1
|
Identification of novel functional regions within the spike glycoprotein of MHV-A59 based on a bioinformatics approach. Virus Res 2014; 189:177-88. [PMID: 24910120 PMCID: PMC4134989 DOI: 10.1016/j.virusres.2014.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/23/2023]
Abstract
Identification of functional regions within MHV-A59 spike (S) protein through analysis of sequence similarities with FcγR. C547 substitution abolishes the recognition of cleaved S by monoclonal antibodies. Substitution of residues 547 and 581–586 in S prevents the recovery of a viable virus. Amino acid replacements at positions 562/589 and 667/687 in S affect viral replication. Replacement of residue 939 in S affects the fusogenic properties of the virus.
Mouse Hepatitis Virus (MHV) is a single-stranded positive sense RNA virus with the ability to promote acute and chronic diseases in mice. The MHV spike protein (S) is a major virulence determinant which in addition to binding to cellular receptors to mediate cell entry and facilitate virus spread to adjacent cells by cell–cell fusion, also is a molecular mimic of the FcγRII receptor. This molecular mimicry of FcγRII by the MHV S protein is also exhibited by other lineage 2a betacoronaviruses, with the exception of the human coronavirus HCoV-OC43. In this work we undertook a mutational analysis to attempt to identify specific amino acid sequences within the spike glycoprotein crucial for molecular mimicry of FcγRII. Although we were unsuccessful in isolating mutant viruses which were specifically defective in that property, we identified several mutations with interesting phenotypes. Mutation of the cysteine in position 547 to alanine and alanine replacements at residues 581–586 was lethal. Replacing proline 939 with the corresponding HCoV-OC43 residue, leucine, decreased the ability MHV to induce cell–cell fusion, providing experimental support for an earlier proposal that residues 929–944 make up the fusion peptide of the MHV S protein.
Collapse
|
2
|
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004; 17:174-207. [PMID: 14726460 PMCID: PMC321460 DOI: 10.1128/cmr.17.1.174-207.2004] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.
Collapse
Affiliation(s)
- Emilia L Oleszak
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | | | |
Collapse
|
3
|
Atalay R, Zimmermann A, Wagner M, Borst E, Benz C, Messerle M, Hengel H. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J Virol 2002; 76:8596-608. [PMID: 12163579 PMCID: PMC136976 DOI: 10.1128/jvi.76.17.8596-8608.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular receptors for the Fc domain of immunoglobulin G (IgG) (FcgammaRs) comprise a family of surface receptors on immune cells connecting humoral and cellular immune responses. Several herpesviruses induce FcgammaR activities in infected cells. Here we identify two distinct human cytomegalovirus (HCMV)-encoded vFcgammaR glycoproteins of 34 and 68 kDa. A panel of HCMV strains exhibited a slight molecular microheterogeneity between Fcgamma-binding proteins, suggesting their viral origin. To locate the responsible genes within the HCMV genome, a large set of targeted HCMV deletion mutants was constructed. The mutant analysis allowed the identification of a spliced UL119-UL118 mRNA to encode vFcgammaR gp68 and TRL11/IRL11 to encode vFcgammaR gp34. Both vFcgammaRs are surface resident type I transmembrane glycoproteins. Significant relatedness of sequences in the extracellular chain of gpUL119-118 and gpTRL11 with particular immunoglobulin supergene family domains present in FcgammaR I and FcgammaRs II/III, respectively, indicates a different ancestry and function of gpUL119-118 and gpTRL11. The HCMV-encoded vFcgammaRs highlight an impressive diversification and redundancy of FcgammaR structures.
Collapse
Affiliation(s)
- Ramazan Atalay
- Robert Koch-Institut, Fachgebiet Virale Infektionen, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Katsetos CD, Fincke JE, Legido A, Lischner HW, de Chadarevian JP, Kaye EM, Platsoucas CD, Oleszak EL. Angiocentric CD3(+) T-cell infiltrates in human immunodeficiency virus type 1-associated central nervous system disease in children. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:105-14. [PMID: 9874673 PMCID: PMC95669 DOI: 10.1128/cdli.6.1.105-114.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 09/10/1998] [Indexed: 11/20/2022]
Abstract
A significant proportion of brain tissue specimens from children with AIDS show evidence of vascular inflammation in the form of transmural and/or perivascular mononuclear-cell infiltrates at autopsy. Previous studies have shown that in contrast to inflammatory lesions observed in human immunodeficiency virus type 1 (HIV-1) encephalitis, in which monocytes/macrophages are the prevailing mononuclear cells, these infiltrates consist mostly of lymphocytes. Perivascular mononuclear-cell infiltrates were found in brain tissue specimens collected at autopsy from five of six children with AIDS and consisted of CD3(+) T cells and equal or greater proportions of CD68(+) monocytes/macrophages. Transmural (including endothelial) mononuclear-cell infiltrates were evident in one patient and comprised predominantly CD3(+) T cells and small or, in certain vessels, approximately equal proportions of CD68(+) monocytes/macrophages. There was a clear preponderance of CD3(+) CD8(+) T cells on the endothelial side of transmural infiltrates. In active lesions of transmural vasculitis, CD3(+) T-cell infiltrates exhibited a distinctive zonal distribution. The majority of CD3(+) cells were also CD8(+) and CD45RO+. Scattered perivascular monocytes/macrophages in foci of florid vasculitis were immunoreactive for the p24 core protein. In contrast to the perivascular space, the intervening brain neuropil was dominated by monocytes/macrophages, microglia, and reactive astrocytes, containing only scant CD3(+) CD8(+) cells. Five of six patients showed evidence of calcific vasculopathy, but only two exhibited HIV-1 encephalitis. One patient had multiple subacute cerebral and brainstem infarcts associated with a widespread, fulminant mononuclear-cell vasculitis. A second patient had an old brain infarct associated with fibrointimal thickening of large leptomeningeal vessels. These infiltrating CD3(+) T cells may be responsible for HIV-1-associated CNS vasculitis and vasculopathy and for endothelial-cell injury and the opening of the blood-brain barrier in children with AIDS.
Collapse
Affiliation(s)
- C D Katsetos
- Department of Microbiology and Immunology, St. Christopher's Hospital for Children and Allegheny University of the Health Sciences, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
6
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
7
|
Oleszak EL, Kuzmak J, Good RA, Platsoucas CD. Immunology of Theiler's murine encephalomyelitis virus infection. Immunol Res 1995; 14:13-33. [PMID: 7561339 DOI: 10.1007/bf02918495] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that belongs to the family of picornaviruses. Intracranial inoculation of susceptible mouse strains with TMEV results in biphasic disease, consisting of early acute disease that resembles poliomyelitis, followed by late chronic demyelinating disease that is characterized by the appearance of chronic inflammatory demyelinating lesions. Susceptibility to TMEV infection is genetically controlled by three loci: one that maps to the H-2D region of the major histocompatibility complex, one to the beta-chain constant region of the T-cell antigen receptor, and one located on chromosome 3. Both early acute and chronic late demyelinating diseases are immunologically mediated. T cells appear to play an important role in the pathogenesis of the disease. TMEV-induced demyelinating disease in mice has extensive similarities with multiple sclerosis, and it is considered one of the best experimental animal models for multiple sclerosis.
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pa 19140, USA
| | | | | | | |
Collapse
|
8
|
Oleszak EL, Kuzmak J, Hogue B, Parr R, Collisson EW, Rodkey LS, Leibowitz JL. Molecular mimicry between Fc receptor and S peplomer protein of mouse hepatitis virus, bovine corona virus, and transmissible gastroenteritis virus. Hybridoma (Larchmt) 1995; 14:1-8. [PMID: 7768529 DOI: 10.1089/hyb.1995.14.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously demonstrated molecular mimicry between the S peplomer protein of mouse hepatitis virus (MHV) and Fc gamma R (Fc gamma R). A monoclonal antibody (MAb) to mouse Fc gamma R (2.4G2 anti-Fc gamma R MAb), purified rabbit immunoglobulin, but not their F(ab')2 fragments, as well as mouse and rat IgG, immunoprecipitated (1) recombinant S peplomer protein expressed by a vaccinia virus recombinant in human, rabbit, and mouse cells, and (2) natural S peplomer protein from cells infected with several strains of MHV and MHV escaped mutants. We report here results of studies documenting molecular mimicry between Fc gamma R and S peplomer protein of viruses representing three distinct antigenic subgroups of the Coronaviridae. We have shown a molecular mimicry between the S peplomer protein of bovine corona virus (BCV) and Fc gamma R. The 2.4G2 anti-Fc gamma R MAb, rabbit IgG, but not its F(ab')2 fragments, as well as homologous bovine serum, free of anti-BCV antibodies, immunoprecipitated S peplomer protein of BCV (Mebus strain). In contrast, we did not find molecular mimicry between S peplomer protein of human corona virus (HCV-OC43) and Fc gamma R. Although the OC43 virus belongs to the same antigenic group as MHV and BCV, MAb specific for human Fc gamma RI or Fc gamma RII and purified human IgG1, IgG2, and IgG3 myeloma proteins did not immunoprecipitate the S peplomer protein from HCV-OC43-infected RD cells. In addition, we did demonstrate molecular mimicry between the S peplomer protein of porcine transmissible gastroenteritis virus (TGEV) and Fc gamma R. TGEV belongs to the second antigenic subgroup of coronaviridae.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Thäle R, Lucin P, Schneider K, Eggers M, Koszinowski UH. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 1994; 68:7757-65. [PMID: 7966565 PMCID: PMC237237 DOI: 10.1128/jvi.68.12.7757-7765.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several herpesviruses, including cytomegalovirus, induce receptors for the Fc domain of murine immunoglobulin G (IgG) molecules. Viral genes coding for these receptors have been characterized only for alphaherpesviruses. In this report, we describe a new approach that led to the identification of an Fc receptor (FcR) of murine cytomegalovirus (MCMV). The Fc fragment of IgG precipitated glycoproteins (gp) of 86 to 88 and 105 kDa from MCMV-infected cells. Deglycosylation by endoglycosidase F resulted in a protein with a molecular mass of 64 kDa. Injection of complete MCMV DNA or of DNA fragments, and the subsequent testing of cytoplasmic binding of IgG by immunofluorescence microscopy, was used to search for the coding region in the MCMV genome. The gene was located in the HindIII J fragment, map units 0.838 to 0.846, where an open reading frame of 1,707 nucleotides predicts a gp of 569 amino acids with a calculated molecular mass of 65 kDa. The sequence of this gp is related to those of the gE proteins of herpes simplex virus type 1 and varicella-zoster virus. The defined length of the mRNA, 1,838 nucleotides, was in agreement with that of a 1.9-kb RNA expressed throughout the replication cycle, starting at the early stages of infection. Expression of the gene fcr1 by recombinant vaccinia virus resulted in the synthesis of gp86/88 and gp105, each with FcR properties, and the correct identification of the gene encoding the FcR was confirmed by the DNA injection method.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line, Transformed
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- DNA Primers
- DNA, Complementary
- Embryo, Mammalian
- Genes, Viral
- Genetic Vectors
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/metabolism
- Kinetics
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Fc/biosynthesis
- Receptors, Fc/isolation & purification
- Receptors, Fc/metabolism
- Restriction Mapping
- Vaccinia virus
- Viral Proteins
Collapse
Affiliation(s)
- R Thäle
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Oleszak EL, Perlman S, Parr R, Collisson EW, Leibowitz JL. Molecular mimicry between S peplomer proteins of coronaviruses (MHV, BCV, TGEV and IBV) and Fc receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:183-8. [PMID: 8209728 DOI: 10.1007/978-1-4615-2996-5_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In previous studies we have demonstrated molecular mimicry between the S peplomer protein of Mouse Hepatitis Virus (MHV) and Fc gamma Receptor (Fc gamma R) of IgG. Rabbit IgG, but not its F(ab')2 fragments, monoclonal rat and mouse IgG and the rat 2.4G2 anti-mouse Fc gamma R monoclonal antibody (mab) immunoprecipitated natural and recombinant MHV S protein. On the basis of a number of criteria, MHV S peplomer protein exhibits Fc IgG binding ability. We report here a molecular mimicry between the S peplomer protein of Bovine Coronavirus (BCV) and Fc gamma R. BCV S peplomer protein which belongs to the same antigenic subgroup as MHV also binds Fc portion of rabbit IgG and is immunoprecipitated by the 2.4G2 anti-Fc gamma R mab. In contrast, Transmissible Gastroenteritis Coronavirus (TGEV) and Infectious Bronchitis Virus (IBV) S peplomer proteins which represent two distinct antigenic subgroups of Coronaviridae do not bind rabbit IgG and do not react with anti-Fc gamma R mab. However, homologous swine IgG, but not its F(ab')2 fragments, immunoprecipitated from TGEV-infected cells a polypeptide chain with molecular mass of 195 kDa, identical to that immunoprecipitated by the T36 mab anti-TGEV S peplomer protein.
Collapse
Affiliation(s)
- E L Oleszak
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center Medical School at Houston
| | | | | | | | | |
Collapse
|
11
|
Leibowitz JL, Reneker SJ. The effect of amantadine on mouse hepatitis virus replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:117-22. [PMID: 8209717 DOI: 10.1007/978-1-4615-2996-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J L Leibowitz
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
12
|
Oleszak EL, Knisley K, Rodkey LS, Leibowitz JL. Microheterogeneity of S-glycoprotein of mouse hepatitis virus temperature-sensitive mutants. J Virol Methods 1992; 38:103-12. [PMID: 1322926 PMCID: PMC7119594 DOI: 10.1016/0166-0934(92)90173-b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mouse hepatitis virus (MHV) strain JHM (MHV-JHM) is a neurotropic coronavirus that causes acute fatal encephalomyelitis in 75-99% of infected mice. The surviving animals may subsequently develop demyelinating disease. We compared the S peplomer protein of the wild type (wt) and five temperature-sensitive (ts) mutants of MHV-JHM. In contrast with the wt, none of these five cause fatal disease (mortality less than 10%). Three of these ts mutants did not induce any demyelinating disease, a fourth caused demyelinating disease in 5% of the animals and a fifth, designated ts8, exhibited strong demyelinating properties and caused demyelination in 99% of the animals. SDS-PAGE analysis revealed no differences in the molecular weight of S peplomer protein of wt or ts MHV-JHM mutants. However, isoelectric focusing of the S protein of these five ts mutants and the wt MHV-JHM, followed by transfer to nitrocellulose sheets and immunoblotting with anti-S specific antibody revealed significant differences in the microheterogeneity of the S protein.
Collapse
Affiliation(s)
- E L Oleszak
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston 77030
| | | | | | | |
Collapse
|
13
|
Oleszak EL, Perlman S, Leibowitz JL. MHV S peplomer protein expressed by a recombinant vaccinia virus vector exhibits IgG Fc-receptor activity. Virology 1992; 186:122-32. [PMID: 1309271 PMCID: PMC7131518 DOI: 10.1016/0042-6822(92)90066-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that cells infected with mouse hepatitis virus (MHV) bind rabbit, mouse, and rat IgG by the Fc portion of the IgG molecule. This Fc-binding activity appeared to be mediated by the MHV S protein. S protein could also be precipitated from MHV-infected cells by a monoclonal antibody directed against the murine Fc gamma receptor (Fc gamma R). To prove definitively that the S protein mediates Fc-binding activity, we have expressed the MHV S protein utilizing recombinant vaccinia viruses. The anti-Fc gamma R monoclonal antibody, 2.4G2, precipitated recombinant S protein in cells of murine, human, and rabbit origin. Since the anti-Fc receptor monoclonal antibody does not react with human and rabbit Fc receptors these results demonstrate that the epitope recognized by this antibody is carried on the MHV S protein and is not murine in origin. Examination of various MHV isolates and escape mutants failed to identify the precise sequences in S responsible for the molecular mimicry of the murine Fc gamma R. These data are consistent with the hypothesis that a previously identified region of similarity between the S protein and the Fc gamma R mediates this activity. The Fc binding activity of S was expressed on the cell surface, since MHV-JHM-infected cells, but not uninfected cells, formed rosettes with anti-sheep red blood cell (SRBC) antibody-coated SRBC. The anti-Fc gamma R monoclonal antibody neutralized MHV-JHM and inhibited syncytium formation induced by the MHV S protein.
Collapse
Affiliation(s)
- E L Oleszak
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston 77030
| | | | | |
Collapse
|
14
|
Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K. Induction of self-reactive T cells after murine coronavirus infection. J Virol 1991; 65:1789-95. [PMID: 1848306 PMCID: PMC239986 DOI: 10.1128/jvi.65.4.1789-1795.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We studied the mechanism of in vitro spontaneous lymphokine production by spleen cells from mice injected intraperitoneally with murine coronavirus stain JHM 1 month after infection, when infectious virus had already been cleared from the spleens. Removal of either CD4+ T cells or Ia+ antigen-presenting cells (APC) from the spleen cells abrogated interleukin-2 (IL-2) production. Addition of anti-CD4 or anti-Iad monoclonal antibodies to the culture suppressed IL-2 production. These results suggest that the response involved typical receptor-mediated activation of T cells. Surprisingly, reciprocal mixing experiments with a coculture of T cells from infected mice and APC from either infected or naive mice resulted in the production of IL-2. The absence of viral antigens in spleen cells 1 month after infection, as indicated by their inability to induce the proliferation of T-cell clones specific for the viral antigens, suggest that the T cells from mice 1 month after infection were not responding to the viral antigens. The inoculum components other than the virus did not induce this immune response. We also found that the frequency of self-reactive but not alloreactive IL-2-producing T cells in the spleens of infected mice was 3- to 10-fold higher than that in naive mice. These findings suggest that an increased frequency of self-reactive T cells which secrete IL-2 occurs following murine coronavirus infection. This may have important implications in the development of autoimmunelike phenomena following murine coronavirus infection.
Collapse
Affiliation(s)
- S Kyuwa
- Department of Animal Pathology, University of Tokyo, Japan
| | | | | | | |
Collapse
|