1
|
Matthews JD, Morgan R, Sleigher C, Frey TK. Do viruses require the cytoskeleton? Virol J 2013; 10:121. [PMID: 23597412 PMCID: PMC3639929 DOI: 10.1186/1743-422x-10-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 04/11/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is generally thought that viruses require the cytoskeleton during their replication cycle. However, recent experiments in our laboratory with rubella virus, a member of the family Togaviridae (genus rubivirus), revealed that replication proceeded in the presence of drugs that inhibit microtubules. This study was done to expand on this observation. FINDINGS The replication of three diverse viruses, Sindbis virus (SINV; family Togaviridae family), vesicular stomatitis virus (VSV; family Rhabdoviridae), and Herpes simplex virus (family Herpesviridae), was quantified by the titer (plaque forming units/ml; pfu/ml) produced in cells treated with one of three anti-microtubule drugs (colchicine, noscapine, or paclitaxel) or the anti-actin filament drug, cytochalasin D. None of these drugs affected the replication these viruses. Specific steps in the SINV infection cycle were examined during drug treatment to determine if alterations in specific steps in the virus replication cycle in the absence of a functional cytoskeletal system could be detected, i.e. redistribution of viral proteins and replication complexes or increases/decreases in their abundance. These investigations revealed that the observable impacts were a colchicine-mediated fragmentation of the Golgi apparatus and concomitant intracellular redistribution of the virion structural proteins, along with a reduction in viral genome and sub-genome RNA levels, but not double-stranded RNA or protein levels. CONCLUSIONS The failure of poisons affecting the cytoskeleton to inhibit the replication of a diverse set of viruses strongly suggests that viruses do not require a functional cytoskeletal system for replication, either because they do not utilize it or are able to utilize alternate pathways when it is not available.
Collapse
Affiliation(s)
- Jason D Matthews
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
2
|
Tellinghuisen TL, Perera R, Kuhn RJ. Genetic and biochemical studies on the assembly of an enveloped virus. GENETIC ENGINEERING 2002; 23:83-112. [PMID: 11570108 DOI: 10.1007/0-306-47572-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
3
|
Carleton M, Brown DT. The formation of intramolecular disulfide bridges is required for induction of the Sindbis virus mutant ts23 phenotype. J Virol 1997; 71:7696-703. [PMID: 9311853 PMCID: PMC192120 DOI: 10.1128/jvi.71.10.7696-7703.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Sindbis virus envelope protein spike is a hetero-oligomeric complex composed of a trimer of glycoprotein E1-E2 heterodimers. Spike assembly is a multistep process which occurs in the endoplasmic reticulum (ER) and is required for the export of E1 from the ER. PE2 (precursor to E2), however, can transit through the secretory pathway and be expressed at the cell surface in the absence of E1. Although oligomer formation does not appear to be required for the export of PE2, there is evidence that defects in E1 folding can affect PE2 transit from the ER. Temperature-sensitive mutant ts23 of Sindbis virus contains two amino acid substitutions in E1, while PE2 and capsid protein have the wild-type sequence; however, at the nonpermissive temperature, both E1 and PE2 are retained within the ER and can be isolated in protein aggregates with the molecular chaperone GRP78-BiP. We previously demonstrated that the temperature sensitivity for ts23 was lost as oligomer formation took place at the permissive temperature, suggesting that temperature sensitivity is initiated early in the process of viral spike assembly (M. Carleton and D. T. Brown, J. Virol. 70:952-959, 1996). Experiments described herein investigated the defects in envelope protein maturation that occur in ts23-infected cells and which result in retention of both envelope proteins in the ER. The data demonstrate that in ts23-infected cells incubated at the nonpermissive temperature, E1 folding is disrupted early after synthesis, resulting in the rapid incorporation of both E1 and PE2 into disulfide-stabilized aggregates. Furthermore, the aberrant E1 conformation which is responsible for induction of the ts phenotype requires the formation of intramolecular disulfide bridges formed prior to E1 association with PE2 and the completion of E1 folding.
Collapse
Affiliation(s)
- M Carleton
- Cell Research Institute and Department of Microbiology, The University of Texas at Austin, 78713-7640, USA
| | | |
Collapse
|
4
|
Carleton M, Lee H, Mulvey M, Brown DT. Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike. J Virol 1997; 71:1558-66. [PMID: 8995682 PMCID: PMC191213 DOI: 10.1128/jvi.71.2.1558-1566.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sindbis virus envelope assembly is a multistep process resulting in the maturation of a rigid, highly ordered T=4 icosahedral protein lattice containing 80 spikes composed of trimers of E1-E2 heterodimers. Intramolecular disulfide bonds within E1 stabilize E1-E1 associations required for envelope formation and maintenance of the envelope's structural integrity. The structural integrity of the envelope protein lattice is resistant to reduction by dithiothreitol (DTT), indicating that E1 disulfides which stabilize structural domains become inaccessible to DTT at some point during virus maturation. The development of E1 resistance to DTT occurs prior to the completion of E1 folding and is temporally correlated with spike assembly in the endoplasmic reticulum. From these data we have predicted that in the final stages of spike assembly, E1 intramolecular disulfides, which stabilize the structural integrity of the envelope protein lattice, are buried within the spike and become inaccessible to the reductive activity of DTT. The spike is formed prior to the completion of E1 folding, and we have suggested that PE2 (the precursor to E2) may play a critical role in E1 folding after PE2-E1 oligomer formation has occurred. In this study we have investigated the role of PE2 in E1 folding, oligomer formation, and development of E1 resistance to both protease digestion and reduction by DTT by using a Sindbis virus replicon (SINrep/E1) which allows for the expression of E1 in the presence of truncated PE2. Through pulse-chase analysis of both Sindbis virus- and SINrep/E1-infected cells, we have determined that the folding of E1 into a trypsin-resistant conformation and into its most compact and stable form is not dependent upon association of E1 with PE2. However, E1 association with PE2 is required for oligomer formation, the export of E1 from the endoplasmic reticulum, and E1 acquisition of resistance to DTT.
Collapse
Affiliation(s)
- M Carleton
- Cell Research Institute and Department of Microbiology, University of Texas at Austin, 78713-7640, USA
| | | | | | | |
Collapse
|
5
|
Abstract
The Sindbis virus envelope is composed of 80 E1-E2 (envelope glycoprotein) heterotrimers organized into an icosahedral protein lattice with T=4 symmetry. The structural integrity of the envelope protein lattice is maintained by E1-E1 interactions which are stabilized by intramolecular disulfide bonds. Structural domains of the envelope proteins sustain the envelope's icosahedral lattice, while functional domains are responsible for virus attachment and membrane fusion. We have previously shown that within the mature Sindbis virus particle, the structural domains of the envelope proteins are significantly more resistant to the membrane-permeative, sulfhydryl-reducing agent dithiothreitol (DTT) than are the functional domains (R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have used DTT to probe the accessibility of intramolecular disulfides within PE2 (the precursor to E2) and E1, as these proteins fold and are assembled into the spike heterotrimer. We have determined through pulse-chase analysis that intramolecular disulfide bonds within PE2 are always sensitive to DTT when the glycoproteins are in the endoplasmic reticulum. The reduction of these disulfides results in the disruption of PE2-E1 associations. E1 acquires increased resistance to DTT as it folds through a series of disulfide intermediates (E1alpha, -beta, and -gamma) prior to assuming its native and most compact conformation (E1epsilon). The transition from a DTT-sensitive form into a form which exhibits increased resistance to DTT occurs after E1 has folded into its E1beta conformation and correlates temporally with the dissociation of BiP-E1 complexes and the formation of PE2-E1 heterotrimers. We propose that the disulfide bonds within E1 which stabilize the protein domains required for maintaining the structural integrity of the envelope protein lattice form early within the folding pathway of E1 and become inaccessible to DTT once the heterotrimer has formed.
Collapse
Affiliation(s)
- M Carleton
- The Cell Research Institute and Department of Microbiology, University of Texas at Austin, 78713-7640, USA
| | | |
Collapse
|
6
|
Carleton M, Brown DT. Events in the endoplasmic reticulum abrogate the temperature sensitivity of Sindbis virus mutant ts23. J Virol 1996; 70:952-9. [PMID: 8551635 PMCID: PMC189899 DOI: 10.1128/jvi.70.2.952-959.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Temperature-sensitive mutations in proteins produced at or heated to a nonpermissive temperature render the proteins defective in some aspect of their maturation into functional entities. The characterization of temperature-sensitive mutations in model proteins, such as virus membrane proteins, has allowed the elucidation of critical events in the maturation of virus membranes as well as in the intracellular folding, processing, and transport of membrane proteins in general. We have used a transport-defective, temperature-sensitive mutant of Sindbis virus, ts23, which has two amino acid changes in the envelope protein E1, to further examine requirements placed upon the glycoproteins for their export to the plasma membrane. Pulse-chase experiments in which we utilized the transport inhibitors monensin and brefeldin A allowed us to synthesize and assemble the glycoproteins of ts23 into export-competent heterodimers at the permissive temperature while concurrently blocking their export to the cell surface. After removal of the inhibitors and a shift to the nonpermissive temperature, we assayed for protein transport, cell-cell fusion, and infectious-particle production. Taken together, the data show that the irreversible loss of the temperature-sensitive phenotype of ts23 can be correlated with the folding of E1 and the formation of export-competent PE2-E1 heterodimers in the endoplasmic reticulum. Furthermore, we have found that E1 pairs with PE2 to form the heterodimer prior to the completion of E1 folding.
Collapse
Affiliation(s)
- M Carleton
- Cell Research Institute, University of Texas at Austin 78713-7640, USA
| | | |
Collapse
|
7
|
Mulvey M, Brown DT. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins. J Virol 1995; 69:1621-7. [PMID: 7853497 PMCID: PMC188759 DOI: 10.1128/jvi.69.3.1621-1627.1995] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sindbis virus codes for two membrane glycoproteins, E1 and PE2, which assemble into heterodimers within the endoplasmic reticulum. We have examined the role of the molecular chaperone BiP (grp78) in the maturation of these two proteins. E1, which folds into its mature conformation via at least three intermediates differing in the configurations of their disulfide bonds, was found to interact strongly and transiently with BiP after synthesis. ATP depletion mediated by carbonyl cyanide m-chlorophenylhydrazone treatment results in the stabilization of complexes between BiP and E1. The depletion of intracellular ATP levels also greatly inhibits conversions between the E1 folding intermediates and results in the slow incorporation of E1 into disulfide-stabilized aggregates. These results suggest that the ATP-regulated binding and release of BiP have a role in modulating disulfide bond formation during E1 folding. In comparison with E1, very little PE2 is normally recovered in association with BiP. However, under conditions in which E1 folding is aberrant, increased amounts of PE2 become directly associated with BiP. The formation of these BiP-PE2 interactions occurs after E1 begins to misfold or fails to fold efficiently. We propose that nascent PE2 is stable prior to pairing with E1 for only a limited period of time, after which unpaired PE2 becomes recognized by BiP. This implies that the productive association of PE2 and E1 must occur within a restricted time frame and only after E1 has accomplished certain folding steps mediated by BiP binding and release. Kinetic studies which show that the pairing of E1 with PE2 is delayed after translocation support this conclusion.
Collapse
Affiliation(s)
- M Mulvey
- Cell Research Institute, University of Texas at Austin 78713-7640
| | | |
Collapse
|
8
|
Mulvey M, Brown DT. Formation and rearrangement of disulfide bonds during maturation of the Sindbis virus E1 glycoprotein. J Virol 1994; 68:805-12. [PMID: 8289384 PMCID: PMC236517 DOI: 10.1128/jvi.68.2.805-812.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rigidly ordered icosahedral lattice of the Sindbis virus envelope is composed of a host-derived membrane bilayer in which the viral glycoproteins E1 and E2 reside. E1-E1 interactions stabilized by intramolecular disulfide bridges play a significant role in maintaining the envelope's structural integrity (R. P. Anthony and D. T. Brown, J. Virol. 65:1187-1194, 1991; R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have examined the acquisition of disulfide bridges within E1 during its maturation. Prior to exit from the endoplasmic reticulum, E1 folds via at least three intermediates, differing in the number and/or arrangement of their disulfides, into a single, compact form. This E1 species remains stable with respect to its disulfides until late in the secretory pathway, when E1 attains a metastable conformation. At this point, when appropriately triggered, intramolecular thiol-disulfide exchange reactions within E1 can occur, resulting in the generation of alternative E1 species. This metastable nature of mature E1 may have important implications for the mechanism of virus disassembly during the initial stages of the infection process (B. Abell and D. T. Brown, J. Virol. 67:5496-5501, 1993).
Collapse
Affiliation(s)
- M Mulvey
- Cell Research Institute, University of Texas at Austin 78713-7640
| | | |
Collapse
|
9
|
Piper RC, Slot JW, Li G, Stahl PD, James DE. Recombinant Sindbis virus as an expression system for cell biology. Methods Cell Biol 1994; 43 Pt A:55-78. [PMID: 7529867 DOI: 10.1016/s0091-679x(08)60598-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R C Piper
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
10
|
Liu N, Brown DT. Transient translocation of the cytoplasmic (endo) domain of a type I membrane glycoprotein into cellular membranes. J Biophys Biochem Cytol 1993; 120:877-83. [PMID: 8432728 PMCID: PMC2200073 DOI: 10.1083/jcb.120.4.877] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly.
Collapse
Affiliation(s)
- N Liu
- Cell Research Institute, University of Texas, Austin 78713-7640
| | | |
Collapse
|
11
|
Watson DG, Moehring JM, Moehring TJ. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A and alphaviruses fails to cleave Sindbis virus glycoprotein PE2. J Virol 1991; 65:2332-9. [PMID: 1850015 PMCID: PMC240584 DOI: 10.1128/jvi.65.5.2332-2339.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RPE.40, a mutant CHO-K1 strain selected for resistance to Pseudomonas exotoxin A, is defective in the production of infectious alphaviruses, although viruses are taken in and processed normally (J. M. Moehring and T. J. Moehring, Infect. Immun. 41:998-1009, 1983). To determine the cause of this defect, the synthesis of Sindbis virus proteins was examined. RPE.40 cells produced and glycosylated structural glycoprotein precursors PE2 and immature E1 normally. Mature E1 was formed, but PE2 was not cleaved to E2 and E3. PE2 instead was modified to a higher-molecular-weight form (PE2') in which the high-mannose oligosaccharides were processed to the complex form without proteolytic cleavage. The data suggest that the cleavage which produces E2 occurs within the trans-Golgi or in post-Golgi elements and is closely associated with the addition of sialic acid residues to the asparagine-linked oligosaccharides. RPE.40 cells make and release noninfectious Sindbis virions that contain PE2' and no detectable E2. These virions can be converted to an infectious form by treatment with trypsin. A defect in an intracellular endopeptidase activity in RPE.40 cells is postulated. Comparison of two Sindbis virus strains showed that the requirement for E2 in the virion to ensure infectivity is strain specific.
Collapse
Affiliation(s)
- D G Watson
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington 05405
| | | | | |
Collapse
|
12
|
Defective transport of Sindbis virus glycoproteins in End4 mutant Chinese hamster ovary cells. J Virol 1991; 65:1332-9. [PMID: 1995947 PMCID: PMC239909 DOI: 10.1128/jvi.65.3.1332-1339.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutant V.24.1, a temperature-sensitive derivative of Chinese hamster ovary cells, defines the End4 complementation group of mutants selected for resistance to protein toxins and has defective lysosomes at the restrictive temperature (P. A. Colbaugh, M. Stookey, and R. K. Draper, J. Cell Biol. 108:2211-2219, 1989). We have investigated the biosynthesis of Sindbis virus envelope glycoproteins in V.24.1 cells. When the cells were infected at the restrictive temperature, the envelope glycoproteins E1 and E2 were undetectable on the cell surface and proteolytic processing of the precursor protein pE2 to envelope protein E2 did not occur. Protein retained intracellularly was sensitive to endoglycosidase H and, by immunofluorescence localization, appeared to accumulate in the endoplasmic reticulum. We conclude that the genetic defect in V.24.1 cells impairs the transport of Sindbis virus glycoproteins, apparently at the level of export from the endoplasmic reticulum.
Collapse
|
13
|
Naim HY, Koblet H. The cleavage of p62, the precursor of E2 and E3, is an early and continuous event in Semliki Forest virus-infected Aedes albopictus cells. Arch Virol 1990; 110:221-37. [PMID: 2317152 DOI: 10.1007/bf01311290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cleavage of p62 of Semliki Forest virus (SFV) in C6/36 (Aedes albopictus) cells was investigated by pulse-chase labeling experiments and analysis of the sugar side chain of E1 using endoglycosidases. Similar to vertebrates, E1, E2, and p62 are transported as complexes in C6/36 cells. This observation allows the use of E1 as a positional marker for the transport and processing of E2 and p62. The oligosaccharide on the viral spike E1 protein was modified first to an Endo-D-sensitive (35 min) and then to an Endo-H-resistant structure (55 min), whereas the oligosaccharides of p62 remained sensitive towards Endo-H the whole time. E2 could be detected already at 10-20 min post synthesis, suggesting that p62 cleavage starts early, probably before the protein has been transported to the Golgi apparatus. This is in contrast to the cleavage taking place later mainly near the plasma membrane of higher eukaryotes. The spike proteins finally appeared in extracellular virions after about 70-90 min post synthesis.
Collapse
Affiliation(s)
- H Y Naim
- Institute for Hygiene and Medical Microbiology, University of Berne, Switzerland
| | | |
Collapse
|
14
|
Koblet H. The "merry-go-round": alphaviruses between vertebrate and invertebrate cells. Adv Virus Res 1990; 38:343-402. [PMID: 1977293 DOI: 10.1016/s0065-3527(08)60866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Koblet
- Institute for Medical Microbiology, University of Berne, Switzerland
| |
Collapse
|