1
|
Herbert J, van Dijk AA. Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain. J Gen Virol 2024; 105. [PMID: 39320365 DOI: 10.1099/jgv.0.002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Collapse
Affiliation(s)
- Jayme Herbert
- University of the Free State, Bloemfontein, South Africa
- Deltamune PTY (LTD), Pretoria, South Africa
| | | |
Collapse
|
2
|
Gebert JT, Scribano FJ, Engevik KA, Philip AA, Kawagishi T, Greenberg HB, Patton JT, Hyser JM. Viroporin activity from rotavirus nonstructural protein 4 induces intercellular calcium waves that contribute to pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592929. [PMID: 38765992 PMCID: PMC11100692 DOI: 10.1101/2024.05.07.592929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute gastroenteritis remains the second leading cause of death among children under the age of 5 worldwide. While enteric viruses are the most common etiology, the drivers of their virulence remain incompletely understood. We recently found that cells infected with rotavirus, the most prevalent enteric virus in infants and young children, initiate hundreds of intercellular calcium waves that enhance both fluid secretion and viral spread. Understanding how rotavirus triggers intercellular calcium waves may allow us to design safer, more effective vaccines and therapeutics, but we still lack a mechanistic understanding of this process. In this study, we used existing virulent and attenuated rotavirus strains, as well as reverse engineered recombinants, to investigate the role of rotavirus nonstructural protein 4 (NSP4) in intercellular calcium wave induction using in vitro , organoid, and in vivo model systems. We found that the capacity to induce purinergic intercellular calcium waves (ICWs) segregated with NSP4 in both simian and murine-like rotavirus backgrounds, and NSP4 expression alone was sufficient to induce ICWs. NSP4's ability to function as a viroporin, which conducts calcium out of the endoplasmic reticulum, was necessary for ICW induction. Furthermore, viroporin activity and the resulting ICWs drove transcriptional changes indicative of innate immune activation, which were lost upon attenuation of viroporin function. Multiple aspects of RV disease severity in vivo correlated with the generation of ICWs, identifying a critical link between viroporin function, intercellular calcium waves, and enteric viral virulence.
Collapse
|
3
|
Valusenko-Mehrkens R, Schilling-Loeffler K, Johne R, Falkenhagen A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024; 16:565. [PMID: 38675907 PMCID: PMC11054354 DOI: 10.3390/v16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.
Collapse
Affiliation(s)
| | | | | | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (R.V.-M.); (K.S.-L.); (R.J.)
| |
Collapse
|
4
|
Abstract
Rotavirus (RV), the most common cause of gastroenteritis in children, carries a high economic and health burden worldwide. RV encodes six structural proteins and six nonstructural proteins (NSPs) that play different roles in viral replication. NSP4, a multifunctional protein involved in various viral replication processes, has two conserved N-glycosylation sites; however, the role of glycans remains elusive. Here, we used recombinant viruses generated by a reverse genetics system to determine the role of NSP4 N-glycosylation during viral replication and pathogenesis. The growth rate of recombinant viruses that lost one glycosylation site was as high as that of the wild-type virus. However, a recombinant virus that lost both glycosylation sites (glycosylation-defective virus) showed attenuated replication in cultured cell lines. Specifically, replications of glycosylation-defective virus in MA104 and HT29 cells were 10- and 100,000-fold lower, respectively, than that of the wild-type, suggesting that N-glycosylation of NSP4 plays a critical role in RV replication. The glycosylation-defective virus showed NSP4 mislocalization, delay of cytosolic Ca2+ elevation, and less viroplasm formation in MA104 cells; however, these impairments were not observed in HT29 cells. Further analysis revealed that assembly of glycosylation-defective virus was severely impaired in HT29 cells but not in MA104 cells, suggesting that RV replication mechanism is highly cell type dependent. In vivo mouse experiments also showed that the glycosylation-defective virus was less pathogenic than the wild-type virus. Taken together, the data suggest that N-glycosylation of NSP4 plays a vital role in viral replication and pathogenicity. IMPORTANCE Rotavirus is the main cause of gastroenteritis in young children and infants worldwide, contributing to 128,500 deaths each year. Here, we used a reverse genetics approach to examine the role of NSP4 N-glycosylation. An N-glycosylation-defective virus showed attenuated and cell-type-dependent replication in vitro. In addition, mice infected with the N-glycosylation-defective virus had less severe diarrhea than mice infected with the wild type. These results suggest that N-glycosylation affects viral replication and pathogenesis. Considering the reduced pathogenicity in vivo and the high propagation rate in MA104 cells, this glycosylation-defective virus could be an ideal live attenuated vaccine candidate.
Collapse
|
5
|
Criglar JM, Estes MK, Crawford SE. Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Front Physiol 2022; 13:836870. [PMID: 35492603 PMCID: PMC9040889 DOI: 10.3389/fphys.2022.836870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
A variety of pathogens, including viruses, bacteria and parasites, target cellular lipid droplets for their replication. Rotaviruses (RVs) infect the villous epithelium of the small intestine and are a major cause of acute gastroenteritis in infants and young children worldwide. RVs induce and require lipid droplets for the formation of viroplasms, sites of virus genome replication, and nascent particle assembly. Here we review the role of lipid droplets in RV replication. Inhibitors of fatty acid synthesis or chemicals that interfere with lipid droplet homeostasis decrease the number and size of viroplasms and the yield of infectious virus. We used a genetically engineered RV, delayed in viroplasm assembly, to show an early interaction of RV nonstructural protein NSP2 and the lipid droplet-associated protein phospho-PLIN1. The interaction between NSP2 and phospho-PLIN1 suggests that we have identified part of the mechanism of RV-induced lipid droplet formation. These studies demonstrate that RV is an excellent model to dissect the cellular process of lipid droplet formation and to determine how RV induces and usurps lipid droplet biogenesis to form viroplasm/lipid droplets for virus replication.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
7
|
Kurokawa N, Lavoie PO, D'Aoust MA, Couture MMJ, Dargis M, Trépanier S, Hoshino S, Koike T, Arai M, Tsutsui N. Development and characterization of a plant-derived rotavirus-like particle vaccine. Vaccine 2021; 39:4979-4987. [PMID: 34325930 DOI: 10.1016/j.vaccine.2021.07.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Virus-like particles (VLPs) are unable to replicate in the recipient but stimulate the immune system through recognition of repetitive subunits. Parenterally delivered rotavirus-VLP (Ro-VLP) vaccine could have the potential to overcome the weaknesses of licensed oral live-attenuated rotavirus vaccines, namely, low efficacy in low-income and high mortality settings and a potential risk of intussusception. METHODS A monovalent Ro-VLP composed of viral protein (VP) 7, VP6 and VP2 of G1 genotype specificity was produced in Nicotiana benthamiana using Agrobacterium tumefaciens infiltration-based transient recombinant expression system. Plants expressing recombinant G1 Ro-VLP were harvested, then the resultant biomass was processed through a series of clarification and purification steps including standard extraction, filtration, ultrafiltration and chromatography. The purified G1 Ro-VLP was subsequently examined for its immunogenicity and toxicological profile using animal models. RESULTS G1 Ro-VLP had a purity of ≥90% and was structurally similar to triple-layered rotavirus particles as determined by cryogenic transmission electron microscopy. Two doses of aluminum hydroxide-adjuvanted G1 Ro-VLP (1 μg, 5 μg or 30 μg), administered intramuscularly, elicited a robust homotypic neutralizing antibody response in rats. Also, rabbits administered G1 Ro-VLP (10 μg or 30 μg) four times intramuscularly with aluminum hydroxide adjuvant did not show any significant toxicity. CONCLUSIONS Plant-derived Ro-VLP composed of VP7, VP6 and VP2 structural proteins would be a plausible alternative to live-attenuated oral rotavirus vaccines currently distributed worldwide.
Collapse
Affiliation(s)
- Natsuki Kurokawa
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan.
| | | | | | - Manon M-J Couture
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Shigeki Hoshino
- Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Tomohiro Koike
- Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Arai
- Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Naohisa Tsutsui
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| |
Collapse
|
8
|
Sarkar R, Nandi S, Lo M, Gope A, Chawla-Sarkar M. Viperin, an IFN-Stimulated Protein, Delays Rotavirus Release by Inhibiting Non-Structural Protein 4 (NSP4)-Induced Intrinsic Apoptosis. Viruses 2021; 13:1324. [PMID: 34372530 PMCID: PMC8310278 DOI: 10.3390/v13071324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Viral infections lead to expeditious activation of the host's innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence of viperin, to mitochondria during infection. Furthermore, mitochondrial translocation of NSP4 was found to be impeded by viperin, leading to abridged cytosolic release of Cyt c and subsequent inhibition of intrinsic apoptosis. Additionally, co-immunoprecipitation studies revealed that viperin associated with NSP4 through regions including both its radical SAM domain and its C-terminal domain. Collectively, the present study demonstrated the role of viperin in restricting rotavirus egress from infected host cells by modulating NSP4 mediated apoptosis, highlighting a novel mechanism behind viperin's antiviral action in addition to the intricacy of viperin-virus interaction.
Collapse
Affiliation(s)
| | | | | | | | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India; (R.S.); (S.N.); (M.L.); (A.G.)
| |
Collapse
|
9
|
COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol 2019; 94:JVI.01341-19. [PMID: 31597778 DOI: 10.1128/jvi.01341-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.
Collapse
|
10
|
Tamim S, Matthijnssens J, Heylen E, Zeller M, Van Ranst M, Salman M, Hasan F. Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010. Arch Virol 2019; 164:1781-1791. [PMID: 31079214 DOI: 10.1007/s00705-019-04271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/30/2019] [Indexed: 10/26/2022]
Abstract
Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan.
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Herestraat 49 box 1040, 3000, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
11
|
Ben Hadj Fredj M, Ben Hamida-Rebaï M, Zeller M, Heylen E, Van Ranst M, Matthijnssens J, Trabelsi A. Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia. ACTA ACUST UNITED AC 2014; 62:146-51. [PMID: 24679587 DOI: 10.1016/j.patbio.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NSP4 protein of group A rotavirus (RVA) has been recognized as a viral enterotoxin and plays important roles in viral pathogenesis and morphogenesis. Domains involved in structural and functional interactions have been proposed mainly based on the simian SA11 strain. METHODS NSP4 has been classified into 15 different genotypes (E1-E15), and the aim of this study was to analyze the sequences of 46 RVA strains in order to determine the aminoacid (aa) differences between E1 and E2 genotypes. Another aspect was to characterize the structural and physicochemical properties of these strains. RESULTS Comparison of deduced aa sequences of the NSP4 protein showed that divergences between NSP4 genotypes E1 and E2 were mostly observed in the VP4-binding, the interspecies variable domain (ISVD) and the double-layered particle (DLP) binding domains. Interestingly, uncommon variations in residues 131 and 138, which are known to be important aa in pathogenesis, were found in one unusual animal derived strain belonging to the E2 genotype. Concerning the structural aspect, no significant differences were noted. CONCLUSION The presence of punctual aa variations in the NSP4 genotypes may indicate that NSP4 mutates mainly via accumulation of point mutations.
Collapse
Affiliation(s)
- M Ben Hadj Fredj
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Ben Hamida-Rebaï
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Zeller
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - E Heylen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - M Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - J Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - A Trabelsi
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia.
| |
Collapse
|
12
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
13
|
De Lorenzo G, Eichwald C, Schraner EM, Nicolin V, Bortul R, Mano M, Burrone OR, Arnoldi F. Production of in vivo-biotinylated rotavirus particles. J Gen Virol 2012; 93:1474-1482. [DOI: 10.1099/vir.0.040089-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although inserting exogenous viral genome segments into rotavirus particles remains a hard challenge, this study describes the in vivo incorporation of a recombinant viral capsid protein (VP6) into newly assembled rotavirus particles. In vivo biotinylation technology was exploited to biotinylate a recombinant VP6 protein fused to a 15 aa biotin-acceptor peptide (BAP) by the bacterial biotin ligase BirA contextually co-expressed in mammalian cells. To avoid toxicity of VP6 overexpression, a stable HEK293 cell line was constructed with tetracycline-inducible expression of VP6–BAP and constitutive expression of BirA. Following tetracycline induction and rotavirus infection, VP6–BAP was biotinylated, recruited into viroplasms and incorporated into newly assembled virions. The biotin molecules in the capsid allowed the use of streptavidin-coated magnetic beads as a purification technique instead of CsCl gradient ultracentrifugation. Following transfection, double-layered particles attached to beads were able to induce viroplasm formation and to generate infective viral progeny.
Collapse
Affiliation(s)
- G. De Lorenzo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - C. Eichwald
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - E. M. Schraner
- Institute of Veterinary Anatomy, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - V. Nicolin
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - R. Bortul
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - M. Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - O. R. Burrone
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - F. Arnoldi
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
14
|
Genetic divergence of rotavirus nonstructural protein 4 results in distinct serogroup-specific viroporin activity and intracellular punctate structure morphologies. J Virol 2012; 86:4921-34. [PMID: 22357281 DOI: 10.1128/jvi.06759-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonstructural protein 4 (NSP4) viroporin activity is critical for the replication and assembly of serogroup A rotavirus (RVA); however, the dramatic primary sequence divergence of NSP4s across serogroups raises the possibility that viroporin activity is not a common feature among RVs. We tested for NSP4 viroporin activity from divergent strains, including RVA (EC and Ty-1), RVB (IDIR), and RVC (Cowden). Canonical viroporin motifs were identified in RVA, RVB, and RVC NSP4s, but the arrangement of basic residues and the amphipathic α-helices was substantially different between serogroups. Using Escherichia coli and mammalian cell expression, we showed that each NSP4 tested had viroporin activity, but serogroup-specific viroporin phenotypes were identified. Only mammalian RVA and RVC NSP4s induced BL21-pLysS E. coli cell lysis, a classical viroporin activity assay. In contrast, RVA, RVB, and RVC NSP4 expression was universally cytotoxic to E. coli and disrupted reduction-oxidation activities, as measured by a new redox dye assay. In mammalian cells, RVB and RVC NSP4s were initially localized in the endoplasmic reticulum (ER) and trafficked into punctate structures that were mutually exclusive with RVA NSP4. The punctate structures partially localized to the ER-Golgi intermediate compartment (ERGIC) but primarily colocalized with punctate LC3, a marker for autophagosomes. Similar to RVA NSP4, expression of RVB and RVC NSP4s significantly elevated cytosolic calcium levels, demonstrating that despite strong primary sequence divergence, RV NSP4 has maintained viroporin activity across serogroups A to C. These data suggest that elevated cytosolic calcium is a common critical process for all rotavirus strains.
Collapse
|
15
|
Yang W, McCrae MA. The molecular biology of rotaviruses X: intercellular dissemination of rotavirus NSP4 requires glycosylation and is mediated by direct cell-cell contact through cytoplasmic extrusions. Arch Virol 2011; 157:305-14. [DOI: 10.1007/s00705-011-1174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
|
16
|
Yang W, McCrae MA. The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. Virus Res 2011; 163:269-74. [PMID: 22036730 DOI: 10.1016/j.virusres.2011.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/07/2023]
Abstract
Expression of the rotavirus enterotoxin (NSP4) in transfected monkey kidney cells was found to result in a dramatic re-modeling of the microtubule (MT) network. This important centrosome organized cytoskeletal element was dissolved by expression of NSP4 and re-formed in a ring array at the periphery of the cell, similar to that seen following normal virus infection. Site directed mutagenesis of the N-linked glycosylation sites in NSP4 was employed to show that glycosylation of NSP4 was not required for it to promote changes in the MT network. This result together with experiments using conventional inhibitors indicated that NSP4's ability to cause elevation of intracellular calcium levels was also not necessary to effect the changes in the MT network. Use of the centrosome function inhibitor nocodazole demonstrated that NSP4 based remodeling of the MT network was dominant over the normal organizational role of the centrosome. Finally the remodeling of the MT network was shown not to be linked to cellular apoptosis or necrosis. The potential importance of this newly recognised role for NSP4 in the overall process of intracellular pathogenesis by rotaviruses is discussed.
Collapse
Affiliation(s)
- Weiming Yang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
17
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
18
|
Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME. Rotavirus infection activates the UPR but modulates its activity. Virol J 2011; 8:359. [PMID: 21774819 PMCID: PMC3149005 DOI: 10.1186/1743-422x-8-359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by rotavirus infection. Methods 2D-DIGE and image analysis were used to identify cellular proteins that changed in levels of expression in response to rotavirus infection, IFN treatment, or IFN treatment prior to infection. Immunofluorescence microscopy was used to determine the subcellular localization of proteins associated with the unfolded protein response (UPR). Results The data show changes in the levels of multiple proteins associated with cellular stress in infected cells, including levels of ER chaperones GRP78 and GRP94. Further investigations showed that GRP78, GRP94 and other proteins with roles in the ER-initiated UPR including PERK, CHOP and GADD34, were localized to viroplasms in infected cells. Conclusions Together the results suggest rotavirus infection activates the UPR, but modulates its effects by sequestering sensor, transcription factor, and effector proteins in viroplasms. The data consequently also suggest that viroplasms may directly or indirectly play a fundamental role in regulating signaling pathways associated with cellular defense responses.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | |
Collapse
|
19
|
Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci U S A 2009; 106:10644-8. [PMID: 19487668 DOI: 10.1073/pnas.0904024106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotaviruses, major causes of childhood gastroenteritis, are nonenveloped, icosahedral particles with double-strand RNA genomes. By the use of electron cryomicroscopy and single-particle reconstruction, we have visualized a rotavirus particle comprising the inner capsid coated with the trimeric outer-layer protein, VP7, at a resolution (4 A) comparable with that of X-ray crystallography. We have traced the VP7 polypeptide chain, including parts not seen in its X-ray crystal structure. The 3 well-ordered, 30-residue, N-terminal "arms" of each VP7 trimer grip the underlying trimer of VP6, an inner-capsid protein. Structural differences between free and particle-bound VP7 and between free and VP7-coated inner capsids may regulate mRNA transcription and release. The Ca(2+)-stabilized VP7 intratrimer contact region, which presents important neutralizing epitopes, is unaltered upon capsid binding.
Collapse
|
20
|
Abstract
Studies on the molecular biology of rotavirus, the major etiologic agent of gastroenteritis in infants and young children worldwide, have so far led to a large but not exhaustive knowledge of the mechanisms by which rotavirus replicates in the host cell. While the role of rotavirus structural proteins in the replication cycle is well defined, the functions of nonstructural proteins remain poorly understood. Recent experiments of RNA interference have clearly indicated the phases of the replication cycle for which the nonstructural proteins are essentially required. In addition, biochemical studies of their interactions with other viral proteins, together with immunofluorescence experiments on cells expressing recombinant proteins in different combinations, are providing new indications of their functions. This article contains a critical collection of the most recent achievements and the current hypotheses about the roles of nonstructural proteins in virus replication.
Collapse
Affiliation(s)
- Francesca Arnoldi
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
21
|
Díaz Y, Chemello ME, Peña F, Aristimuño OC, Zambrano JL, Rojas H, Bartoli F, Salazar L, Chwetzoff S, Sapin C, Trugnan G, Michelangeli F, Ruiz MC. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J Virol 2008; 82:11331-43. [PMID: 18787006 PMCID: PMC2573286 DOI: 10.1128/jvi.00577-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/28/2008] [Indexed: 12/22/2022] Open
Abstract
Rotavirus infection modifies Ca(2+) homeostasis, provoking an increase in Ca(2+) permeation, the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), and total Ca(2+) pools and a decrease in Ca(2+) response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca(2+) and the amount of Ca(2+) sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca(2+) pools were evaluated as (45)Ca(2+) uptake. Infection with SA11 clone 28 induced an increase in Ca(2+) permeability and (45)Ca(2+) uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca(2+) homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased (45)Ca(2+) uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca(2+) homeostasis of infected cells through an initial increase of cell membrane permeability to Ca(2+).
Collapse
Affiliation(s)
- Yuleima Díaz
- Laboratorio de Fisiología Gastrointestinal, IVIC, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Díaz J, Rubilar-Abreu E, Spitzner M, Hedlund KO, Liprandi F, Svensson L. Design of a multiplex nested PCR for genotyping of the NSP4 from group A rotavirus. J Virol Methods 2008; 149:240-5. [PMID: 18353449 DOI: 10.1016/j.jviromet.2008.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/19/2022]
Abstract
A novel PCR method was developed to discriminate amongst genotypes A-C of the rotavirus non-structural protein 4 (NSP4). Genotype-specific primers were designed that correctly identified the NSP4 genotype when evaluated as a multiplex PCR with cell culture adapted rotavirus strains. Rotavirus strains B223 SGIG6P6[1], NCDV SGIG6P6[1] and SA11 SGIG3P5B[2] were used as control for NSP4 genotype A; A34 SGIG5P14[23], Gottfried SGIIG4P2B[6] and Wa SGIIG1P1A[8] for NSP4 genotype B; RRV SGIG3P5B[3] for NSP4 genotype C. Subsequently, the same set of specific primers was used to genotype a set of 77 Swedish clinical samples. The results showed that all human clinical samples analyzed belong to the NSP4 genotype B and the VP6 subgroup II.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Division of Molecular Virology, School of Medicine, Linköping University, Linköping, Sweden. ,
| | | | | | | | | | | |
Collapse
|
23
|
Hyser JM, Zeng CQY, Beharry Z, Palzkill T, Estes MK. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology 2007; 373:211-28. [PMID: 18164740 DOI: 10.1016/j.virol.2007.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 12/30/2022]
Abstract
Rotavirus (RV) is the leading cause of infantile gastroenteritis worldwide. RV nonstructural protein 4 (NSP4), the first characterized viral enterotoxin, is a 28-kDa glycoprotein that has pleiotropic functions in RV infection and pathogenesis. NSP4 has multiple forms enabling it to perform its different functions. Dissecting such functions could be facilitated by use of epitope-specific antibodies. This work mapped the epitopes for the monoclonal antibody B4-2/55 and three polyclonal antisera generated against synthetic SA11 NSP4 peptides corresponding to residues 114-135, 120-147, and 150-175. The epitope for B4-2/55 mapped to residues 100-118, wherein residues E105, R108 and E111 are critical for antibody binding. Antiserum generated to two peptides (aa114-135 and aa120-147) with enterotoxin activity each recognize a single but distinct epitope. The epitope for the peptide antiserum to aa114-135 was mapped to residues 114-125 with highly conserved residues T117/T118, E120, and E122 being critical for antibody binding. The peptide antiserum to aa120-147 binds to NSP4 at residues 130-140 and residues Q137-T138 are critical for this epitope. Finally, the epitope for the antiserum to peptide aa150-175 mapped to residues 155-170, wherein residues E160 and E170 are critical for antibody binding. Knowledge of the binding sites of domain-specific antibodies can aid in further characterizing different functions of NSP4. To demonstrate this, we characterized the interaction between NSP4 and VP5() [K(D)=0.47 microM] and show that binding of NSP4 to VP5* is blocked by antibody to NSP4 aa114-135 and aa120-147, but not aa150-175. The use of single epitope-specific antibodies to differentially block functions of NSP4 is a feasible approach to determine the functional domain structure of this important RV virulence factor.
Collapse
Affiliation(s)
- Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Deepa R, Durga Rao C, Suguna K. Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 2007; 152:847-59. [PMID: 17265103 DOI: 10.1007/s00705-006-0921-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a multidomainal and multifunctional protein and is recognized as the first virus-encoded enterotoxin. Extensive efforts to crystallize the complete cytoplasmic tail (CT), which exhibits all the known biological functions, have been unsuccessful, and to date, the structure of only a synthetic peptide corresponding to amino acids (aa) 95-137 has been reported. Recent studies indicate that the interspecies-variable domain (ISVD) from aa 135 to 141 as well as the extreme C-terminus are critical determinants of virus virulence and the diarrhea-inducing ability of the protein. Among the five NSP4 genotypes identified, those belonging to genotypes A1, B and C possess either a proline at position 138 or a glycine at 140, while those of A2, D and E lack these residues in the ISVD, suggesting conformational differences in this region among different NSP4s. Here, we examined the crystallization properties of several deletion mutants and report the structure of a recombinant mutant, NSP4:95-146, lacking the N-terminal 94 and C-terminal 29 aa, from SA11 (A1) and I321 (A2) at 1.67 and 2.7 A, respectively. In spite of the high resolution of one of the structures, electron density for the C-terminal 9 residues could not be seen for either of the mutants, and the crystal packing resulted in the creation of a clear empty space for this region. Extension of the unstructured C-terminus beyond aa 146 hindered crystallization under the experimental conditions. The present structure revealed significant differences from that of the synthetic peptide in the conformation of amino acids at the end of the helix as well as the crystal packing owing to the additional space required to accommodate the un structured virulence-determining region. The crystal structure and secondary structure prediction of the NSP4:95-146 mutants from different genotypes suggest that the region C-terminal to aa 137 in all the NSP4 proteins is likely to be unstructured, and this might be of structural and biological functional significance.
Collapse
Affiliation(s)
- R Deepa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
25
|
Abstract
Like other members of the Reoviridae, bluetongue virus faces the same constraints on structure and assembly that are imposed by a large dsRNA genome. However, since it is arthropod-transmitted, BTV must have assembly pathways that are sufficiently flexible to allow it to replicate in evolutionarily distant hosts. With this background, it is hardly surprising that BTV interacts with highly conserved cellular pathways during morphogenesis and trafficking. Indeed, recent studies have revealed striking parallels between the pathways involved in the entry and egress of nonenveloped BTV and those used by enveloped viruses. In addition, recent studies with the protein that is the major component of the BTV viroplasm have revealed how the assembly and, as importantly, the disassembly of this structure may be achieved. This is a first step towards resolving the interactions that occur in these virus 'assembly factories'. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.
Collapse
Affiliation(s)
- P Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
26
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Bugarcic A, Taylor JA. Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 2006; 80:12343-9. [PMID: 17035333 PMCID: PMC1676281 DOI: 10.1128/jvi.01378-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.
Collapse
Affiliation(s)
- Andrea Bugarcic
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
28
|
Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK. Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 2006; 80:6061-71. [PMID: 16731945 PMCID: PMC1472611 DOI: 10.1128/jvi.02167-05] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus is a major cause of infantile viral gastroenteritis. Rotavirus nonstructural protein 4 (NSP4) has pleiotropic properties and functions in viral morphogenesis as well as pathogenesis. Recent reports show that the inhibition of NSP4 expression by small interfering RNAs leads to alteration of the production and distribution of other viral proteins and mRNA synthesis, suggesting that NSP4 also affects virus replication by unknown mechanisms. This report describes studies aimed at correlating the localization of intracellular NSP4 in cells with its functions. To be able to follow the localization of NSP4, we fused the C terminus of full-length NSP4 with the enhanced green fluorescent protein (EGFP) and expressed this fusion protein inducibly in a HEK 293-based cell line to avoid possible cytotoxicity. NSP4-EGFP was initially localized in the endoplasmic reticulum (ER) as documented by Endo H-sensitive glycosylation and colocalization with ER marker proteins. Only a small fraction of NSP4-EGFP colocalized with the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53. NSP4-EGFP did not enter the Golgi apparatus, in agreement with the Endo H sensitivity and a previous report that secretion of an NSP4 cleavage product generated in rotavirus-infected cells is not inhibited by brefeldin A. A significant population of expressed NSP4-EGFP was distributed in novel vesicular structures throughout the cytoplasm, not colocalizing with ER, ERGIC, Golgi, endosomal, or lysosomal markers, thus diverging from known biosynthetic pathways. The appearance of vesicular NSP4-EGFP was dependent on intracellular calcium levels, and vesicular NSP4-EGFP colocalized with the autophagosomal marker LC3. In rotavirus-infected cells, NSP4 colocalized with LC3 in cap-like structures associated with viroplasms, the site of nascent viral RNA replication, suggesting a possible new mechanism for the involvement of NSP4 in virus replication.
Collapse
Affiliation(s)
- Z Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030-3404, USA
| | | | | | | | | | | |
Collapse
|
29
|
Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Patton JT. Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J Virol 2006; 79:15165-74. [PMID: 16306588 PMCID: PMC1316041 DOI: 10.1128/jvi.79.24.15165-15174.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The outer shell of the rotavirus triple-layered virion is lost during cell entry, yielding a double-layered particle (DLP) that directs synthesis of viral plus-strand RNAs. The plus-strand RNAs act as templates for synthesis of the segmented double-stranded RNA (dsRNA) genome in viral inclusion bodies (viroplasms). The viral endoplasmic reticulum (ER)-resident glycoprotein NSP4 recruits progeny DLPs formed in viroplasms to the ER, where the particles are converted to triple-layered particles (TLPs) via budding. In this study, we have used short interfering RNAs to probe the role of NSP4 in the viral life cycle. Our analysis showed that knockdown of NSP4 expression had no marked effect on the expression of other viral proteins or on the replication of the dsRNA genome segments. However, NSP4 loss of function suppressed viroplasm maturation and caused a maldistribution of nonstructural and structural proteins that normally accumulate in viroplasms. NSP4 loss of function also inhibited formation of packaged virus particles, instead inducing the accumulation of empty particles. Most significant was the observation that NSP4 knockdown led to dramatically increased levels of viral transcription late in the infection cycle. These findings point to a multifaceted role for NSP4 in virus replication, including influencing the development of viroplasms, linking genome packaging with particle assembly, and acting as a modulator of viral transcription. By recruiting transcriptionally active or potentially active DLPs to the ER for conversion to quiescent TLPs, NSP4 acts as a feedback inhibitor down-regulating viral transcription when adequate levels of plus-strand RNAs are available to allow for productive infection.
Collapse
Affiliation(s)
- Lynn S Silvestri
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, 50 South Dr., MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | | | | | | |
Collapse
|
30
|
Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 2006; 80:2842-54. [PMID: 16501093 PMCID: PMC1395425 DOI: 10.1128/jvi.80.6.2842-2854.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.
Collapse
Affiliation(s)
- Rebecca D Parr
- Department of Pathobiology, Texas A&M University 4467, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Jagannath MR, Kesavulu MM, Deepa R, Sastri PN, Kumar SS, Suguna K, Rao CD. N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. J Virol 2006; 80:412-25. [PMID: 16352566 PMCID: PMC1317517 DOI: 10.1128/jvi.80.1.412-425.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 10/04/2005] [Indexed: 01/07/2023] Open
Abstract
Rotavirus NSP4 is a multifunctional endoplasmic reticulum (ER)-resident nonstructural protein with the N terminus anchored in the ER and about 131 amino acids (aa) of the C-terminal tail (CT) oriented in the cytoplasm. Previous studies showed a peptide spanning aa 114 to 135 to induce diarrhea in newborn mouse pups with the 50% diarrheal dose approximately 100-fold higher than that for the full-length protein, suggesting a role for other regions in the protein in potentiating its diarrhea-inducing ability. In this report, employing a large number of methods and deletion and amino acid substitution mutants, we provide evidence for the cooperation between the extreme C terminus and a putative amphipathic alpha-helix located between aa 73 and 85 (AAH73-85) at the N terminus of DeltaN72, a mutant that lacked the N-terminal 72 aa of nonstructural protein 4 (NSP4) from Hg18 and SA11. Cooperation between the two termini appears to generate a unique conformational state, specifically recognized by thioflavin T, that promoted efficient multimerization of the oligomer into high-molecular-mass soluble complexes and dramatically enhanced resistance against trypsin digestion, enterotoxin activity of the diarrhea-inducing region (DIR), and double-layered particle-binding activity of the protein. Mutations in either the C terminus, AAH73-85, or the DIR resulted in severely compromised biological functions, suggesting that the properties of NSP4 are subject to modulation by a single and/or overlapping highly sensitive conformational domain that appears to encompass the entire CT. Our results provide for the first time, in the absence of a three-dimensional structure, a unique conformation-dependent mechanism for understanding the NSP4-mediated pleiotropic properties including virus virulence and morphogenesis.
Collapse
Affiliation(s)
- M R Jagannath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Roy P. Bluetongue virus proteins and particles and their role in virus entry, assembly, and release. Adv Virus Res 2005; 64:69-123. [PMID: 16139593 DOI: 10.1016/s0065-3527(05)64004-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Polly Roy
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
33
|
Choi NW, Estes MK, Langridge WHR. Oral immunization with a shiga toxin B subunit::rotavirus NSP490 fusion protein protects mice against gastroenteritis. Vaccine 2005; 23:5168-76. [PMID: 16040169 DOI: 10.1016/j.vaccine.2005.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 06/06/2005] [Accepted: 06/14/2005] [Indexed: 11/18/2022]
Abstract
A fusion protein containing the shiga toxin-1 B subunit (STB) linked to a 90 amino acid peptide (aa residues 86--175) from simian rotavirus (SA--11) nonstructural protein NSP4 was synthesized in Escherichia coli. Mice orally inoculated with 60 microg of STB::NSP4(90) fusion protein per dose generated higher humoral and intestinal antibody titers than mice inoculated with 30 microg of NSP4 alone. Serum anti-NSP4 IgG2a isotype titers were substantially greater than IgG1 titers, suggesting a dominant Th1 immune response. ELISA measurement of cytokines secreted from splenocytes isolated from immunized mice confirmed the STB::NSP4(90) fusion protein stimulation of a strong Th1 cell mediated immune response. Diarrhea in SA-11 rotavirus challenged neonates suckling from STB::NSP4 immunized dams was significantly reduced in severity and duration in comparison with virus challenged neonates from unimmunized mice. Together, our experiments demonstrate for the first time that the shiga toxin B subunit provides ligand mediated delivery of virus antigens to the gut-associated lymphoid tissues for enhanced stimulation of humoral and cellular responses against rotavirus gastroenteritis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Enzyme-Linked Immunosorbent Assay
- Gastroenteritis/immunology
- Gastroenteritis/prevention & control
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Immunity, Mucosal/drug effects
- Immunity, Mucosal/immunology
- Immunization
- Mice
- Protein Subunits/administration & dosage
- Protein Subunits/immunology
- Rotavirus/chemistry
- Shiga Toxin 2/administration & dosage
- Shiga Toxin 2/immunology
- Toxins, Biological/administration & dosage
- Toxins, Biological/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Nonstructural Proteins/administration & dosage
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- Nak-Won Choi
- Center for Molecular Biology and Gene Therapy, Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
34
|
Ishino M, Mise K, Takemura H, Ahmed MU, Alam MM, Naik TN, Kobayashi N. Comparison of NSP4 protein between group A and B human rotaviruses: detection of novel diarrhea-causing sequences in group B NSP4. Arch Virol 2005; 151:173-82. [PMID: 16132179 DOI: 10.1007/s00705-005-0616-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/04/2005] [Indexed: 11/27/2022]
Abstract
The human group B rotavirus is a causative agent of severe adult diarrhea. In this study, we analyzed the NSP4 structure of a group B rotavirus strain, CAL-1, and determined whether enterotoxin activity was present in CAL-1 NSP4. CAL-1 NSP4 was comprised of 219 amino acids which was longer than group A and C rotavirus NSP4, and the primary structures of their sequences differed considerably. However, CAL-1 NSP4 had an enterotoxin-like sequence (residues 106-127) that was only 27% identical to the enterotoxin region of NSP4 of KUN (a group A rotavirus strain) at residues 114-135. Interestingly, both of the synthetic peptides, one (residues 99-128) containing the enterotoxin-like sequence and the other (residues 191-219) containing 29 C-terminal amino acids of CAL-1 NSP4, induced diarrhea in 5.5-day-old mice, but not in 17.5-day-old mice, when administered parenterally. Thus, rotavirus "enterotoxin" sequences could be considerably divergent.
Collapse
Affiliation(s)
- M Ishino
- Department of Hygiene, Sapporo Medical University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Boshuizen JA, Rossen JWA, Sitaram CK, Kimenai FFP, Simons-Oosterhuis Y, Laffeber C, Büller HA, Einerhand AWC. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol 2004; 78:10045-53. [PMID: 15331737 PMCID: PMC514988 DOI: 10.1128/jvi.78.18.10045-10053.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is the most important cause of viral gastroenteritis and dehydrating diarrhea in young children. Rotavirus nonstructural protein 4 (NSP4) is an enterotoxin that was identified as an important agent in symptomatic rotavirus infection. To identify cellular proteins that interact with NSP4, a two-hybrid technique with Saccharomyces cerevisiae was used. NSP4 cDNA, derived from the human rotavirus strain Wa, was cloned into the yeast shuttle vector pGBKT7. An intestinal cDNA library derived from Caco-2 cells cloned into the yeast shuttle vector pGAD10 was screened for proteins that interact with NSP4. Protein interactions were confirmed in vivo by coimmunoprecipitation and immunohistochemical colocalization. After two-hybrid library screening, we repeatedly isolated cDNAs encoding the extracellular matrix (ECM) protein laminin-beta3 (amino acids [aa] 274 to 878) and a cDNA encoding the ECM protein fibronectin (aa 1755 to 1884). Using deletion mutants of NSP4, we mapped the region of interaction with the ECM proteins between aa 87 and 145. Deletion analysis of laminin-beta3 indicated that the region comprising aa 726 to 875 of laminin-beta3 interacts with NSP4. Interaction of NSP4 with either laminin-beta3 or fibronectin was confirmed by coimmunoprecipitation. NSP4 was present in infected enterocytes and in the basement membrane (BM) of infected neonatal mice and colocalized with laminin-beta3, indicating a physiological interaction. In conclusion, two-hybrid screening with NSP4 yielded two potential target proteins, laminin-beta3 and fibronectin, interacting with the enterotoxin NSP4. The release of NSP4 from the basal side of infected epithelial cells and the subsequent binding to ECM proteins localized at the BM may signify a new mechanism by which rotavirus disease is established.
Collapse
Affiliation(s)
- J A Boshuizen
- Laboratory of Pediatrics, Pediatric Gastroenterology & Nutrition, Erasmus MC, Rm. Ee1571A, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Silvestri LS, Taraporewala ZF, Patton JT. Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 2004; 78:7763-74. [PMID: 15220450 PMCID: PMC434085 DOI: 10.1128/jvi.78.14.7763-7774.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rotavirus plus-strand RNAs not only direct protein synthesis but also serve as templates for the synthesis of the segmented double-stranded RNA (dsRNA) genome. In this study, we identified short-interfering RNAs (siRNAs) for viral genes 5, 8, and 9 that suppressed the expression of NSP1, a nonessential protein; NSP2, a component of viral replication factories (viroplasms); and VP7, an outer capsid protein, respectively. The loss of NSP2 expression inhibited viroplasm formation, genome replication, virion assembly, and synthesis of the other viral proteins. In contrast, the loss of VP7 expression had no effect on genome replication; instead, it inhibited only outer-capsid morphogenesis. Similarly, neither genome replication nor any other event of the viral life cycle was affected by the loss of NSP1. The data indicate that plus-strand RNAs templating dsRNA synthesis within viroplasms are not susceptible to siRNA-induced RNase degradation. In contrast, plus-strand RNAs templating protein synthesis in the cytosol are susceptible to degradation and thus are not the likely source of plus-strand RNAs for dsRNA synthesis in viroplasms. Indeed, immunofluorescence analysis of bromouridine (BrU)-labeled RNA made in infected cells provided evidence that plus-strand RNAs are synthesized within viroplasms. Furthermore, transfection of BrU-labeled viral plus-strand RNA into infected cells suggested that plus-strand RNAs introduced into the cytosol do not localize to viroplasms. From these results, we propose that plus-strand RNAs synthesized within viroplasms are the primary source of templates for genome replication and that trafficking pathways do not exist within the cytosol that transport plus-strand RNAs to viroplasms. The lack of such pathways confounds the development of reverse genetics systems for rotavirus.
Collapse
Affiliation(s)
- Lynn S Silvestri
- Laboratory of Infectious Diseases, Nationa Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8026, USA
| | | | | |
Collapse
|
37
|
Iturriza-Gòmara M, Anderton E, Kang G, Gallimore C, Phillips W, Desselberger U, Gray J. Evidence for genetic linkage between the gene segments encoding NSP4 and VP6 proteins in common and reassortant human rotavirus strains. J Clin Microbiol 2003; 41:3566-73. [PMID: 12904356 PMCID: PMC179808 DOI: 10.1128/jcm.41.8.3566-3573.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NSP4-encoding genes of 78 human rotavirus strains of common or reassortant genotypes were characterized by reverse transcription-PCR followed by sequencing and phylogenetic analysis. It was found that all the human strains characterized clustered into only two of the five known NSP4 genotypes. Linkage between NSP4 genotypes and VP6 subgroups was 100%, NSP4 genotype A being linked to VP6 of subgroup I (SGI) and NSP4 of genotype B being linked to VP6 of SGII. The diversity among the NSP4- and VP6-encoding genes was significantly less than that among the VP7 and VP4 genes in cocirculating human rotavirus strains. Whereas G and P types appear to be shared among different animal species and humans, the NSP4- and VP6-encoding genes appear to segregate according to their host of origin, suggesting that these two proteins may be host restriction determinants. The NSP4-VP6 association may be structurally determined during rotavirus replication (morphogenesis).
Collapse
Affiliation(s)
- Miren Iturriza-Gòmara
- Enteric Virus Unit, Enteric, Respiratory and Neurological Virus Laboratory, Health Protection Agency, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Berkova Z, Morris AP, Estes MK. Cytoplasmic calcium measurement in rotavirus enterotoxin-enhanced green fluorescent protein (NSP4-EGFP) expressing cells loaded with Fura-2. Cell Calcium 2003; 34:55-68. [PMID: 12767893 DOI: 10.1016/s0143-4160(03)00022-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The green fluorescent protein (GFP) and its analogs are standard markers of protein expression and intracellular localization of proteins. The fluorescent properties of GFP complicate accurate measurement of intracellular calcium using calcium sensitive fluorophores, which show a great degree of spectral overlap with GFP, or their K(d) values are too high for accurate measurement of subtle changes in cytoplasmic calcium concentrations. Here we describe a simple modification of the standard microscope-based Fura-2 calcium-imaging technique which permits the quantitative measurement of intracellular calcium levels in cells expressing enhanced green fluorescent protein (EGFP) fusion proteins. Longpass emission filtering of the Fura-2 signal in cells expressing an EGFP fusion protein is sufficient to eliminate the EGFP-Fura-2 emission spectra overlap and allows quantitative calibration of intracellular calcium. To validate this technique, we investigated the ability of rotavirus enterotoxin NSP4-EGFP to elevate intracellular calcium levels in mammalian HEK 293 cells. We show here that inducible intracellular expression of NSP4-EGFP fusion protein elevates basal intracellular calcium more than two-fold by a phospholipase C (PLC) independent mechanism.
Collapse
Affiliation(s)
- Z Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
II, 7. Interaction of the rotavirus nonstructural glycoprotein NSP4 with viral and cellular components. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Beaton AR, Rodriguez J, Reddy YK, Roy P. The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proc Natl Acad Sci U S A 2002; 99:13154-9. [PMID: 12235365 PMCID: PMC130602 DOI: 10.1073/pnas.192432299] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus, an arbovirus of the Orbivirus genus, infects and replicates in both insect and mammalian cells. However, the cytopathic effect (cpe) on each host is very different. Mammalian cells show substantial cpe, most likely a result of the mechanism of virus release, whereas insect cells show little cpe and appear to release virus without cell lysis. Expression analysis of each infected cell type shows one protein, the nonstructural (NS) protein NS3, to be differentially expressed in the different cell types, suggesting it may act in the virus egress pathway. The molecular basis of such an interaction, however, has never been clear. Here, by using yeast two-hybrid analysis, we show that NS3 interacts with a cellular protein p11 (calpactin light chain), part of the annexin II complex that is involved in exocytosis. We map the NS3 region of interaction with p11 to a 13-residue peptide found at the N terminus of the protein and show it effectively competes with p36 (annexin II heavy chain) for p11 ligand binding. Further, we show that the C-terminal domain of NS3 interacts with VP2, the outermost protein of the fully assembled virus particle, suggesting that NS3 forms a bridging molecule that draws assembled virus into contact with the cellular export machinery. Our data describe the first host protein involvement in orbivirus egress and provide new insights into understanding arbovirus interactions with their hosts.
Collapse
Affiliation(s)
- Andrew R Beaton
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | |
Collapse
|
41
|
Graff JW, Mitzel DN, Weisend CM, Flenniken ML, Hardy ME. Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. J Virol 2002; 76:9545-50. [PMID: 12186937 PMCID: PMC136439 DOI: 10.1128/jvi.76.18.9545-9550.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The rotavirus nonstructural protein NSP1 is the least conserved protein in the rotavirus genome, and its function in the replication cycle is not known. We employed NSP1 as bait in the yeast two-hybrid interaction trap to identify candidate cellular partners of NSP1 that may provide clues to its function. Interferon regulatory factor 3 (IRF-3) was identified as an NSP1 interactor. NSP1 synthesized in rotavirus-infected cells bound IRF-3 in a glutathione S-transferase pull-down assay, indicating that the interaction was not unique to the two-hybrid system. NSP1 of murine rotavirus strain EW also interacted with IRF-3. NSP1 deletion and point mutants were constructed to map domains important in the interaction between NSP1 and IRF-3. The data suggest that a binding domain resides in the C terminus of NSP1 and that the N-terminal conserved zinc finger is important but not sufficient to mediate binding to IRF-3. We predict that a role for NSP1 in rotavirus-infected cells is to inhibit activation of IRF-3 and diminish the cellular interferon response.
Collapse
Affiliation(s)
- Joel W Graff
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
42
|
Huang H, Schroeder F, Zeng C, Estes MK, Schoer JK, Ball JM. Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. Biochemistry 2001; 40:4169-80. [PMID: 11300798 DOI: 10.1021/bi002346s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rotavirus enterotoxin, NSP4, is a novel secretory agonist that also plays a role in the unique rotavirus morphogenesis that involves a transient budding of newly made immature viral particles into the endoplasmic reticulum. NSP4 and an active peptide corresponding to NSP4 residues 114 to 135 (NSP4(114-135)) mobilize intracellular calcium and induce secretory chloride currents when added exogenously to intestinal cells or mucosa. Membrane-NSP4 interactions may contribute to these alterations; however, details of a lipid-binding domain are unresolved. Therefore, circular dichroism was used to determine (i) the interaction(s) of NSP4 and NSP4(114-135) with model membranes, (ii) the conformational changes elicited in NSP4 upon interacting with membranes, (iii) if NSP4(114-135) is a membrane interacting domain, and (iv) the molar dissociation constant (K(d)) of NSP4(114-135) with defined lipid vesicles. Circular dichroism revealed for the first time that NSP4 and NSP4(114-135) undergo secondary structural changes upon interaction with membrane vesicles. This interaction was highly dependent on both the membrane surface curvature and the lipid composition. NSP4 and NSP4(114-135) preferentially interacted with highly curved, small unilamellar vesicle membranes (SUV), but significantly less with low-curvature, large unilamellar vesicle membranes (LUV). Binding to SUV, but not LUV, was greatly enhanced by negatively charged phospholipids. Increasing the SUV cholesterol content, concomitant with the presence of negatively charged phospholipids, further potentiated the interaction of NSP4(114-135) with the SUV membrane. The K(d) of NSP4(114-135) was determined as well as partitioning of NSP4(114-135) with SUVs in a filtration-binding assay. These data confirmed NSP4 and its active peptide interact with model membranes that mimic caveolae.
Collapse
Affiliation(s)
- H Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bowman GD, Nodelman IM, Levy O, Lin SL, Tian P, Zamb TJ, Udem SA, Venkataraghavan B, Schutt CE. Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J Mol Biol 2000; 304:861-71. [PMID: 11124032 DOI: 10.1006/jmbi.2000.4250] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the maturation of rotaviral particles, non-structural protein 4 (NSP4) plays a critical role in the translocation of the immature capsid into the lumen of the endoplasmic reticulum. Full-length NSP4 and a 22 amino acid peptide (NSP4(114-135)) derived from this protein have been shown to induce diarrhea in young mice in an age-dependent manner, and may therefore be the agent responsible for rotavirally-induced symptoms. We have determined the crystal structure of the oligomerization domain of NSP4 which spans residues 95 to 137 (NSP4(95-137)). NSP4(95-137) self-associates into a parallel, tetrameric coiled-coil, with the hydrophobic core interrupted by three polar layers occupying a and d-heptad positions. Side-chains from two consecutive polar layers, consisting of four Gln123 and two of the four Glu120 residues, coordinate a divalent cation. Two independent structures built from MAD-phased data indicated the presence of a strontium and calcium ion bound at this site, respectively. This metal-binding site appears to play an important role in stabilizing the homo-tetramer, which has implications for the engagement of NSP4 as an enterotoxin.
Collapse
Affiliation(s)
- G D Bowman
- Department of Molecular Biology, Lewis Thomas Laboratories, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mirazimi A, Svensson L. ATP is required for correct folding and disulfide bond formation of rotavirus VP7. J Virol 2000; 74:8048-52. [PMID: 10933714 PMCID: PMC112337 DOI: 10.1128/jvi.74.17.8048-8052.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is one of very few viruses that utilize the endoplasmic reticulum (ER) for assembly, and therefore it has been used as an attractive model to study ER-associated protein folding. In this study, we have examined the requirements for metabolic energy (ATP) for correct folding of the luminal and ER-associated VP7 of rotavirus. We found that VP7 rapidly misfolds in an energy-depleted milieu and is not degraded within 60 min. We also found that VP7 attained a stable minimum-energy state soon after translation in the ER. Most surprisingly, energy-misfolded VP7 could be recovered and establish correct disulfide bonds and antigenicity following a shift to an ATP-rich milieu. Using a Semliki Forest virus expression system, we observed that VP7 requires ATP and cellular, but not viral, factors for correct disulfide bond formation. Our results show for the first time that the disulfide bond formation of rotavirus VP7 is an ATP-dependent process. It has previously been shown that chaperones hydrolyze ATP during interaction with newly synthesized polypeptides and prevent nonproductive intra- and intermolecular interactions. The most reasonable explanation for the energy requirement of VP7 is thus a close interaction during folding with an ATP-dependent chaperone, such as BiP (Grp78), and possibly with protein disulfide isomerase. Taken together, our observations provide new information about folding of ER-associated proteins in general and rotavirus VP7 in particular.
Collapse
Affiliation(s)
- A Mirazimi
- Department of Virology, Swedish Institute for Infectious Disease Control, Karolinska Institute, 171 82 Solna, Sweden
| | | |
Collapse
|
45
|
O'Brien JA, Taylor JA, Bellamy AR. Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 2000; 74:5388-94. [PMID: 10799621 PMCID: PMC110899 DOI: 10.1128/jvi.74.11.5388-5394.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus nonstructural glycoprotein NSP4 functions as the receptor for the inner capsid particle (ICP) which buds into the lumen of the endoplasmic reticulum during virus maturation. The structure of the cytoplasmic domain of NSP4 from rotavirus strain SA11 has been investigated by using limited proteolysis and mass spectrometry. Digestion with trypsin and V8 protease reveals a C-terminal protease-sensitive region that is 28 amino acids long. The minimal sequence requirements for receptor function have been defined by constructing fusions with glutathione S-transferase and assessing their ability to bind ICPs. These experiments demonstrate that 17 to 20 amino acids from the extreme C terminus are necessary and sufficient for ICP binding and that this binding is cooperative. These observations are consistent with a model for the structure of the NSP4 cytoplasmic region in which four flexible regions of 28 amino acids are presented by a protease-resistant coiled-coil tetramerization domain, with only the last approximately 20 amino acids of each peptide interacting with the surface binding sites on the ICP.
Collapse
Affiliation(s)
- J A O'Brien
- Microbiology and Virology Research Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
46
|
Tian P, Ottaiano A, Reilly PA, Udem S, Zamb T. The authentic sequence of rotavirus SA11 nonstructural protein NSP4. Virus Res 2000; 66:117-22. [PMID: 10725544 DOI: 10.1016/s0168-1702(99)00130-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies demonstrate that the rotavirus nonstructural protein NSP4 functions as an enterotoxin and plays an important role in viral pathogenesis. Previous in vitro studies of NSP4 have used a cDNA clone of gene 10 derived from the prototypic rotavirus strain, SA11. We recently compared the sequence of the commonly used NSP4 cDNA with the sequence obtained from several SA11 isolates by direct sequencing of reverse transcription polymerase chain reaction products. One codon difference was identified between the cDNA clone and the SA11 virus isolates, and this resulted in a predicted amino acid substitution at position 47. The cDNA sequence specifies an asparagine at position 47, and the SA11 virus gene 10 encodes a hisitidine. To determine if this amino acid substitution altered the function of NSP4, we analyzed the ability of both NSP4-Asn47 and NSP4-His47 to regulate intracellular calcium levels and exhibit cell cytotoxicity. Our results indicate that the expression of NSP4-His47 from a recombinant baculovirus displays enhanced cytotoxicity and calcium flux.
Collapse
Affiliation(s)
- P Tian
- Viral Vaccine Research, Wyeth-Lederle Vaccines, Building 180/216-16, 401 North Middleton Road, Pearl River, NY 10965, USA.
| | | | | | | | | |
Collapse
|
47
|
Kirkwood CD, Gentsch JR, Glass RI. Sequence analysis of the NSP4 gene from human rotavirus strains isolated in the United States. Virus Genes 1999; 19:113-22. [PMID: 10541015 DOI: 10.1023/a:1008123123238] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two major and one minor genotype of the rotavirus NSP4 gene have been described. The sequences of 29 NSP4 genes from rotavirus isolates obtained in the United States during the 1996-1997 rotavirus season (types P[8]G1, P[8]G9, P[4]G2 and P[6]G9) and 10 strains isolated during previous rotavirus seasons (types P[8]G1 and P[4]G2) were determined. All NSP4 genes from strains with short E types (6 P[4]G2, 4 P[6]G9) belonged to genotype NSP4A, whereas all 19 strains with long E types (16 P[8]G1, 3 P[8]G9) had NSP4 genes of genotype NSP4B. Genetic variation within genotypes was low ( < or = 2.3% for both NSP4A and NSP4B), confirming that the NSP4 genes are highly conserved. Nonetheless, at least two distinct sub-lineages could be detected within each genotype: strains isolated in the same year, regardless of geographic location, were more closely related or even identical at the deduced amino acid level; strains isolated in different years were more distinct. Thus, geographic distance did not affect genetic distance. Northern hybridization analysis with NSP4A and NSP4B total gene probes failed to detect any unusual combinations of the VP6 and NSP4 genes in 31 additional isolates from the 1996-1997 rotavirus season.
Collapse
Affiliation(s)
- C D Kirkwood
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | | | | |
Collapse
|
48
|
Ahmadian S, Shahrabadi MS. Morphological study of the role of calcium in the assembly of the rotavirus outer capsid protein VP7. Biotech Histochem 1999; 74:266-73. [PMID: 10711507 DOI: 10.3109/10520299909034663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maturation of rotavirus occurs in the endoplasmic reticulum (ER), a site of intracellular calcium storage. It was demonstrated previously that calcium plays an important role in the maturation of bovine rotavirus. We used protein A colloidal gold conjugated to an antibody to localize VP7, the outer capsid protein of the simian rotavius SA11, in permeabilized infected cells in the presence and absence of calcium in the culture medium. In medium containing calcium, VP7 was associated with nonenveloped double-shelled particles and membranous structures of the ER. In calcium-free medium, gold particles were not associated with the ER or with virus particles. Gold particles were distributed through the cytoplasm and were mainly associated with granular structures, but did not assemble onto virus particles. Our data suggest that in calcium-free medium, VP7 is synthesized, but does not remain incorporated, in the ER.
Collapse
Affiliation(s)
- S Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Iran.
| | | |
Collapse
|
49
|
|
50
|
Xu A, Bellamy AR, Taylor JA. BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component. J Virol 1998; 72:9865-72. [PMID: 9811722 PMCID: PMC110498 DOI: 10.1128/jvi.72.12.9865-9872.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus infection induces profound alterations in the morphology and biochemistry of the host cell. Using two-dimensional (2D) gel electrophoresis combined with metabolic labeling, we have identified four proteins that are specifically upregulated in rotavirus-infected cells. Two of these have been identified as BiP (GRP78) and endoplasmin (GRP94), members of a family of glucose-regulated chaperone proteins that reside in the endoplasmic reticulum (ER) lumen, the site of rotavirus morphogenesis. The level of mRNA and the transcriptional activity of the BiP and endoplasmin genes are increased markedly in rotavirus-infected cells, and these genes are also induced when a single rotavirus protein, the nonstructural glycoprotein NSP4, is expressed in MA104 cells. However, NSP4 does not associate with either BiP or endoplasmin, implying that the mechanism of BiP and endoplasmin gene activation by NSP4 may differ from that triggered by viral membrane glycoproteins of other viruses. The interaction of BiP and endoplasmin with rotavirus structural polypeptides suggests that these chaperones are involved in the process of viral maturation in the ER lumen.
Collapse
Affiliation(s)
- A Xu
- Biochemistry and Molecular Biology Research Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|