1
|
Su S, Shen X, Shi X, Li X, Chen J, Yang W, Sun M, Tang YD, Wang H, Wang S, Cai X, Lu Y, An T, Yang Y, Meng F. Cell-penetrating peptides TAT and 8R functionalize P22 virus-like particles to enhance tissue distribution and retention in vivo. Front Vet Sci 2024; 11:1460973. [PMID: 39290505 PMCID: PMC11405305 DOI: 10.3389/fvets.2024.1460973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Virus-like particles (VLPs) are used as nanocontainers for targeted drug, protein, and vaccine delivery. The phage P22 VLP is an ideal macromolecule delivery vehicle, as it has a large exterior surface area, which facilitates multivalent genetic and chemical modifications for cell recognition and penetration. Arginine-rich cell-penetrating peptides (CPPs) can increase cargo transport efficiency in vivo. However, studies on the tissue distribution and retention of P22 VLPs mediated by TAT and 8R are lacking. This study aimed to analyze the TAT and 8R effects on the P22 VLPs transport efficiency and tissue distribution both in vitro and in vivo. We used a prokaryotic system to prepare P22 VLP self-assembled particles and expressed TAT-or 8R-conjugated mCherry on the VLP capsid protein as model cargoes and revealed that the level of P22 VLP-mCherry penetrating the cell membrane was low. However, both TAT and 8R significantly promoted the cellular uptake efficiency of P22 VLPs in vitro, as well as enhanced the tissue accumulation and retention of P22 VLPs in vivo. At 24 h postinjection, TAT enhanced the tissue distribution and retention in the lung, whereas 8R could be better accumulation in brain. Thus, TAT was superior in terms of cellular uptake and tissue accumulation in the P22 VLPs delivery system. Understanding CPP biocompatibility and tissue retention will expand their potential applications in macromolecular cargo delivery.
Collapse
Affiliation(s)
- Shibo Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuegang Shen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinqi Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin Chen
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Lu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Fagerlund A, Aspholm M, Węgrzyn G, Lindbäck T. High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 2022; 23:230. [PMID: 35331132 PMCID: PMC8951638 DOI: 10.1186/s12864-022-08428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) is an emerging health challenge worldwide and outbreaks caused by this pathogen poses a serious public health concern. Shiga toxin (Stx) is the major virulence factor of EHEC, and the stx genes are carried by temperate bacteriophages (Stx phages). The switch between lysogenic and lytic life cycle of the phage, which is crucial for Stx production and for severity of the disease, is regulated by the CI repressor which maintain latency by preventing transcription of the replication proteins. Three EHEC phage replication units (Eru1-3) in addition to the classical lambdoid replication region have been described previously, and Stx phages carrying the Eru1 replication region were associated with highly virulent EHEC strains. Results In this study, we have classified the Eru replication region of 419 Stx phages. In addition to the lambdoid replication region and three already described Erus, ten novel Erus (Eru4 to Eru13) were detected. The lambdoid type, Eru1, Eru4 and Eru7 are widely distributed in Western Europe. Notably, EHEC strains involved in severe outbreaks in England and Norway carry Stx phages with Eru1, Eru2, Eru5 and Eru7 replication regions. Phylogenetic analysis of CI repressors from Stx phages revealed eight major clades that largely separate according to Eru type. Conclusion The classification of replication regions and CI proteins of Stx phages provides an important platform for further studies aimed to assess how characteristics of the replication region influence the regulation of phage life cycle and, consequently, the virulence potential of the host EHEC strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08428-5.
Collapse
Affiliation(s)
- Annette Fagerlund
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
4
|
Khakhum N, Yordpratum U, Boonmee A, Tattawasart U, Rodrigues JLM, Sermswan RW. Identification of the Burkholderia pseudomallei bacteriophage ST79 lysis gene cassette. J Appl Microbiol 2016; 121:364-72. [PMID: 27038077 DOI: 10.1111/jam.13151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/18/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
Abstract
AIMS To identify and characterize the lysis gene cassette from the bacteriophage ST79 that lyses Burkholderia pseudomallei. METHODS AND RESULTS Approximately 1·5 kb of ST79 lysis genes were identified from the phage genome data. It was composed of holin, peptidase M15A or endolysin, lysB and lysC. Each gene and its combinations were cloned into Escherichia coli and the lytic effects were measured. Co-expression of holin and peptidase M15A showed the highest lysis activity. Expression of holin, lysB/C or holin-peptidase M15A-lysB/lysC lysed the E. coli membrane, whereas peptidase M15A alone did not. The predicted transmembrane structures of holin and lysB/C indicated that they could be inserted into the bacterial membrane to form pores, affecting cell permeability and causing lysis. CONCLUSION This is the first report of an investigation into the lysis genes of B. pseudomallei's lytic phage using E. coli as a model. SIGNIFICANCE AND IMPACT OF THE STUDY Burkholderia pseudomallei, a Gram-negative bacterium causing an infectious disease, is intrinsically resistant to several antibiotics, and a vaccine is not available. The lysis genes of ST79, the first reported lytic bacteriophage of B. pseudomallei, were characterized. The development of ST79 as an alternative treatment for skin ulceration, for example, or to be used as a gene cloning tool for B. pseudomallei may be possible with this knowledge.
Collapse
Affiliation(s)
- N Khakhum
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - U Yordpratum
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - A Boonmee
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - U Tattawasart
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - J L M Rodrigues
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA, USA
| | - R W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Young R. Phage lysis: three steps, three choices, one outcome. J Microbiol 2014; 52:243-58. [PMID: 24585055 DOI: 10.1007/s12275-014-4087-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.
Collapse
Affiliation(s)
- Ryland Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA,
| |
Collapse
|
6
|
Shin H, Lee JH, Yoon H, Kang DH, Ryu S. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl Environ Microbiol 2014; 80:374-84. [PMID: 24185850 PMCID: PMC3911004 DOI: 10.1128/aem.02279-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022] Open
Abstract
To understand phage infection and host cell lysis mechanisms in pathogenic Salmonella, a novel Salmonella enterica serovar Typhimurium-targeting bacteriophage, SPN9CC, belonging to the Podoviridae family was isolated and characterized. The phage infects S. Typhimurium via the O antigen of lipopolysaccharide (LPS) and forms clear plaques with cloudy centers due to lysogen formation. Phylogenetic analysis of phage major capsid proteins revealed that this phage is a member of the lysogen-forming P22-like phage group. However, comparative genomic analysis of SPN9CC with P22-like phages indicated that their lysogeny control regions and host cell lysis gene clusters show very low levels of identity, suggesting that lysogen formation and host cell lysis mechanisms may be diverse among phages in this group. Analysis of the expression of SPN9CC host cell lysis genes encoding holin, endolysin, and Rz/Rz1-like proteins individually or in combinations in S. Typhimurium and Escherichia coli hosts revealed that collaboration of these lysis proteins is important for the lysis of both hosts and that holin is a key protein. To further investigate the role of the lysogeny control region in phage SPN9CC, a ΔcI mutant (SPN9CCM) of phage SPN9CC was constructed. The mutant does not produce a cloudy center in the plaques, suggesting that this mutant phage is virulent and no longer temperate. Subsequent comparative one-step growth analysis and challenge assays revealed that SPN9CCM has shorter eclipse/latency periods and a larger burst size, as well as higher host cell lysis activity, than SPN9CC. The present work indicates the possibility of engineering temperate phages as promising biocontrol agents similar to virulent phages.
Collapse
Affiliation(s)
- Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hyunjin Yoon
- Department of Food Technology and Services, Eulji University, Seongnam, South Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Leavitt JC, Gogokhia L, Gilcrease EB, Bhardwaj A, Cingolani G, Casjens SR. The tip of the tail needle affects the rate of DNA delivery by bacteriophage P22. PLoS One 2013; 8:e70936. [PMID: 23951045 PMCID: PMC3741392 DOI: 10.1371/journal.pone.0070936] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/25/2013] [Indexed: 02/01/2023] Open
Abstract
The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host.
Collapse
Affiliation(s)
- Justin C. Leavitt
- Biology Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Lasha Gogokhia
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Eddie B. Gilcrease
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sherwood R. Casjens
- Biology Department, University of Utah, Salt Lake City, Utah, United States of America
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Leavitt JC, Gilcrease EB, Wilson K, Casjens SR. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor. Virology 2013; 440:117-33. [PMID: 23562538 DOI: 10.1016/j.virol.2013.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Abstract
Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2kbp region. Our in vivo studies show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful.
Collapse
Affiliation(s)
- Justin C Leavitt
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Phage lysis is a ubiquitous biological process, the most frequent cytocidal event in the biosphere. Lysis of Gram-negative hosts has been shown to require holins and endolysins, which attack the cytoplasmic membrane and peptidoglycan, respectively. Recently, a third class of lysis proteins, the spanins, was identified. The first spanins to be characterized were λ Rz and Rz1, an integral cytoplasmic membrane protein and an outer membrane lipoprotein, respectively. Previous work has shown that Rz and Rz1 form complexes that span the entire periplasm. Phase-contrast video microscopy was used to record the morphological changes involved in the lysis of induced λ lysogens carrying prophages with either the λ canonical holin-endolysin system or the phage 21 pinholin-signal anchor release (SAR) endolysin system. In the former, rod morphology persisted until the instant of an explosive polar rupture, immediately emptying the cell of its contents. In contrast, in pinholin-SAR endolysin lysis, the cell began to shorten and thicken uniformly, with the resultant rounded cell finally bursting. In both cases, lysis failed to occur in inductions of isogenic prophages carrying null mutations in the spanin genes. In both systems, instead of an envelope rupture, the induced cells were converted from a rod shape to a spherical form. A functional GFPΦRz chimera was shown to exhibit a punctate distribution when coexpressed with Rz1, despite the absence of endolysin function. A model is proposed in which the spanins carry out the essential step of disrupting the outer membrane, in a manner regulated by the state of the peptidoglycan layer.
Collapse
|
10
|
Padilla-Meier GP, Gilcrease EB, Weigele PR, Cortines JR, Siegel M, Leavitt JC, Teschke CM, Casjens SR. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein. J Biol Chem 2012; 287:33766-80. [PMID: 22879595 DOI: 10.1074/jbc.m112.393132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Collapse
Affiliation(s)
- G Pauline Padilla-Meier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lim JA, Shin H, Kang DH, Ryu S. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res Microbiol 2012; 163:233-41. [PMID: 22289622 DOI: 10.1016/j.resmic.2012.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
Abstract
The full genome sequence of bacteriophage SPN1S, which infects Salmonella, contains genes that encode homologues of holin, endolysin and Rz/Rz1-like accessory proteins, which are 4 phage lysis proteins. The ability of these proteins to lyse Escherichia coli cells when overexpressed was evaluated. In contrast to other endolysins, the expression of endolysin and Rz/Rz1-like proteins was sufficient to cause lysis. The endolysin was tagged with oligohistidine at the N-terminus and purified by affinity chromatography. The endolysin has a lysozyme-like superfamily domain, and its activity was much stronger than that of lysozyme from chicken egg white. We used the chelating agent, ethylenediaminetetraacetic acid (EDTA), to increase outer membrane permeability, and it greatly enhanced the lytic activity of SPN1S endolysin. The antimicrobial activity of endolysin was stable over broad pH and temperature ranges and was active from pH 7.0 to 10.5 and from 25 °C to 45 °C. The SPN1S endolysin could kill most of the tested Gram-negative strains, but the Gram-positive strains were resistant. SPN1S endolysin, like lysozyme, cleaves the glycosidic bond of peptidoglycan. These results suggested that SPN1S endolysin has potential as a therapeutic agent against Gram-negative bacteria.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Cortines JR, Weigele PR, Gilcrease EB, Casjens SR, Teschke CM. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction. Virology 2011; 421:1-11. [PMID: 21974803 DOI: 10.1016/j.virol.2011.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022]
Abstract
Proper assembly of viruses must occur through specific interactions between capsid proteins. Many double-stranded DNA viruses and bacteriophages require internal scaffolding proteins to assemble their coat proteins into icosahedral capsids. The 303 amino acid bacteriophage P22 scaffolding protein is mostly helical, and its C-terminal helix-turn-helix (HTH) domain binds to the coat protein during virion assembly, directing the formation of an intermediate structure called the procapsid. The interaction between coat and scaffolding protein HTH domain is electrostatic, but the amino acids that form the protein-protein interface have yet to be described. In the present study, we used alanine scanning mutagenesis of charged surface residues of the C-terminal HTH domain of scaffolding protein. We have determined that P22 scaffolding protein residues R293 and K296 are crucial for binding to coat protein and that the neighboring charges are not essential but do modulate the affinity between the two proteins.
Collapse
Affiliation(s)
- Juliana R Cortines
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
14
|
Berry J, Savva C, Holzenburg A, Young R. The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation. Protein Sci 2011; 19:1967-77. [PMID: 20734329 DOI: 10.1002/pro.485] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phage holins and endolysins have long been known to play key roles in lysis of the host cell, disrupting the cytoplasmic membrane and peptidoglycan (PG) layer, respectively. For phages of Gram-negative hosts, a third class of proteins, the spanins, are involved in disrupting the outer membrane (OM). Rz and Rz1, the components of the lambda spanin, are, respectively, a class II inner membrane protein and an OM lipoprotein, are thought to span the entire periplasm by virtue of C-terminal interactions of their soluble domains. Here, the periplasmic domains of Rz and Rz1 have been purified and shown to form dimeric and monomeric species, respectively, in solution. Circular dichroism analysis indicates that Rz has significant alpha-helical character, but much less than predicted, whereas Rz1, which is 25% proline, is unstructured. Mixture of the two proteins leads to complex formation and an increase in secondary structure, especially alpha-helical content. Moreover, transmission electron-microscopy reveals that Rz-Rz1 complexes form large rod-shaped structures which, although heterogeneous, exhibit periodicities that may reflect coiled-coil bundling as well as a long dimension that matches the width of the periplasm. A model is proposed suggesting that the formation of such bundles depends on the removal of the PG and underlies the Rz-Rz1 dependent disruption of the OM.
Collapse
Affiliation(s)
- Joel Berry
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Holins are small phage-encoded proteins that accumulate harmlessly in the cytoplasmic membrane during the infection cycle until suddenly, at an allele-specific time, triggering to form lethal lesions, or "holes." In the phages lambda and T4, the holes have been shown to be large enough to allow release of prefolded active endolysin from the cytoplasm, which results in destruction of the cell wall, followed by lysis within seconds. Here, the holes caused by S105, the lambda-holin, have been captured in vivo by cryo-EM. Surprisingly, the scale of the holes is at least an order of magnitude greater than any previously described membrane channel, with an average diameter of 340 nm and some exceeding 1 microm. Most cells exhibit only one hole, randomly positioned in the membrane, irrespective of its size. Moreover, on coexpression of holin and endolysin, the degradation of the cell wall leads to spherically shaped cells and a collapsed inner membrane sac. To obtain a 3D view of the hole by cryo-electron tomography, we needed to reduce the average size of the cells significantly. By taking advantage of the coupling of bacterial cell size and growth rate, we achieved an 80% reduction in cell mass by shifting to succinate minimal medium for inductions of the S105 gene. Cryotomographic analysis of the holes revealed that they were irregular in shape and showed no evidence of membrane invagination. The unexpected scale of these holes has implications for models of holin function.
Collapse
|
16
|
Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol 2008; 159:340-8. [PMID: 18550341 DOI: 10.1016/j.resmic.2008.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/14/2008] [Indexed: 11/23/2022]
Abstract
Complete genome sequences have been determined for 73 tailed-phages that infect members of the bacterial Enterobacteriaceae family. Biological criteria such as genome size, gene organization and gene orientation were used to place these phages into categories. There are 13 such categories, some of which are themselves extremely diverse. The relationships between and within these categories are discussed with an emphasis on the head assembly genes. Although some of them are clearly homologues, suggesting a very ancient origin, there is little evidence for exchange of individual head genes between these phage categories. More recent horizontal exchange of phage tail fiber and early proteins between the categories occurs, but is probably not extremely rapid.
Collapse
|
17
|
Krupovič M, Cvirkaitė-Krupovič V, Bamford DH. Identification and functional analysis of the Rz/Rz1-like accessory lysis genes in the membrane-containing bacteriophage PRD1. Mol Microbiol 2008; 68:492-503. [DOI: 10.1111/j.1365-2958.2008.06165.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Nemecek D, Gilcrease EB, Kang S, Prevelige PE, Casjens S, Thomas GJ. Subunit conformations and assembly states of a DNA-translocating motor: the terminase of bacteriophage P22. J Mol Biol 2007; 374:817-36. [PMID: 17945256 PMCID: PMC2204089 DOI: 10.1016/j.jmb.2007.08.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an alpha/beta fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly alpha-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112-->Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.
Collapse
Affiliation(s)
- Daniel Nemecek
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Summer EJ, Berry J, Tran TAT, Niu L, Struck DK, Young R. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 2007; 373:1098-112. [PMID: 17900620 DOI: 10.1016/j.jmb.2007.08.045] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Under usual laboratory conditions, lysis by bacteriophage lambda requires only the holin and endolysin genes, but not the Rz and Rz1 genes, of the lysis cassette. Defects in Rz or Rz1 block lysis only in the presence of high concentrations of divalent cations. The lambda Rz and Rz1 lysis genes are remarkable in that Rz1, encoding an outer membrane lipoprotein, is completely embedded in the +1 register within Rz, which itself encodes an integral inner membrane protein. While Rz and Rz1 equivalents have been identified in T7 and P2, most phages, including such well-studied classic phages as T4, P1, T1, Mu and SP6, lack annotated Rz/Rz1 equivalents. Here we report that a search strategy based primarily on gene arrangement and membrane localization signals rather than sequence similarity has revealed that Rz/Rz1 equivalents are nearly ubiquitous among phages of Gram-negative hosts, with 120 of 137 phages possessing genes that fit the search criteria. In the case of T4, a deletion of a non-overlapping gene pair pseT.2 and pseT.3 identified as Rz/Rz1 equivalents resulted in the same divalent cation-dependent lysis phenotype. Remarkably, in T1 and six other phages, Rz/Rz1 pairs were not found but a single gene encoding an outer membrane lipoprotein with a C-terminal transmembrane domain capable of integration into the inner membrane was identified. These proteins were named "spanins," since their protein products are predicted to span the periplasm providing a physical connection between the inner and outer membranes. The T1 spanin gene was shown to complement the lambda Rz-Rz1- lysis defect, indicating that spanins function as Rz/Rz1 equivalents. The widespread presence of Rz/Rz1 or their spanin equivalents in phages of Gram-negative hosts suggests a strong selective advantage and that their role in the ecology of these phages is greater than that inferred from the mild laboratory phenotype.
Collapse
Affiliation(s)
- Elizabeth J Summer
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A and M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gilcrease EB, Winn-Stapley DA, Hewitt FC, Joss L, Casjens SR. Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J Bacteriol 2005; 187:2050-7. [PMID: 15743953 PMCID: PMC1064062 DOI: 10.1128/jb.187.6.2050-2057.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The temperate Salmonella enterica bacteriophage L is a close relative of the very well studied bacteriophage P22. In this study we show that the L procapsid assembly and DNA packaging genes, which encode terminase, portal, scaffold, and coat proteins, are extremely close relatives of the homologous P22 genes (96.3 to 99.1% identity in encoded amino acid sequence). However, we also identify an L gene, dec, which is not present in the P22 genome and which encodes a protein (Dec) that is present on the surface of L virions in about 150 to 180 molecules/virion. We also show that the Dec protein is a trimer in solution and that it binds to P22 virions in numbers similar to those for L virions. Its binding dramatically stabilizes P22 virions against disruption by a magnesium ion chelating agent. Dec protein binds to P22 coat protein shells that have expanded naturally in vivo or by sodium dodecyl sulfate treatment in vitro but does not bind to unexpanded procapsid shells. Finally, analysis of phage L restriction site locations and a number of patches of nucleotide sequence suggest that phages ST64T and L are extremely close relatives, perhaps the two closest relatives that have been independently isolated to date among the lambdoid phages.
Collapse
Affiliation(s)
- Eddie B Gilcrease
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
21
|
Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW. The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 2005; 187:1091-104. [PMID: 15659686 PMCID: PMC545730 DOI: 10.1128/jb.187.3.1091-1104.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages lambda and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Garcia E, Elliott JM, Ramanculov E, Chain PSG, Chu MC, Molineux IJ. The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 2003; 185:5248-62. [PMID: 12923098 PMCID: PMC181008 DOI: 10.1128/jb.185.17.5248-5262.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of bacteriophage phiA1122 has been determined. phiA1122 grows on almost all isolates of Yersinia pestis and is used by the Centers for Disease Control and Prevention as a diagnostic agent for the causative agent of plague. phiA1122 is very closely related to coliphage T7; the two genomes are colinear, and the genome-wide level of nucleotide identity is about 89%. However, a quarter of the phiA1122 genome, one that includes about half of the morphogenetic and maturation functions, is significantly more closely related to coliphage T3 than to T7. It is proposed that the yersiniophage phiA1122 recombined with a close relative of the Y. enterocolitica phage phiYeO3-12 to yield progeny phages, one of which became the classic T3 coliphage of Demerec and Fano (M. Demerec and U. Fano, Genetics 30:119-136, 1945).
Collapse
Affiliation(s)
- Emilio Garcia
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Pedulla ML, Ford ME, Karthikeyan T, Houtz JM, Hendrix RW, Hatfull GF, Poteete AR, Gilcrease EB, Winn-Stapley DA, Casjens SR. Corrected sequence of the bacteriophage p22 genome. J Bacteriol 2003; 185:1475-7. [PMID: 12562822 PMCID: PMC142878 DOI: 10.1128/jb.185.4.1475-1477.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first accurate genome sequence for bacteriophage P22, correcting a 0.14% error rate in previously determined sequences. DNA sequencing technology is now good enough that genomes of important model systems like P22 can be sequenced with essentially 100% accuracy with minimal investment of time and resources.
Collapse
Affiliation(s)
- Marisa L Pedulla
- Pittsburgh Bacteriophage Institute. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu H, Sampson L, Parr R, Casjens S. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 2002; 45:1631-46. [PMID: 12354230 DOI: 10.1046/j.1365-2958.2002.03114.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Pathology, University of Utah Medical Center, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
25
|
Pajunen MI, Elizondo MR, Skurnik M, Kieleczawa J, Molineux IJ. Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J Mol Biol 2002; 319:1115-32. [PMID: 12079351 DOI: 10.1016/s0022-2836(02)00384-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the complete genome sequence (38,208 bp) of bacteriophage T3 and provide a bioinformatic comparative analysis with other completely sequenced members of the T7 group of phages. This comparison suggests that T3 has evolved from a recombinant between a T7-like coliphage and a yersiniophage. To assess this, recombination between T7 and the Yersinia enterocolitica serotype O:3 phage phiYeO3-12 was accomplished in vivo; coliphage progeny from this cross were selected that had many biological properties of T3. This represents the first experimentally observed recombination between lytic phages whose normal hosts are different bacterial genera.
Collapse
Affiliation(s)
- Maria I Pajunen
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Finland.
| | | | | | | | | |
Collapse
|
26
|
Hikima J, Minagawa S, Hirono I, Aoki T. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:35-44. [PMID: 11470157 DOI: 10.1016/s0167-4781(01)00248-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we cloned the goose-type (g-type) lysozyme gene from the Japanese flounder genomic DNA library, the first such data in fish and only the second after the chicken g-type lysozyme gene. The Japanese flounder g-type lysozyme gene was 1252 bp in length from the transcription site to the polyadenylation site, coded for 758 bp of mRNA and 195 deduced amino acids, which contain five exons and four introns. A phylogenetic analysis based on amino acid sequences showed that the flounder gene was closer to g-type lysozyme, followed by phage-type lysozyme and then chicken-type (c-type) lysozyme. Although exon 1 of the flounder gene differs from exons 1 and 2 of the chicken g-type lysozyme gene, three catalytic residues, as well as their neighboring amino acids were conserved between the Japanese flounder and the four avian g-type lysozymes. In a Southern blot analysis using the genomic DNA of homo-cloned Japanese flounder, the flounder g-type lysozyme gene showed a simple pattern, suggesting that it is encoded by a single copy gene. A Northern blot analysis showed that this gene was expressed in all tissues of Japanese flounder that we examined in this study and showed major differences from those expressed tissues of the chicken g-type gene. Japanese flounder g-type lysozyme mRNA levels in the intestine, heart and whole blood increased after injecting the fish with Edwardsiella tarda. Recombinant flounder g-type lysozyme, which has an optimal pH and temperature of pH 6.0 and 25 degrees C, possessed lytic activity against Micrococcus lysodeikticus and several fish pathogenic bacteria. This is the first report of a g-type lysozyme gene other than for reported avian species.
Collapse
Affiliation(s)
- J Hikima
- Laboratory of Genetics and Biochemistry, Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Two proteins, an endolysin and a holin, are essential for host lysis by bacteriophage. Endolysin is the term for muralytic enzymes that degrade the cell wall; endolysins accumulate in the cytosol fully folded during the vegetative cycle. Holins are small membrane proteins that accumulate in the membrane until, at a specific time that is "programmed" into the holin gene, the membrane suddenly becomes permeabilized to the fully folded endolysin. Destruction of the murein and bursting of the cell are immediate sequelae. Holins control the length of the infective cycle for lytic phages and so are subject to intense evolutionary pressure to achieve lysis at an optimal time. Holins are regulated by protein inhibitors of several different kinds. Holins constitute one of the most diverse functional groups, with >100 known or putative holin sequences, which form >30 ortholog groups.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA.
| | | | | |
Collapse
|
28
|
Bläsi U, Fraisl P, Chang CY, Zhang N, Young R. The C-terminal sequence of the lambda holin constitutes a cytoplasmic regulatory domain. J Bacteriol 1999; 181:2922-9. [PMID: 10217787 PMCID: PMC93738 DOI: 10.1128/jb.181.9.2922-2929.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domains of holins are highly hydrophilic and contain clusters of consecutive basic and acidic residues, with the overall net charge predicted to be positive. The C-terminal domain of lambda S was found to be cytoplasmic, as defined by protease accessibility in spheroplasts and inverted membrane vesicles. C-terminal nonsense mutations were constructed in S and found to be lysis proficient, as long as at least one basic residue is retained at the C terminus. In general, the normal intrinsic scheduling of S function is deranged, resulting in early lysis. However, the capacity of each truncated lytic allele for inhibition by the S107 inhibitor product of S is retained. The K97am allele, when incorporated into the phage context, confers a plaque-forming defect because its early lysis significantly reduces the burst size. Finally, a C-terminal frameshift mutation was isolated as a suppressor of the even more severe early lysis defect of the mutant SA52G, which causes lysis at or before the time when the first phage particle is assembled in the cell. This mutation scrambles the C-terminal sequence of S, resulting in a predicted net charge increase of +4, and retards lysis by about 30 min, thus permitting a viable quantity of progeny to accumulate. Thus, the C-terminal domain is not involved in the formation of the lethal membrane lesion nor in the "dual-start" regulation conserved in lambdoid holins. Instead, the C-terminal sequence defines a cytoplasmic regulatory domain which affects the timing of lysis. Comparison of the C-terminal sequences of within holin families suggests that these domains have little or no structure but act as reservoirs of charged residues that interact with the membrane to effect proper lysis timing.
Collapse
Affiliation(s)
- U Bläsi
- Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Krogh S, Jørgensen ST, Devine KM. Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 1998; 180:2110-7. [PMID: 9555893 PMCID: PMC107137 DOI: 10.1128/jb.180.8.2110-2117.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 02/12/1998] [Indexed: 02/07/2023] Open
Abstract
Four genes identified within the late operon of PBSX show characteristics expected of a host cell lysis system; they are xepA, encoding an exported protein; xhlA, encoding a putative membrane-associated protein; xhlB, encoding a putative holin; and xlyA, encoding a putative endolysin. In this work, we have assessed the contribution of each gene to host cell lysis by expressing the four genes in different combinations under the control of their natural promoter located on the chromosome of Bacillus subtilis 168. The results show that xepA is unlikely to be involved in host cell lysis. Expression of both xhlA and xhlB is necessary to effect host cell lysis of B. subtilis. Expression of xhlB (encoding the putative holin) together with xlyA (encoding the endolysin) cannot effect cell lysis, indicating that the PBSX lysis system differs from those identified in the phages of gram-negative bacteria. Since host cell lysis can be achieved when xlyA is inactivated, it is probable that PBSX encodes a second endolysin activity which also uses XhlA and XhlB for export from the cell. The chromosome-based expression system developed in this study to investigate the functions of the PBSX lysis genes should be a valuable tool for the analysis of other host cell lysis systems and for expression and functional analysis of other lethal gene products in gram-positive bacteria.
Collapse
Affiliation(s)
- S Krogh
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
30
|
Schicklmaier P, Schmieger H. Sequence comparison of the genes for immunity, DNA replication, and cell lysis of the P22-related Salmonella phages ES18 and L. Gene X 1997; 195:93-100. [PMID: 9300826 DOI: 10.1016/s0378-1119(97)00182-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Complementation and hybridization experiments with the generalized transducing Salmonella phages P22, ES18 and L revealed strong similarity between the phages L and P22; the genome of ES18 shows a mosaic structure. About half of its genome, including the early genes, is similar or completely homologous to P22; the other half of the morphologically different ES18 does not show any similarity to P22 nor to E. coli phage lambda. Sequence comparison of the early genes has confirmed that the C-immunity region of ES18 is identical with that of P22, whereas the same region of phage L shows poor (repressor gene) or no similarity. The 5'-terminus of the DNA replication gene 12 of ES18, however, is homologous to the same section of gene O of phage lambda. The lysis genes of ES18 again are identical to those of P22; only gene 15 is mosaic-like and has more similarity to gene Rz of phage lambda. These results will be discussed in terms of the theory of modular genome organization.
Collapse
Affiliation(s)
- P Schicklmaier
- Institut für Genetik und Mikrobiologie der Universität München, Germany
| | | |
Collapse
|
31
|
Bartel PL, Roecklein JA, SenGupta D, Fields S. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet 1996; 12:72-7. [PMID: 8528255 DOI: 10.1038/ng0196-72] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genome sequencing projects are predicting large numbers of novel proteins, whose interactions with other proteins must mediate the function of cellular processes. To analyse these networks, we used the yeast two-hybrid system on a genome-wide scale to identify 25 interactions among the proteins of Escherichia coli bacteriophage T7. Among these is a set of six interactions connecting proteins that function in DNA replication and DNA packaging. Remarkably, two genes, arranged such that one entirely overlaps the other and uses a different reading frame, encode interacting proteins. Several of the interactions reflect intramolecular associations of different domains of the same polypeptide, suggesting that the two-hybrid assay may be useful in the analysis of protein folding. This global approach to protein-protein interactions may be applicable to the analysis of more complex genomes whose sequences are becoming available.
Collapse
Affiliation(s)
- P L Bartel
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA
| | | | | | | |
Collapse
|
32
|
Ackermann HW, Elzanowski A, Fobo G, Stewart G. Relationships of tailed phages: a survey of protein sequence identity. Arch Virol 1995; 140:1871-84. [PMID: 7503687 DOI: 10.1007/bf01384350] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Henthorn KS, Friedman DI. Identification of related genes in phages phi 80 and P22 whose products are inhibitory for phage growth in Escherichia coli IHF mutants. J Bacteriol 1995; 177:3185-90. [PMID: 7768817 PMCID: PMC177009 DOI: 10.1128/jb.177.11.3185-3190.1995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacteriophage lambda grows in both IHF+ and IHF- host strains, but the lambdoid phage phi 80 and hybrid phage lambda (QSRrha+)80 fail to grow in IHF- host strains. We have identified a gene, rha, in the phi80 region of the lambda(QSRrha+)80 genome whose product, Rha, inhibits phage growth in an IHF- host. A search of the GenBank database identified a homolog of rha, ORF201, a previously identified gene in phage P22, which similarly inhibits phage growth in IHF- hosts. Both rha and ORF201 contain two possible translation start sites and two IHF binding site consensus sequences flanking the translation start sites. Mutations allowing lambda (QSRrha+)80 and P22 to grow in IHF- hosts map in rha and ORF201, respectively. We present evidence suggesting that, in an IHF+ host, lambda(QSRrha+)80 expresses Rha only late in infection but in an IHF- host the phage expresses Rha at low levels early in infection and at levels higher than those in an IHF+ host late in infection. We suspect that the deregulation of rha expression and, by analogy, ORF201 expression, is responsible for the failure of phi80, lambda(QSRrha+)80, and P22 to grow in IHF mutants.
Collapse
Affiliation(s)
- K S Henthorn
- Department of Human Genetics, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
34
|
Abstract
The S gene of bacteriophage lambda encodes the holin required for release of the R endolysin at the onset of phage-induced host lysis. S is the promoter-proximal gene on the single lambda late transcript and spans 107 codons. S has a novel translational initiation region with dual start codons, resulting in the production of two protein products, S105 and S107. Although differing only by the Met-1-Lys-2... N-terminal extension present on S107, the two proteins are thought to have opposing functions, with the shorter polypeptide acting as the lysis effector and the longer one acting as an inhibitor. The expression of wild-type and mutant alleles of the holin gene has been assessed quantitatively with respect to the scheduling of lysis. S mRNA accumulates during the late gene expression period to a final level of about 170 molecules per cell and is maintained at that level for at least the last 15 min before lysis. Total S protein synthesis, partitioned at about 2:1 in favor of the S105 protein compared with the other product, S107, accumulates to a final level of approximately 4,600 molecules per cell. The kinetics of accumulation of S is consistent with a constant translational rate of less than one S protein per mRNA per minute. Mutant alleles with alterations in the translational initiation region were studied to determine how the translational initiation region of S achieves the proper partition of initiation events at the two S start codons and how the synthesis of S105 and S107 relates to lysis timing. The results are discussed in terms of a model for the pathway by which the 30S ribosome-fMet-tRNA complex binds to the translational initiation region of S. In addition, analysis of the relationship between lysis timing and the levels of the two S gene products suggests that S107 inhibits S105, the lethal lysis effector, by a stoichiometric titration.
Collapse
Affiliation(s)
- C Y Chang
- Department of Biology, Texas A&M University, College Station 77843-2128, USA
| | | | | |
Collapse
|
35
|
Rawlings ND, Barrett AJ. Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol 1995; 248:105-20. [PMID: 7674916 DOI: 10.1016/0076-6879(95)48009-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N D Rawlings
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
36
|
Ziermann R, Bartlett B, Calendar R, Christie GE. Functions involved in bacteriophage P2-induced host cell lysis and identification of a new tail gene. J Bacteriol 1994; 176:4974-84. [PMID: 8051010 PMCID: PMC196335 DOI: 10.1128/jb.176.16.4974-4984.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Successful completion of the bacteriophage P2 lytic cycle requires phage-induced lysis of its Escherichia coli host, a process that is poorly understood. Genetic analysis of lysis-deficient mutants defined a single locus, gene K, which lies within the largest late transcription unit of P2 and maps between head gene L and tail gene R. We determined and analyzed the DNA sequence of a ca. 2.1-kb EcoRV fragment that spans the entire region from L to R, thus completing the sequence of this operon. This region contains all of the functions necessary for host cell lysis. Sequence analysis revealed five open reading frames, initially designated orf19 through orf23. All of the existing lysis mutants--ts60, am12, am76, and am218--were located in orf21, which must therefore correspond to gene K. The K gene product has extensive amino acid sequence similarity to the product of gene R of bacteriophage lambda, and its exhibits endolysin function. Site-directed mutagenesis and reverse genetics were used to create P2 amber mutants in each of the four other newly identified open reading frames. Both orf19 (gene X) and orf20 (gene Y) encode essential functions, whereas orf22 (lysA) and orf23 (lysB) are nonessential. Gene Y encodes a polypeptide with striking similarities to the family of holin proteins exemplified by gpS of phage lambda, and the Yam mutant displayed the expected properties of a holin mutant. The gene products of lysA and lysB, although nonessential, appear to play a role in the correct timing of lysis, since a lysA amber mutant caused slightly accelerated lysis and a lysB amber mutant slightly delayed lysis of nonpermissive strains. Gene X must encode a tail protein, since lysates from nonpermissive cells infected with the X amber mutant were complemented in vitro by similar lysates of cells infected with P2 head mutants but not with tail mutants.
Collapse
Affiliation(s)
- R Ziermann
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204
| | | | | | | |
Collapse
|
37
|
Jespers L, Sonveaux E, Fastrez J. Is the bacteriophage lambda lysozyme an evolutionary link or a hybrid between the C and V-type lysozymes? Homology analysis and detection of the catalytic amino acid residues. J Mol Biol 1992; 228:529-38. [PMID: 1453462 DOI: 10.1016/0022-2836(92)90840-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relationship between the bacteriophage lambda lysozyme (lambda L) and the C and V-type lysozymes has been investigated by sequence alignment, secondary structure prediction and pattern recognition methods. The alignment of the amino terminal part of lambda L with that of V-type lysozymes suggests that Glu19 is a residue essential for catalysis. Its mutation to Gln leads to a completely inactive enzyme. In the alignment of the sequence of lambda L with those of the C-type lysozymes a strongly homologous fragment of about 30 amino acid residues is detected. Taking into consideration this observation and the published structural alignments between C and V-type lysozymes, a repetition of the beta-sheet motif in lambda L is proposed. The multiple alignment draws the attention to a possible catalytic role for Asp34 that would be positioned in the middle of the second strand of the beta-sheet as in the C-type lysozymes. This role is confirmed by mutagenesis. The implications of these observations in terms of the evolutionary relationship between lambda L and the other lysozymes is discussed.
Collapse
Affiliation(s)
- L Jespers
- Laboratoire de Biochimie Physique et des Biopolymères, Université Catholique de Louvain, Belgium
| | | | | |
Collapse
|
38
|
Casjens S, Sampson L, Randall S, Eppler K, Wu H, Petri JB, Schmieger H. Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J Mol Biol 1992; 227:1086-99. [PMID: 1433288 DOI: 10.1016/0022-2836(92)90523-m] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E.
Collapse
Affiliation(s)
- R Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843
| |
Collapse
|
40
|
Casjens S, Wyckoff E, Hayden M, Sampson L, Eppler K, Randall S, Moreno ET, Serwer P. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol 1992; 224:1055-74. [PMID: 1569567 DOI: 10.1016/0022-2836(92)90469-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complex double-stranded DNA bacteriophages assemble DNA-free protein shells (procapsids) that subsequently package DNA. In the case of several double-stranded DNA bacteriophages, including P22, packaging is associated with cutting of DNA from the concatemeric molecule that results from replication. The mature intravirion P22 DNA has both non-unique (circularly permuted) ends and a length that is determined by the procapsid. In all known cases, procapsids consist of an outer coat protein, an interior scaffolding protein that assists in the assembly of the coat protein shell, and a ring of 12 identical portal protein subunits through which the DNA is presumed to enter the procapsid. To investigate the role of the portal protein in cutting permuted DNA from concatemers, we have characterized P22 portal protein mutants. The effects of several single amino acid changes in the P22 portal protein on the length of the DNA packaged, the density to which DNA is condensed within the virion, and the outer radius of the capsid have been determined. The results obtained with one mutant (NT5/1a) indicate no change (+/- 0.5%) in the radius of the capsid, but mature DNA that is 4.7% longer and a packing density that is commensurately higher than those of wild-type P22. Thus, the portal protein is part of the gauge that regulates the length and packaging density of DNA in bacteriophage P22. We argue that these findings make models for DNA packaging less likely in which the packing density is a property solely of the coat protein shell or of the DNA itself.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Amber mutations were introduced into every codon (except the initiating AUG) of the bacteriophage T4 lysozyme gene. The amber alleles were introduced into a bacteriophage P22 hybrid, called P22 e416, in which the normal P22 lysozyme gene is replaced by its T4 homologue, and which consequently depends upon T4 lysozyme for its ability to form a plaque. The resulting amber mutants were tested for plaque formation on amber suppressor strains of Salmonella typhimurium. Experiments with other hybrid phages engineered to produce different amounts of wild-type T4 lysozyme have shown that, to score as deleterious, a mutation must reduce lysozyme activity to less than 3% of that produced by wild-type P22 e416. Plating the collection of amber mutants covering 163 of the 164 codons of T4 lysozyme, on 13 suppressor strains that each insert a different amino acid substitutions at every position in the protein (except the first). Of the resulting 2015 single amino acid substitutions in T4 lysozyme, 328 were found to be sufficiently deleterious to inhibit plaque formation. More than half (55%) of the positions in the protein tolerated all substitutions examined. Among (N-terminal) amber fragments, only those of 161 or more residues are active. The effects of many of the deleterious substitutions are interpretable in light of the known structure of T4 lysozyme. Residues in the molecule that are refractory to replacements generally have solvent-inaccessible side-chains; the catalytic Glu11 and Asp20 residues are notable exceptions. Especially sensitive sites include residues involved in buried salt bridges near the catalytic site (Asp10, Arg145 and Arg148) and a few others that may have critical structural roles (Gly30, Trp138 and Tyr161).
Collapse
Affiliation(s)
- D Rennell
- Department of Molecular Genetics and Microbiology, University of Massachusetts, Worcester
| | | | | | | |
Collapse
|
42
|
Eppler K, Wyckoff E, Goates J, Parr R, Casjens S. Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology 1991; 183:519-38. [PMID: 1853558 DOI: 10.1016/0042-6822(91)90981-g] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism of DNA packaging by dsDNA viruses is not well understood in any system. In bacteriophage P22 only five genes are required for successful condensation of DNA within the capsid. The products of three of these genes, the portal, scaffolding, and coat proteins, are structural components of the precursor particle, and two, the products of genes 2 and 3, are not. The scaffolding protein is lost from the structure during packaging, and only the portal and coat proteins are present in the mature virus particle. These five genes map in a contiguous cluster at the left end of the P22 genetic map. Three additional genes, 4, 10, and 26, are required for stabilizing of the condensed DNA within the capsid. In this report we present the nucleotide sequence of 7461 bp of P22 DNA that contains the five genes required for DNA condensation, as well as a nonessential open reading frame (ORF109), gene 4, and a portion of gene 10. N-terminal amino acid sequencing of the encoded proteins accurately located the translation starts of six genes in the sequence. Despite the fact that most of these proteins have striking analogs in the other dsDNA bacteriophage groups, which perform highly analogous functions, no amino acid sequence similarity between these analogous proteins has been found, indicating either that they diverged a very long time ago or that they are the products of spectacular convergent evolution.
Collapse
Affiliation(s)
- K Eppler
- Department of Cellular, Viral, and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | |
Collapse
|
43
|
Abstract
The lysis gene region of phage 21 contains three overlapping reading frames, designated S21, R21, and Rz21 on the basis of the analogy with the SRRz gene cluster of phage lambda. The 71-codon S21 gene complements lambda Sam7 for lysis function but shows no detectable homology with S lambda in the amino acid or nucleotide sequence. A highly related DNA sequence from the bacteriophage PA-2 was found by computer search of the GenBank data base. Correction of this sequence by insertion of a single base revealed another 71-codon reading frame, which is accordingly designated the SPA-2 gene and is 85% identical to S21. There are thus two unrelated classes of S genes; class I, consisting of the homologous 107-codon S lambda and 108-codon P22 gene 13, and class II, consisting of the 71-codon S21 and SPA-2 genes. The codon sequence Met-Lys-(X)-Met...begins all four genes. The two Met codons in S lambda and 13 have been shown to serve as translational starts for distinct polypeptide products which have opposing functions: the shorter polypeptide serves as the lethal lysis effector, whereas the longer polypeptide acts as a lysis inhibitor. To test whether this same system exists in the class II S genes, the Met-I and Met-4 codons of S21 were altered in inducible plasmid clones and the resultant lysis profiles were monitored. Elimination of the Met-1 start results in increased toxicity, and lysis, although not complete, begins earlier, which suggests that both starts are used in the scheduling of lysis by S21 and is consistent with the idea that the 71- and 68-residue products act as a lysis inhibitor and a lysis effector, respectively. In addition, the R gene of 21 was shown to be related to P22 gene 19, which encodes a true lysozyme activity, and was also found to be nearly identical to PA-2 ORF2. We infer that the 21 and PA-2 R genes both encode lysozymes in the T4 e gene family. These three genes form a second class lambdoid R genes, with the lambda R gene being the sole member of the first class. The existence of two interchangeable but unrelated classes of S genes and R genes is discussed in terms of a model of bacteriophage evolution in which the individual gene is the unit of evolution.
Collapse
Affiliation(s)
- M T Bonovich
- Department of Biology, Texas A&M University, College Station 77843
| | | |
Collapse
|