced in the experiments described here was 1059 nucleotides in length. The efficiency of labeling viral RNA with [gamma-32P]ATP using T4 polynucleotide kinase was not affected by treatment with tobacco acid pyrophosphatase and/or bacterial alkaline phosphatase, indicating that the majority of the 5' termini of encapsidated STMV RNAs were not phosphorylated. The 240 3'-terminal nucleotides of STMV RNA and either tobacco mosaic virus (TMV) U1 RNA or TMV U2/U5 RNA had greater than 65% overall sequence similarity, with two nearly identical regions of 40 and 50 bases, respectively. There were no other regions of sequence relatedness to TMV RNA. The 19 5'-terminal nucleotides of STMV RNA had greater than 65% sequence similarity with the 16 5'-terminal nucleotides of brome mosaic virus (RNA 3 and 50% sequence similarity with the 12 5'-terminal nucleotides of the Q strain of cucumber mosaic virus RNA 3. The first open reading frame (ORF) beginning at base 53 encoded a 6800 Mr protein that corresponded in size to a major in vitro translation product directed by STMV RNA. A second ORF, beginning at nucleotide 163, had the capacity to code for a protein that corresponded in size (17,500 Mr) to the other major in vitro translation product. The first 12 codons of this ORF corresponded to the sequence of the N-terminal amino acids of the capsid protein. Western-blot analysis of the in vitro translation products revealed that the 17,500 Mr protein had the same electrophoretic mobility as the authentic capsid protein; it was also antigenically related to the capsid protein, but the 6800 Mr protein was not. Time course analysis of in vitro translation demonstrated that the 6800 Mr protein was synthesized at the same time as the capsid protein and did not arise by the proteolytic cleavage of a larger precursor polypeptide. These results suggest that the genome of STMV functioned as a polycistronic messenger RNA. It has not been determined if the 6800 Mr protein is synthesized in vivo. STMV RNA had untranslated regions of 52 and 418 nucleotides at its 5' and 3' termini, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T E Mirkov
- Department of Plant Pathology, University of California, Riverside 92521
| | | | | | | |
Collapse
|
35
|
Zuidema D, Heaton L, Jackson A. Structure of the nucleocapsid protein gene of sonchus yellow net virus. Virology 1987; 159:373-80. [DOI: 10.1016/0042-6822(87)90476-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1987] [Accepted: 04/20/1987] [Indexed: 10/26/2022]
|