1
|
Hole K, Clavijo A, Pineda LA. Detection and Serotype-Specific Differentiation of Vesicular Stomatitis Virus Using a Multiplex, Real-Time, Reverse Transcription-Polymerase Chain Reaction Assay. J Vet Diagn Invest 2016; 18:139-46. [PMID: 16617693 DOI: 10.1177/104063870601800201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A multiplex, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed that allowed simultaneous detection and rapid differentiation of vesicular stomatitis virus strains—New Jersey (VSV-NJ) and Indiana 1, 2, and 3 (VSV-IN1–3). This assay involves use of a set of VSV universal primers located in the L gene that amplify VSV-IN1–3 and VSV-NJ using probes that allow differentiation of the major serotypes Indiana and New Jersey. The assay was evaluated using reference VSV, foot-and-mouth disease virus, swine vesicular disease virus, and vesicular exanthema of swine virus. To estimate diagnostic sensitivity, 159 epithelial samples collected between 1996 and 2002 from naturally infected cattle in Colombia were used. The assay cut off was calculated by testing RNA extracted from 150 virus-negative bovine tissues consisting of tongue, soft palate, muzzle, coronary band, and lymph node. All infected cattle were test positive for VS by results of real-time RT-PCR analysis; results for 156 of 159 (98.1%) agreed with the serotype determination from the complement-fixation test. Amplification did not occur in any of the negative bovine epithelial samples, allowing the cut-off values for the assay to be set. The real-time RT-PCR assay was documented to be sensitive and specific for the detection of VSV-NJ and VSV-IN (1–3) strains from field samples in a single reaction, thereby supporting use of this assay in the differential diagnosis of vesicular virus diseases in cattle.
Collapse
Affiliation(s)
- Kate Hole
- National Center for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
2
|
Putative domain-domain interactions in the vesicular stomatitis virus L polymerase protein appendage region. J Virol 2014; 88:14458-66. [PMID: 25297996 DOI: 10.1128/jvi.02267-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The multidomain polymerase protein (L) of nonsegmented negative-strand (NNS) RNA viruses catalyzes transcription and replication of the virus genome. The N-terminal half of the protein forms a ring-like polymerase structure, while the C-terminal half encoding viral mRNA transcript modifications consists of a flexible appendage with three distinct globular domains. To gain insight into putative transient interactions between L domains during viral RNA synthesis, we exchanged each of the four distinct regions encompassing the appendage region of vesicular stomatitis virus (VSV) Indiana serotype L protein with their counterparts from VSV New Jersey and analyzed effects on virus polymerase activity in a minigenome system. The methyltransferase domain exchange yielded a fully active polymerase protein, which functioned as well as wild-type L in the context of a recombinant virus. Exchange of the downstream C-terminal nonconserved region abolished activity, but coexchanging it with the methyltransferase domain generated a polymerase favoring replicase over transcriptase activity, providing strong evidence of interaction between these two regions. Exchange of the capping enzyme domain or the adjacent nonconserved region thought to function as an "unstructured" linker also abrogated polymerase activity even when either domain was coexchanged with other appendage domains. Further probing of the putative linker segment using in-frame enhanced green fluorescent protein (EGFP) insertions similarly abrogated activity. We discuss the implications of these findings with regard to L protein appendage domain structure and putative domain-domain interactions required for polymerase function. IMPORTANCE NNS viruses include many well-known human pathogens (e.g., rabies, measles, and Ebola viruses), as well as emerging viral threats (e.g., Nipah and Hendra viruses). These viruses all encode a large L polymerase protein similarly organized into multiple domains that work in concert to enable virus genome transcription and replication. But how the unique L protein carries out the multiplicity of individual steps in these two distinct processes is poorly understood. Using two different approaches, i.e., exchanging individual domains in the C-terminal appendage region of the protein between two closely related VSV serotypes and inserting unrelated protein domains, we shed light on requirements for domain-domain interactions and domain contiguity in polymerase function. These findings further our understanding of the conformational dynamics of NNS L polymerase proteins, which play an essential role in the pathogenic properties of these viruses and represent attractive targets for the development of antiviral measures.
Collapse
|
3
|
Carnieli P, de Novaes Oliveira R, de Oliveira Fahl W, de Carvalho Ruthner Batista HB, Scheffer KC, Iamamoto K, Castilho JG. Phylogenetic analysis of partial RNA-polymerase blocks II and III of Rabies virus isolated from the main rabies reservoirs in Brazil. Virus Genes 2012; 45:76-83. [PMID: 22528640 DOI: 10.1007/s11262-012-0743-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
This study describes the results of the sequencing and analysis of segments of Blocks II and III of the RNA polymerase L gene of Rabies virus isolates from different reservoir species of Brazil. The phylogenetic relations of the virus were determined and a variety of species-specific nucleotides were found in the analyzed areas, but the majority of these mutations were found to be synonymous. However, an analysis of the putative amino acid sequences were shown to have some characteristic mutations between some reservoir species of Brazil, indicating that there was positive selection in the RNA polymerase L gene of Rabies virus. On comparing the putative viral sequences obtained from the Brazilian isolates and other Lyssavirus, it was determined that amino acid mutations occurred in low-restriction areas. This study of the L gene of Rabies virus is the first to be conducted with samples of virus isolates from Brazil, and the results obtained will help in the determination of the phylogenetic relations of the virus.
Collapse
|
4
|
Hole K, Velazquez-Salinas L, Velazques-Salinas L, Clavijo A. Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of Vesicular stomatitis virus. J Vet Diagn Invest 2010; 22:428-33. [PMID: 20453220 DOI: 10.1177/104063871002200315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An improvement to a previously reported real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assay for the detection of Vesicular stomatitis virus (VSV) is described. Results indicate that the new assay is capable of detecting a panel of genetically representative strains of VSV present in North, Central, and South America. The assay is specific for VSV and allows for simultaneous differentiation between Vesicular stomatitis Indiana virus and Vesicular stomatitis New Jersey virus. This real-time RT-PCR is able to detect current circulating strains of VSV and can be used for rapid diagnosis of VSV and differentiation of VSV from other vesicular diseases, such as foot-and-mouth disease.
Collapse
Affiliation(s)
- Kate Hole
- National Centre for Foreign Animal Disease, 1015 Arlington St, Winnipeg MB R3E 3M4, Canada
| | | | | | | |
Collapse
|
5
|
Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, Bawiec DA, Hartman AL, Comer JA, Zaki SR, Ströher U, Gomes da Silva F, del Castillo F, Rollin PE, Ksiazek TG, Nichol ST. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 2006; 80:6497-516. [PMID: 16775337 PMCID: PMC1488971 DOI: 10.1128/jvi.00069-06] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In March 2005, the Centers for Disease Control and Prevention (CDC) investigated a large hemorrhagic fever (HF) outbreak in Uige Province in northern Angola, West Africa. In total, 15 initial specimens were sent to CDC, Atlanta, Ga., for testing for viruses associated with viral HFs known to be present in West Africa, including ebolavirus. Marburgvirus was also included despite the fact that the origins of all earlier outbreaks were linked directly to East Africa. Surprisingly, marburgvirus was confirmed (12 of 15 specimens) as the cause of the outbreak. The outbreak likely began in October 2004 and ended in July 2005, and it included 252 cases and 227 (90%) fatalities (report from the Ministry of Health, Republic of Angola, 2005), making it the largest Marburg HF outbreak on record. A real-time quantitative reverse transcription-PCR assay utilized and adapted during the outbreak proved to be highly sensitive and sufficiently robust for field use. Partial marburgvirus RNA sequence analysis revealed up to 21% nucleotide divergence among the previously characterized East African strains, with the most distinct being Ravn from Kenya (1987). The Angolan strain was less different ( approximately 7%) from the main group of East African marburgviruses than one might expect given the large geographic separation. To more precisely analyze the virus genetic differences between outbreaks and among viruses within the Angola outbreak itself, a total of 16 complete virus genomes were determined, including those of the virus isolates Ravn (Kenya, 1987) and 05DRC, 07DRC, and 09DRC (Democratic Republic of Congo, 1998) and the reference Angolan virus isolate (Ang1379v). In addition, complete genome sequences were obtained from RNAs extracted from 10 clinical specimens reflecting various stages of the disease and locations within the Angolan outbreak. While the marburgviruses exhibit high overall genetic diversity (up to 22%), only 6.8% nucleotide difference was found between the West African Angolan viruses and the majority of East African viruses, suggesting that the virus reservoir species in these regions are not substantially distinct. Remarkably few nucleotide differences were found among the Angolan clinical specimens (0 to 0.07%), consistent with an outbreak scenario in which a single (or rare) introduction of virus from the reservoir species into the human population was followed by person-to-person transmission with little accumulation of mutations. This is in contrast to the 1998 to 2000 marburgvirus outbreak, where evidence of several virus genetic lineages (with up to 21% divergence) and multiple virus introductions into the human population was found.
Collapse
Affiliation(s)
- Jonathan S Towner
- Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G14, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim DH, Oh HK, Eou JI, Seo HJ, Kim SK, Oh MJ, Nam SW, Choi TJ. Complete nucleotide sequence of the hirame rhabdovirus, a pathogen of marine fish. Virus Res 2005; 107:1-9. [PMID: 15567027 DOI: 10.1016/j.virusres.2004.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/27/2004] [Accepted: 06/12/2004] [Indexed: 10/26/2022]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed for the hirame rhabdovirus (HIRRV) CA-9703 strain from Korea, and the DNA was sequenced. The 3'-end of genomic RNA was cloned by poly(A)-tailing of the genomic RNA before reverse transcription, and the 5'-end of the genome was cloned by poly(G)- or poly(C)-tailing of the first strand, followed by PCR. The remainder of the genomic DNA was cloned by reverse transcription-polymerase chain reaction using primers that were based on the published rhabdovirus sequences. The complete genome of HIRRV CA-9703 strain comprises 11,034 nucleotides and encodes six genes in the order of: 3'-leader, N, P, M, G, NV, L, and 5'-trailer. These genes are separated by conserved sequences or gene junctions, with one-nucleotide gene spacers. The first 16 of the 19 nucleotides at the ends of the HIRRV genome are complementary, and the first four nucleotides at the 3'-ends of the HIRRV, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), and snakehead rhabdovirus (SHRV) genomes are identical. The HIRRV proteins share the highest amino acid sequence homology (ranging from 72% to 92%) with the proteins of IHNV, of all the known fish rhabdoviruses, and the highest sequence homology with respect to the L protein was shared among HIRRV, IHNV, VHSV, and SHRV. Although there were differences in the degrees of relatedness, phylogenetic trees that were derived from multiple sequence alignments of the rhabdovirus proteins showed similar patterns of relationship among these viruses, in which fish Novirhabdoviruses formed a separate clade from spring viremia of carp virus (SVCV), unassigned fish rhabdovirus that was closer to mammalian rhabdoviruses.
Collapse
Affiliation(s)
- Dae-Hyun Kim
- Department of Microbiology, Pukyong National University, 599-1, Daeyeon 3-Dong, Nam-Gu, Busan 608-737, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Govindarajan D, Samal SK. Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus. Virus Res 2005; 105:59-66. [PMID: 15325081 DOI: 10.1016/j.virusres.2004.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 11/27/2022]
Abstract
The complete nucleotide sequence of the large polymerase (L) protein of the avian metapneumovirus subgroup C strain Colorado was determined. The L protein gene of avian pneumovirus Colorado isolate (APV-C) was 6173 nucleotides in length from the gene-start to the gene-end and encoded a polypeptide of 2005 amino acids in length. The length of the L protein of APV-C was exactly the same as that of human metapneumovirus (hMPV) and one amino acid longer than the L protein of APV subgroup A. The L protein of APV-C showed 80% amino acid identity with the L protein of hMPV, but only 64% amino acid identity with the L protein of APV-A. The nucleotide and deduced amino acid sequences were compared with the corresponding sequences of eleven other paramyxoviruses. All six domains characteristic of paramyxovirus L proteins were also observed in the L protein of APV-C. All the polymerase core motifs in domain III were conserved to nearly 100% in the metapneumoviruses. Similarly, the putative ATP-binding motif in domain VI was completely conserved among the metapneumoviruses and differed in length, by one intermediate residue, from other paramyxoviruses. Phylogenetic analysis of the different L proteins also revealed a closer relationship between APV-C and hMPV.
Collapse
Affiliation(s)
- Dhanasekaran Govindarajan
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, Maryland 20742, USA
| | | |
Collapse
|
8
|
Rasmussen TB, Uttenthal A, Fernández J, Storgaard T. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus. J Clin Microbiol 2005; 43:356-62. [PMID: 15634994 PMCID: PMC540114 DOI: 10.1128/jcm.43.1.356-362.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to establish a rapid and reliable system for the detection of vesicular stomatitis virus (VSV), we developed a quantitative reverse transcription-PCR assay for the detection, quantification, and differentiation of the major serotypes, VSV Indiana and VSV New Jersey, using a closed-tube multiplex format. The detection system is based on the recently invented primer-probe energy transfer (PriProET) system. A region of the gene encoding the RNA-dependent RNA polymerase was amplified by using VSV-specific primers in the presence of two serotype-specific fluorescent probes. By incorporating nucleotide analogues in the primers, both serotypes were amplified with similar efficiencies. The generation of specific amplicons resulted in fluorescent signals for either of the two serotypes, and the specificities of the reactions were confirmed from the melting temperature profiles of the fluorescent probes. The limits of detection were found to be less than 10 50% tissue culture infective doses/ml for both serotypes. The diagnostic value of the new method was tested with clinical materials from experimentally infected pigs, and it is concluded that the method is a powerful tool for the rapid identification of VSV.
Collapse
Affiliation(s)
- Thomas B Rasmussen
- Department of Virology, Danish Institute for Food and Veterinary Research, Lindholm, DK-4771 Kalvehave, Denmark
| | | | | | | |
Collapse
|
9
|
Sleeman K, Baron MD. The polymerase (L) protein of rinderpest virus interacts with the host cell protein striatin. Virology 2005; 332:225-34. [PMID: 15661155 DOI: 10.1016/j.virol.2004.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/22/2004] [Accepted: 11/12/2004] [Indexed: 11/19/2022]
Abstract
Rinderpest virus (RPV) is a morbillivirus that causes a highly contagious disease affecting members of the order Artiodactyla. The viral L protein is the catalytic subunit of the RNA-dependent RNA polymerase. To search for host cell proteins with which L interacts, a library screen was performed using the yeast two-hybrid system. Several host cell proteins were recovered from the library screen as putative L-interactors; one of these was identified as striatin. A direct interaction between RPV L and striatin was confirmed using both co-immunoprecipitation assays and co-localisation studies using confocal microscopy. Striatin was also shown to co-localise with the RPV L protein in infected cells. The L proteins of morbilliviruses consist of three long highly conserved domains separated by short unconserved stretches of amino acids. The L domain with which striatin interacts was investigated by co-immunoprecipitation and striatin was shown to interact primarily with the central conserved domain.
Collapse
Affiliation(s)
- Katrina Sleeman
- Molecular Virology and Parasitology, Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | |
Collapse
|
10
|
Abstract
Our laboratory provided the first proof-of-concept that double-stranded short interfering RNA (ds-siRNA) can act as potent and specific antiviral agents. Designed against specific mRNAs of nonsegmented negative-stranded RNA (NNR) viruses, siRNAs abrogated expression of the corresponding viral proteins, and generated the predicted viral phenotypes. Knockdown was demonstrated across different genera: respiratory syncytial virus (RSV), a pneumovirus; vesicular stomatitis virus (VSV), a rhabdovirus; and human parainfluenza virus (HPIV), a paramyxovirus. The targeted genes could have a wide range of functions, thus documenting the versatility of the technique. Interestingly, antisense single-stranded siRNA (ss-siRNA) was also effective, albeit at a higher concentration. NNR viral genomic and antigenomic RNA, which are encapsidated by nucleocapsid protein and serve as templates for viral RNA-dependent RNA polymerase, were resistant to siRNA. Together, siRNAs offer complementary advantages over traditional mutational analyses that are difficult to perform in NNR viruses, and are also an important new tool to dissect host-virus interactive pathways.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., Mobile, AL 36688, USA.
| |
Collapse
|
11
|
Kim GN, Choi WY, Park M, Kang CY. Replication and transcription of viral RNAs by recombinant L proteins of New Jersey serotype of vesicular stomatitis virus. Virus Res 2002; 90:347-64. [PMID: 12457988 DOI: 10.1016/s0168-1702(02)00255-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The large (L) protein of vesicular stomatitis virus (VSV), catalytic subunit of RNA-dependent RNA polymerase is responsible for the transcription and replication of VSV. The L protein of the Indiana serotype of VSV (VSV(Ind)) has previously been cloned and expressed, and used in the reverse genetics of VSV(Ind). However, the cDNA clones expressing functional L proteins of the VSV(NJ) serotype were not available. It was necessary to obtain functional clones of the New Jersey serotype of VSV (VSV(NJ)) in order to study homologous viral interference. Here we report the cDNA cloning, expression, and functional analyses of L proteins from both the Hazelhurst subtype and Concan subtype of VSV(NJ). The analysis of the expressed L proteins for the transcription and replication of VSV demonstrate that both VSV(NJ) L clones express functional RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Gyoung Nyoun Kim
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, Siebens-Drake Research Institute, University of Western Ontario, London Ont, Canada N6G 2V4
| | | | | | | |
Collapse
|
12
|
Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001; 287:192-201. [PMID: 11504554 DOI: 10.1006/viro.2001.1026] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
Collapse
Affiliation(s)
- B H Harcourt
- Respiratory and Enteric Viruses Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 2001; 75:910-20. [PMID: 11134304 PMCID: PMC113987 DOI: 10.1128/jvi.75.2.910-920.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 10/16/2000] [Indexed: 12/15/2022] Open
Abstract
Protein-encoding nucleotide sequences of the N, P, M, F, H, and L genes were determined for a low-passage isolate of the Edmonston wild-type (wt) measles virus and five Edmonston-derived vaccine virus strains, including AIK-C, Moraten, Schwarz, Rubeovax, and Zagreb. Comparative analysis demonstrated a high degree of nucleotide sequence homology; vaccine viruses differed at most by 0. 3% from the Edmonston wt strain. Deduced amino acid sequences predicted substitutions in all viral polypetides. Eight amino acid coding changes were common to all vaccine viruses; an additional two were conserved in all vaccine strains except Zagreb. Comparisons made between vaccine strains indicated that commercial vaccine lots of Moraten and Schwarz had identical coding regions and were closely related to Rubeovax, while AIK-C and Zagreb diverged from the Edmonston wt along slightly different paths. These comparisons also revealed amino acid coding substitutions in Moraten and Schwarz that were absent from the closely related reactogenic Rubeovax strain. All of the vaccine viruses contained amino acid coding changes in the core components of the virus-encoded transcription and replication apparatus. This observation, combined with identification of noncoding region nucleotide changes in potential cis-acting sequences of the vaccine strains (C. L. Parks, R. A. Lerch, P. Walpita, H.-P. Wang, M. S. Sidhu, and S. A. Udem, J. Virol. 75:921-933, 2001), suggest that modulation of transcription and replication plays an important role in attenuation.
Collapse
Affiliation(s)
- C L Parks
- Department of Viral Vaccine Research, Wyeth-Lederle Vaccines, Pearl River, New York 10965, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dhillon J, Cowley JA, Wang Y, Walker PJ. RNA polymerase (L) gene and genome terminal sequences of ephemeroviruses bovine ephemeral fever virus and Adelaide River virus indicate a close relationship to vesiculoviruses. Virus Res 2000; 70:87-95. [PMID: 11074128 DOI: 10.1016/s0168-1702(00)00215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The sequence of the RNA genome of bovine ephemeral fever virus (BEFV) was determined from the start of the L (polymerase) gene to the end of the untranslated 5' trailer sequence, completing the sequence of the 14900 nucleotide (nt) genome. The 6470 nt L gene encodes a single long ORF of 2144 amino acids with a deduced molecular weight of 249766 Da. The 70 nt BEFV 5' trailer region displays partial terminal complementarity with the 3' leader sequence and contains a 26 nt direct repeat of the U-rich domain of the 3' leader region. The 47 nt 5' trailer region of Adelaide River virus (ARV) displays terminal sequence similarity to the BEFV trailer and partial terminal complementarity with the ARV 3' leader sequence, but does not contain the direct repeat sequence. The BEFV L protein contains all characteristic sequence motifs of amino acid blocks I-VI, conserved among RNA polymerase proteins of single-stranded (-) RNA viruses, separated by regions of lower homology. Phylogenetic analysis using the complete BEFV L protein sequence indicated a closer relationship to vesicular stomatitis virus than to rabies virus. Sequence comparison of two conserved central domains encompassing blocks II and III and block VI of the BEFV and ARV L proteins indicated they are closely related. An extended phylogenetic analysis using the block III sequence, confirmed the relationship of these ephemeroviruses to vesiculo- and lyssaviruses and to other single-stranded (-) RNA viruses.
Collapse
Affiliation(s)
- J Dhillon
- CSIRO Tropical Agriculture, PMB 3, Q 4068, Indooroopilly, Australia
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- H Feldmann
- Institut für Virologie, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
16
|
Gershon PD. mRNA 3′ End Formation by Vaccinia Virus: Mechanism of Action of a Heterodimeric Poly(A) Polymerase. ACTA ACUST UNITED AC 1998. [DOI: 10.1006/smvy.1997.0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Svenda M, Berg M, Moreno-López J, Linné T. Analysis of the large (L) protein gene of the porcine rubulavirus LPMV: identification of possible functional domains. Virus Res 1997; 48:57-70. [PMID: 9140194 DOI: 10.1016/s0168-1702(96)01426-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complete nucleotide sequence of the porcine rubulavirus LPMV (La Piedad Michoacan virus) large (L) protein gene was determined and analysed. The L mRNA was found to span 6,786 nucleotides, containing one single large open reading frame (ORF), putatively encoding a polypeptide of 2,251 amino acids. By aligning the amino acid sequence of the LPMV L-protein with L-protein of a number of viruses belonging to the order mononegavirale, a high degree of similarity between the LPMV L-protein and other rubula virus L-proteins was demonstrated, extending through almost the whole protein. Additionally we could identify several regions as being highly conserved among all studied viruses of the order mononegavirale. The significance of these regions are discussed.
Collapse
Affiliation(s)
- M Svenda
- Department of Veterinary Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
18
|
Chuang JL, Jackson RL, Perrault J. Isolation and characterization of vesicular stomatitis virus PoIR revertants: polymerase readthrough of the leader-N gene junction is linked to an ATP-dependent function. Virology 1997; 229:57-67. [PMID: 9123878 DOI: 10.1006/viro.1996.8418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The switch from transcription to replication of the VSV genome is coupled to assembly of nascent chains and involves an unspecified change in the P-L polymerase complex when it reaches the leader-N gene junction. PoIR VSV mutants, in contrast to wild-type virus, read through this first gene junction at high frequency without concurrent assembly, and they show altered ATP requirements for transcription in vitro. The mutation(s) responsible for the poIR phenotype segregates to the N-RNA template fraction. We report here that both poIR1 and poIR2 mutants display severe growth restriction in mouse L cells but not in BHK cells. Four of six poIR1 revertant viruses, originating from rare plaques on L cells, showed wild-type characteristics for growth, readthrough of leader-N gene junction, and ATP utilization, while two showed partial and quantitatively parallel coreversion of all properties. Sequence analysis of N and P genes of poIR mutants and revertants provided proof that a single mutation in the N protein, Arg179 to His, is responsible for the poIR phenotype. PoIR1, but not poIR2, also displayed a phenotypically silent GA-to-GG change in the N-P intergenic dinucleotide sequence Five of six revertants retained the poIR1 N protein mutation and showed no change in their P gene. We conclude that the L protein likely contains second-site suppressors of the poIR phenotype, and we propose that the switch from transcription to replication is modulated by an ATP-dependent interaction between the template-associated N protein and the L subunit of the P L polymerase complex.
Collapse
Affiliation(s)
- J L Chuang
- Molecular Biology Institute, San Diego State University, California 92182, USA
| | | | | |
Collapse
|
19
|
De BP, Banerjee AK. Role of host proteins in gene expression of nonsegmented negative strand RNA viruses. Adv Virus Res 1997; 48:169-204. [PMID: 9233433 DOI: 10.1016/s0065-3527(08)60288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B P De
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
20
|
Das T, De BP, Banerjee AK. Expression, purification, and characterization of rhabdovirus polymerase. Methods Enzymol 1996; 275:99-122. [PMID: 9026663 DOI: 10.1016/s0076-6879(96)75009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T Das
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- H Feldmann
- Institute of Virology, Philipps University, Marburg, Germany
| | | |
Collapse
|
22
|
Briese T, Schneemann A, Lewis AJ, Park YS, Kim S, Ludwig H, Lipkin WI. Genomic organization of Borna disease virus. Proc Natl Acad Sci U S A 1994; 91:4362-6. [PMID: 8183914 PMCID: PMC43785 DOI: 10.1073/pnas.91.10.4362] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Borna disease virus is a neurotropic negative-strand RNA virus that infects a wide range of vertebrate hosts, causing disturbances in movement and behavior. We have cloned and sequenced the 8910-nucleotide viral genome by using RNA from Borna disease virus particles. The viral genome has complementary 3' and 5' termini and contains antisense information for five open reading frames. Homology to Filoviridae, Paramyxoviridae, and Rhabdoviridae is found in both cistronic and extracistronic regions. Northern analysis indicates that the virus transcribes mono- and polycistronic RNAs and uses termination/polyadenylylation signals reminiscent of those observed in other negative-strand RNA viruses. Borna disease virus is likely to represent a previously unrecognized genus, bornaviruses, or family, Bornaviridae, within the order Mononegavirales.
Collapse
Affiliation(s)
- T Briese
- Department of Neurology, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
We have previously demonstrated that Borna disease virus (BDV) has a negative nonsegmented single-stranded (NNS) RNA genome that replicates in the nucleus of infected cells. Here we report for the first time the cloning and complete sequence of the BDV genome. Our results revealed that BDV has a genomic organization similar to that of other members of the Mononegavirales order. We have identified five main open reading frames (ORFs). The largest ORF, V, is located closest to the 5' end in the BDV genome and, on the basis of strong homology with other NNS-RNA virus polymerases, is a member of the L-protein family. The intercistronic regions vary in length and nucleotide composition and contain putative transcriptional start and stop signals. BDV untranslated 3' and 5' RNA sequences resemble those of other NNS-RNA viruses. Using a set of overlapping probes across the BDV genome, we identified nine in vivo synthesized species of polyadenylated subgenomic RNAs complementary to the negative-strand RNA genome, including monocistronic transcripts corresponding to ORFs I, II, and IV, as well as six polycistronic polyadenylated BDV RNAs. Interestingly, although ORFs III and V were detected within polycistronic transcripts, their corresponding monocistronic transcripts were not detected. Our data indicate that BDV is a member of the Mononegavirales, specially related to the family Rhabdoviridae. However, in contrast to the rest of the NNS-RNA animal viruses, BDV replication and transcription occur in the nucleus of infected cells. These findings suggest a possible relationship between BDV and the plant rhabdoviruses, which also replicate and transcribe in the nucleus.
Collapse
Affiliation(s)
- B Cubitt
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
24
|
Sleat DE, Banerjee AK. Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. J Virol 1993; 67:1334-9. [PMID: 8382299 PMCID: PMC237502 DOI: 10.1128/jvi.67.3.1334-1339.1993] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 241-kDa large (L) protein of vesicular stomatitis virus (VSV) is the multifunctional catalytic component of the viral RNA polymerase. A protocol has been developed for the synthesis of recombinant L protein that will support viral mRNA synthesis in vitro. COS cells were transfected with a transient expression vector (pSV-VSL1 [M. Schubert, G. G. Harmison, C. D. Richardson, and E. Meier, Proc. Natl. Acad. Sci. USA 82:7984-7988, 1985]) which contains the simian virus 40 late promoter for the transcription of a cDNA copy of the L protein of the Indiana serotype of VSV. Cytoplasmic extracts of these cells efficiently transcribed VSV mRNAs in vitro in conjunction with N protein-RNA template purified from virus and recombinant phosphoprotein synthesized in Escherichia coli. mRNA synthesis was completely dependent upon addition of both bacterial phosphoprotein and extracts from cells transfected with the L gene. Extracts from mock-transfected cells or from cells transfected with the expression vector alone did not support VSV RNA synthesis. RNA synthesis was proportional to the concentration of cell extract used, with an optimum of 0.2 mg/ml. Rhabdoviruses and paramyxoviruses contain a highly conserved GDNQ motif which was mutated in the transfected L gene. All constructs with mutations within the core GDN abrogated transcriptional activity except for the mutant containing GDD, which retained 25% activity. Conserved amino acid changes outside of the core GDN and changes corresponding to other paromyxovirus and rhabdovirus L proteins retained variable transcriptional activity. These findings provide experimental evidence that the GDN of negative-strand, nonsegmented RNA viruses is a variant of the GDD motif of plus-strand RNA viruses and of the XDD motif of DNA viruses and reverse transcriptases.
Collapse
Affiliation(s)
- D E Sleat
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195-5178
| | | |
Collapse
|
25
|
Choi TJ, Kuwata S, Koonin EV, Heaton LA, Jackson AO. Structure of the L (polymerase) protein gene of sonchus yellow net virus. Virology 1992; 189:31-9. [PMID: 1604816 DOI: 10.1016/0042-6822(92)90678-i] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequence of the L protein gene of sonchus yellow net virus (SYNV), a plant rhabdovirus, was determined by dideoxynucleotide sequencing of cloned cDNAs derived from the negative-strand genomic RNA. The L protein gene is composed of 6401 nucleotides (nt) located between positions 7158 and 13558 relative to the 3' end of the genomic RNA. Sequence analysis suggests that the complementary mRNA contains a 44 nt untranslated 5' leader sequence preceding an open reading frame of 6348 nucleotides that is capable of encoding a polypeptide of 2116 amino acids with a deduced molecular weight of 241,569 Da. The L protein is positively charged, has a high proportion of the amino acids Leu and Ile, and contains putative polymerase and RNA binding domains. Extended alignment of the SYNV L protein amino acid sequence with those of other nonsegmented negative-strand RNA virus polymerases reveals conservation of sequences within 12 blocks that appear sequentially along the protein. A cluster dendrogram derived from the L protein alignments indicates that SYNV is more closely related to animal rhabdoviruses than to the paramyxoviruses and that the animal rhabdoviruses have diverged less from each other than from SYNV.
Collapse
Affiliation(s)
- T J Choi
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
26
|
Giesecke H, Obermaier B, Domdey H, Neubert WJ. Rapid sequencing of the Sendai virus 6.8 kb large (L) gene through primer walking with an automated DNA sequencer. J Virol Methods 1992; 38:47-60. [PMID: 1322932 DOI: 10.1016/0166-0934(92)90168-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The determination of the complete DNA sequence of the large (L) polymerase gene of Sendai virus strain Fushimi was used to explore the potential and feasibility of primer walking with fluorescent dye-labelled dideoxynucleotide terminators on an automated ABI DNA sequencer. The rapid identification of the complete sequence demonstrated that this approach is a time- and cost-saving alternative to classical sequencing techniques. Analysis of the data revealed that the L gene of Sendai virus strain Fushimi consists of exactly 6800 nucleotides and that the deduced amino acid sequence identifies a single open reading frame encoding a protein of 252.876 kDa. In contrast to Sendai virus strain Enders, the L mRNA of strain Fushimi is monocistronic. The comparison of the deduced amino acid sequences of the L genes of three different Sendai virus strains confirmed the existence of conserved as well as variable regions in the L protein and revealed a high grade of conservation in the carboxyterminal third. Furthermore, functional amino acid sequence motifs, like elements of RNA-dependent RNA polymerases and ATP-binding sites as postulated previously, were identified.
Collapse
Affiliation(s)
- H Giesecke
- Max-Planck-Institut für Biochemie, Abteilung für Virusforschung, Ludwig-Maximilians-Universität München, Martinsried, F.R.G
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- A K Banerjee
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | |
Collapse
|
28
|
Feldmann H, Mühlberger E, Randolf A, Will C, Kiley MP, Sanchez A, Klenk HD. Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res 1992; 24:1-19. [PMID: 1626422 DOI: 10.1016/0168-1702(92)90027-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genome of Marburg virus (MBG), a filovirus, is 19.1 kb in length and thus the largest one found with negative-strand RNA viruses. The gene order - 3' untranslated region-NP-VP35-VP40-GP-VP30-VP24-L-5' untranslated region-resembles that of other non-segmented negative-strand (NNS) RNA viruses. Six species of polyadenylated subgenomic RNAs, isolated from MBG-infected cells, are complementary to the negative-strand RNA genome. They can be translated in vitro into the known structural proteins NP, GP (non-glycosylated form), VP40, VP35, VP30 and VP24. At the gene boundaries conserved transcriptional start (3'-NNCUNCNUNUAAUU-5') and stop signals (3'-UAAUUCUUUUU-5') are located containing the highly conserved pentamer 3'-UAAUU-5'. Comparison with other NNS RNA viruses shows conservation primarily in the termination signals, whereas the start signals are more variable. The intergenic regions vary in length and nucleotide composition. All genes have relatively long 3' and 5' end non-coding regions. The putative 3' and 5' leader RNA sequences of the MBG genome resemble those of other NNS RNA viruses in length, conservation at the 3' and 5' ends, and in being complementary at their extremities. The data support the concept of a common taxonomic order Mononegavirales comprising the Filoviridae, Paramyxoviridae, and Rhabdoviridae families.
Collapse
Affiliation(s)
- H Feldmann
- Institut fuer Virologie, Philipps-Universitaet, Marburg, F.R.G
| | | | | | | | | | | | | |
Collapse
|
29
|
Mühlberger E, Sanchez A, Randolf A, Will C, Kiley MP, Klenk HD, Feldmann H. The nucleotide sequence of the L gene of Marburg virus, a filovirus: homologies with paramyxoviruses and rhabdoviruses. Virology 1992; 187:534-47. [PMID: 1546452 DOI: 10.1016/0042-6822(92)90456-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of the L gene of Marburg virus, strain Musoke, has been determined. The L gene has a single long open reading frame encoding a polypeptide of 2330 amino acids (MW 267,175) that represents the viral RNA-dependent RNA polymerase. The putative transcription start signal (3'CUACCUAUAAUU 5') and the termination signal (3' UAAUUCUUUUU 5') of the gene could be identified. Computer-assisted comparison of the L protein with L proteins of other nonsegmented negative-stranded RNA viruses (Paramyxoviridae: Sendai virus, Newcastle disease virus, human parainfluenza 3 virus, measles virus, human respiratory syncytial virus; Rhabdoviridae: vesicular stomatitis virus, rabies virus) revealed significant homologies primarily in the N-terminal half of the proteins. We have identified three common conserved boxes (A, B, and C) among filo-, paramyxo-, and rhabdovirus L proteins, which are probably involved in the polymerase function. The L proteins can be divided into an N-terminal half, which seems to accommodate the common enzymatic sites, and a C-terminal half carrying virus specific peculiarities. The data presented here suggest a common evolutionary history for all nonsegmented negative-stranded RNA viruses and show that filoviruses are more closely related to paramyxo- than to rhabdoviruses.
Collapse
Affiliation(s)
- E Mühlberger
- Institut fuer Virologie, Philipps-Universitaet, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Barik S, Banerjee AK. Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation. J Virol 1992; 66:1109-18. [PMID: 1309893 PMCID: PMC240815 DOI: 10.1128/jvi.66.2.1109-1118.1992] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The phosphoprotein (P) and the large protein (L) constitute the RNA-dependent RNA polymerase of vesicular stomatitis virus (VSV). We show that phosphate-free P protein expressed in bacteria is transcriptionally inactive when reconstituted with L protein and viral N-RNA template free of cellular protein kinase. Phosphorylation of P protein by a cellular kinase(s) was essential for transcription as well as for further phosphorylation by an L-associated kinase, the two kinases acting in a sequential (cascade) manner. Phosphate groups introduced by cell kinase were stable, whereas those due to L kinase underwent a turnover which was coupled to ongoing transcription. We present a model for the phosphorylation pathway of P protein and propose that continued phosphorylation and dephosphorylation of P protein may represent a transcriptional regulatory (on-off) switch of nonsegmented negative-strand RNA viruses.
Collapse
Affiliation(s)
- S Barik
- Department of Molecular Biology, Research Institute, Cleveland Clinic Foundation, Ohio 44195
| | | |
Collapse
|
31
|
Stec DS, Hill MG, Collins PL. Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology 1991; 183:273-87. [PMID: 2053282 DOI: 10.1016/0042-6822(91)90140-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The complete nucleotide sequence of the large (L) polymerase gene of human respiratory syncytial virus (RSV) strain A2 was determined by analysis of cloned-cDNAs representing the entire gene and confirmed in part by dideoxy sequencing of genomic RNA. The RSV L gene is 6578 nucleotides in length and contains a single major open reading frame that encodes a protein of 2165 amino acids. The molecular weight (250,226) and amino acid composition of the deduced RSV L protein are similar to those of other negative-strand RNA viruses. Regions of statistically significant amino acid sequence similarity were identified in pairwise global alignments of the RSV L protein with its counterparts in four paramyxoviruses (parainfluenza virus type 3, Sendai virus, measles virus, Newcastle disease virus) and two rhabdoviruses (rabies virus, vesicular stomatitis virus). In addition, amino acid sequence alignments showed that the RSV L protein has a 70-amino acid amino-terminal extension relative to the others. This is suggested to be due to the acquisition of gene overlap of the RSV L gene with its upstream neighbor, the 22K (M2) gene and the use of a new translational start site. The most highly related region among these seven proteins is located within the amino-terminal half, representing approximately 20% of each protein sequences. This region contains six discrete segments that are colinear and highly conserved in each paramyxovirus and rhabdovirus L protein, and three of these overlapped with sequence motifs found previously in other RNA-dependent RNA and DNA polymerases. A phylogenetic tree was constructed from the paramyxovirus and rhabdovirus L protein sequences to further define their relationships. The branching order indicates that RSV represents a lineage within the paramyxovirus family which is relatively distinct from the others, which in turn are more closely interrelated. Among these other members of the family Paramyxoviridae, the branching order does not entirely conform to their current taxonomic organization, providing support for its reevaluation.
Collapse
Affiliation(s)
- D S Stec
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
32
|
Kawano M, Okamoto K, Bando H, Kondo K, Tsurudome M, Komada H, Nishio M, Ito Y. Characterizations of the human parainfluenza type 2 virus gene encoding the L protein and the intergenic sequences. Nucleic Acids Res 1991; 19:2739-46. [PMID: 1645865 PMCID: PMC328195 DOI: 10.1093/nar/19.10.2739] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We cloned and determined the nucleotide sequences of cDNAs against genomic RNA encoding the L protein of human parainfluenza type 2 virus (PIV-2). The L gene is 6904 nucleotides long including the intergenic region at the HN-L junction and putative negative strand leader RNA, almost all of which is complementary to the positive strand leader RNA of PIV-2. The deduced L protein contains 2262 amino acids with a calculated molecular weight of 256,366. The L protein of PIV-2 shows 39.9, 28.9, 27.8 and 28.3% homologies with Newcastle disease virus (NDV), Sendai virus (SV), parainfluenza type 3 virus (PIV-3) and measles virus (MV), respectively. Although sequence data on other components of transcriptive complex, NP and P, suggested a closer relationship between PIV-2 and MV, as concerns the L protein, MV is closely related to another group as SV and PIV-3. From analysis of the alignment of the five l proteins, six blocks composed of conserved amino acids were found in the L proteins. The L protein of PIV-2 was detected in purified virions and virus-infected cells using antiserum directed against an oligopeptide corresponding to the amino terminal region. Primer extension analyses showed that the intergenic regions at the NP-P, P-M, M-F, F-HN and HN-L junctions are 4, 45, 28, 8 and 42 nucleotides long, respectively, indicating that the intergenic regions exhibit no conservation of length and sequence. Furthermore, the starting and ending sequences of paramyxoviruses were summarized.
Collapse
Affiliation(s)
- M Kawano
- Department of Microbiology, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Barik S, Banerjee AK. Cloning and expression of the vesicular stomatitis virus phosphoprotein gene in Escherichia coli: analysis of phosphorylation status versus transcriptional activity. J Virol 1991; 65:1719-26. [PMID: 1848304 PMCID: PMC239976 DOI: 10.1128/jvi.65.4.1719-1726.1991] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The phosphoprotein (P, previously known as NS) genes of vesicular stomatitis virus serotypes New Jersey and Indiana have been cloned in the Escherichia coli expression vector pET-3a. Transcription of P genes in these clones initiated from a phage T7 RNA polymerase promoter, whereas translation was driven by the Shine-Dalgarno sequence and the initiator AUG codon of the T7 gene 10 message. The clones were introduced into an appropriate E. coli strain in which T7 RNA polymerase was expressed under the control of the lac promoter. Under optimal conditions of induction with isopropylthiogalactopyranoside, P protein made in these bacterial strains constituted 5 to 20% of total cellular protein. P protein expressed in bacteria was unphosphorylated and transcriptionally active in an in vitro reconstitution assay with viral L protein and an N-RNA template. However, the P protein was phosphorylated in vitro by the kinase activities associated with L and the N-RNA template.
Collapse
Affiliation(s)
- S Barik
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | |
Collapse
|
34
|
Antic D, Lim BU, Kang CY. Nucleotide sequence and coding capacity of the large (L) genomic RNA segment of Seoul 80-39 virus, a member of the hantavirus genus. Virus Res 1991; 19:59-65. [PMID: 1840713 DOI: 10.1016/0168-1702(91)90094-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the large (L) genomic RNA segment of Seoul 80-39 virus was determined from overlapping cDNA clones. The virion L RNA segment is 6530 nucleotides long. The 3' and 5' terminal sequences are inversely complementary for 15 bases. The viral complementary-sense RNA contains a single open reading frame from an AUG codon at nucleotide position 37-39 to a UAA stop codon at nucleotide position 6490-6492. This ORF could encode a polypeptide of 2151 amino acids (246,662 kDa) which likely corresponds to the L protein detected in purified viral particles (Elliott et al., 1984) and is assumed to be an RNA-dependent RNA polymerase molecule (Schmaljohn and Dalrymple, 1983). Comparison of the L protein of the Seoul 80-39 virus with the polymerase proteins encoded by other negative-stranded RNA viruses revealed 44% similarity only with the part of the Bunyamwera virus L protein (Elliott, 1989) and a very weak homology with the PB1 protein of influenza virus.
Collapse
Affiliation(s)
- D Antic
- Department of Microbiology and Immunology, University of Ottawa, Faculty of Medicine, Ontario, Canada
| | | | | |
Collapse
|
35
|
Abstract
Nonsegmented negative strand RNA viruses comprise major human and animal pathogens in nature. This class of viruses is ubiquitous and infects vertebrates, invertebrates, and plants. Our laboratory has been working on the gene expression of two prototype nonsegmented negative strand RNA viruses, vesicular stomatitis virus (a rhabdovirus) and human parainfluenza virus 3 (a paramyxovirus). An RNA-dependent RNA polymerase (L and P protein) is packaged within the virion which faithfully copies the genome RNA in vitro and in vivo; this enzyme complex, in association with the nucleocapsid protein (N), is also involved in the replication process. In this review, we have presented up-to-date information of the structure and function of the RNA polymerases of these two viruses, the mechanisms of transcription and replication, and the role of host proteins in the life-cycle of the viruses. These detailed studies have led us to a better understanding of the roles of viral and cellular proteins in the viral gene expression.
Collapse
Affiliation(s)
- A K Banerjee
- Department of Molecular Biology, Cleveland Clinic Foundation, OH 44195
| | | | | |
Collapse
|
36
|
Banerjee AK, Chattopadhyay D. Structure and function of the RNA polymerase of vesicular stomatitis virus. Adv Virus Res 1990; 38:99-124. [PMID: 2171304 DOI: 10.1016/s0065-3527(08)60860-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A K Banerjee
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | |
Collapse
|