1
|
Hiraguri A, Netsu O, Sasaki N, Nyunoya H, Sasaya T. Recent progress in research on cell-to-cell movement of rice viruses. Front Microbiol 2014; 5:210. [PMID: 24904532 PMCID: PMC4033013 DOI: 10.3389/fmicb.2014.00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/20/2014] [Indexed: 11/25/2022] Open
Abstract
To adapt to plants as hosts, plant viruses have evolutionally needed the capacity to modify the host plasmodesmata (PD) that connect adjacent cells. Plant viruses have acquired one or more genes that encode movement proteins (MPs), which facilitate the cell-to-cell movement of infectious virus entities through PD to adjacent cells. Because of the diversity in their genome organization and in their coding sequences, rice viruses may each have a distinct cell-to-cell movement strategy. The complexity of their unusual genome organizations and replication strategies has so far hampered reverse genetic research on their genome in efforts to investigate virally encoded proteins that are involved in viral movement. However, the MP of a particular virus can complement defects in cell-to-cell movement of other distantly related or even unrelated viruses. Trans-complementation experiments using a combination of a movement-defective virus and viral proteins of interest to identify MPs of several rice viruses have recently been successful. In this article, we reviewed recent research that has advanced our understanding of cell-to-cell movement of rice viruses.
Collapse
Affiliation(s)
- Akihiro Hiraguri
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Osamu Netsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Takahide Sasaya
- Plant Disease Group, Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research OrganizationKoshi, Kumamoto, Japan
| |
Collapse
|
2
|
Mann K, Meng B. The triple gene block movement proteins of a grape virus in the genus Foveavirus confer limited cell-to-cell spread of a mutant Potato virus X. Virus Genes 2013; 47:93-104. [PMID: 23543158 DOI: 10.1007/s11262-013-0908-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV) is a member of the genus Foveavirus in the family Betaflexiviridae. The genome of GRSPaV encodes five proteins, among which are three movement proteins designated the triple gene block (TGB) proteins. The TGB proteins of GRSPaV are highly similar to their counterparts in Potato virus X (PVX), as reflected in size, modular structure, conservation of critical amino acid sequence motifs, as well as similar cellular localization. Based on these similarities, we predicted that the TGB proteins of these two viruses would be interchangeable. To test this hypothesis, we replaced the entire or partial sequence of PVX TGB with the corresponding regions from GRSPaV, creating chimeric viruses that contain the PVX backbone and different sequences from GRSPaV TGB. These chimeric constructs were delivered into plants of Nicotiana benthamiana through agro-infiltration to test whether they were capable of cell-to-cell and systemic movement. To our surprise, viruses derived from pPVX.GFP(CH3) bearing GRSPaV TGB in place of PVX TGB lost the ability to move either cell-to-cell or systemically. Interestingly, another chimeric virus resulting from pPVX.GFP(HY2) containing four TGB genes (TGB1 from PVX and TGB1-3 from GRSPaV), exhibited limited cell-to-cell, but not systemic, movement. Our data question the notion that analogous movement proteins encoded by even distantly related viruses are functionally interchangeable and can be replaced by each other. These data suggest that other factors, besides the TGB proteins, may be required for successful intercellular and/or systemic movement of progeny viruses. This is the first experimental demonstration that the GRSPaV TGB function as movement proteins in the context of a chimeric virus and that four TGB genes were required to support the intercellular movement of the chimeric virus.
Collapse
Affiliation(s)
- Krinpreet Mann
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
3
|
Levy A, Zheng JY, Lazarowitz SG. The tobamovirus Turnip Vein Clearing Virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J Virol 2013; 87:6428-40. [PMID: 23536678 PMCID: PMC3648121 DOI: 10.1128/jvi.03390-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022] Open
Abstract
Plant viruses overcome the barrier of the plant cell wall by encoding cell-to-cell movement proteins (MPs), which direct newly replicated viral genomes to, and across, the wall. The paradigm for how a single MP regulates and coordinates these activities is the Tobacco mosaic virus (TMV) 30-kDa protein (MP(TMV)). Detailed studies demonstrate that TMV multiplies exclusively in the cytoplasm and have documented associations of MP(TMV) with endoplasmic reticulum (ER) membrane, microtubules, and plasmodesmata throughout the course of infection. As TMV poorly infects Arabidopsis thaliana, Turnip vein clearing virus (TVCV) is the tobamovirus of choice for studies in this model plant. A key problem, which has contributed to confusion in the field, is the unproven assumption that the TVCV and TMV life cycles are identical. We engineered an infectious TVCV replicon that expressed a functional fluorescence-tagged MP(TVCV) and report here the unexpected discovery that MP(TVCV), beyond localizing to ER membrane and plasmodesmata, targeted to the nucleus in a nuclear localization signal (NLS)-dependent manner, where it localized to novel F-actin-containing filaments that associated with chromatin. The MP(TVCV) NLS appeared to be conserved in the subgroup 3 tobamoviruses, and our mutational analyses showed that nuclear localization of MP(TVCV) was necessary for efficient TVCV cell-to-cell movement and systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. Our studies identify a novel nuclear stage in TVCV infection and suggest that nuclear MP encoded by TVCV and other subgroup 3 tobamoviruses interacts with F-actin and chromatin to modulate host defenses or cellular physiology to favor virus movement and infection.
Collapse
Affiliation(s)
- Amit Levy
- Cornell University, Department of Plant Pathology and Plant-Microbe Biology, Ithaca, New York, USA
| | | | | |
Collapse
|
4
|
Latham JR, Wilson AK. Transcomplementation and synergism in plants: implications for viral transgenes? MOLECULAR PLANT PATHOLOGY 2008; 9:85-103. [PMID: 18705887 PMCID: PMC6640258 DOI: 10.1111/j.1364-3703.2007.00441.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plants, viral synergisms occur when one virus enhances infection by a distinct or unrelated virus. Such synergisms may be unidirectional or mutualistic but, in either case, synergism implies that protein(s) from one virus can enhance infection by another. A mechanistically related phenomenon is transcomplementation, in which a viral protein, usually expressed from a transgene, enhances or supports the infection of a virus from a distinct species. To gain an insight into the characteristics and limitations of these helper functions of individual viral genes, and to assess their effects on the plant-pathogen relationship, reports of successful synergism and transcomplementation were compiled from the peer-reviewed literature and combined with data from successful viral gene exchange experiments. Results from these experiments were tabulated to highlight the phylogenetic relationship between the helper and dependent viruses and, where possible, to identify the protein responsible for the altered infection process. The analysis of more than 150 publications, each containing one or more reports of successful exchanges, transcomplementation or synergism, revealed the following: (i) diverse viral traits can be enhanced by synergism and transcomplementation; these include the expansion of host range, acquisition of mechanical transmission, enhanced specific infectivity, enhanced cell-to-cell and long-distance movement, elevated or novel vector transmission, elevated viral titre and enhanced seed transmission; (ii) transcomplementation and synergism are mediated by many viral proteins, including inhibitors of gene silencing, replicases, coat proteins and movement proteins; (iii) although more frequent between closely related viruses, transcomplementation and synergism can occur between viruses that are phylogenetically highly divergent. As indicators of the interoperability of viral genes, these results are of general interest, but they can also be applied to the risk assessment of transgenic crops expressing viral proteins. In particular, they can contribute to the identification of potential hazards, and can be used to identify data gaps and limitations in predicting the likelihood of transgene-mediated transcomplementation.
Collapse
|
5
|
Li Y, Bao YM, Wei CH, Kang ZS, Zhong YW, Mao P, Wu G, Chen ZL, Schiemann J, Nelson RS. Rice dwarf phytoreovirus segment S6-encoded nonstructural protein has a cell-to-cell movement function. J Virol 2004; 78:5382-9. [PMID: 15113917 PMCID: PMC400330 DOI: 10.1128/jvi.78.10.5382-5389.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice dwarf virus (RDV) is a member of the genus Phytoreovirus, which is composed of viruses with segmented double-stranded RNA genomes. Proteins that support the intercellular movement of these viruses in the host have not been identified. Microprojectile bombardment was used to determine which open reading frames (ORFs) support intercellular movement of a heterologous virus. A plasmid containing an infectious clone of Potato virus X (PVX) defective in cell-to-cell movement and expressing either beta-glucuronidase or green fluorescent protein (GFP) was used for cobombardment with plasmids containing ORFs from RDV gene segments S1 through S12 onto leaves of Nicotiana benthamiana. Cell-to-cell movement of the movement-defective PVX was restored by cobombardment with a plasmid containing S6. In the absence of S6, no other gene segment supported movement. Identical results were obtained with Nicotiana tabacum, a host that allows fewer viruses to infect and spread within its tissue. S6 supported the cell-to-cell movement of the movement-defective PVX in sink and source leaves of N. benthamiana. A mutant S6 lacking the translation start codon did not complement the cell-to-cell movement of the movement-defective PVX. An S6 protein product (Pns6)-enhanced GFP fusion was observed near or within cell walls of epidermal cells from N. tabacum. By immunocytochemistry, unfused Pns6 was localized to plasmodesmata in rice leaves infected with RDV. S6 thus encodes a protein with characteristics identical to those of other viral proteins required for the cell-to-cell movement of their genome and therefore is likely required for the cell-to-cell movement of RDV.
Collapse
Affiliation(s)
- Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Heinlein M, Epel BL. Macromolecular Transport and Signaling Through Plasmodesmata. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:93-164. [PMID: 15219782 DOI: 10.1016/s0074-7696(04)35003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmodesmata (Pd) are channels in the plant cell wall that in conjunction with associated phloem form an intercellular communication network that supports the cell-to-cell and long-distance trafficking of a wide spectrum of endogenous proteins and ribonucleoprotein complexes. The trafficking of such macromolecules is of importance in the orchestration of non-cell autonomous developmental and physiological processes. Plant viruses encode movement proteins (MPs) that subvert this communication network to facilitate the spread of infection. These viral proteins thus represent excellent experimental keys for exploring the mechanisms involved in intercellular trafficking and communication via Pd.
Collapse
Affiliation(s)
- Manfred Heinlein
- Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | |
Collapse
|
7
|
Wu J, Zhou X. Effects of replacing the movement protein gene of Tobacco mosaic virus by that of Tomato mosaic virus. Virus Res 2002; 87:61-7. [PMID: 12135790 DOI: 10.1016/s0168-1702(02)00083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad bean strain of Tobacco mosaic virus (TMV-B) infects Nicotiana tabacum White Burley systemically whereas the tomato strain of T. mosaic virus (ToMV-S1) induces necrotic local lesions and is restricted to inoculated leaves. To examine the possible role of the viral movement protein (MP) in these symptom differences, a chimaeric virus (T/OMP) was produced in which the TMV-B MP gene was replaced by the ToMV-S1 MP gene. T/OMP induced the same symptoms as TMV-B in N. tabacum White Burley. However, in N. tabacum Samsun NN and other plants containing the N resistance gene, T/OMP caused necrotic lesions that were smaller than those produced by TMV-B but similar in size to those of ToMV-S1. We conclude that ToMV MP gene can substitute functionally for the TMV-B MP gene, and that the MP gene influences the size of necrotic local lesions on N-containing hosts.
Collapse
Affiliation(s)
- Junjie Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | |
Collapse
|
8
|
Huppert E, Szilassy D, Salánki K, Divéki Z, Balázs E. Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J Virol 2002; 76:3554-7. [PMID: 11884579 PMCID: PMC136044 DOI: 10.1128/jvi.76.7.3554-3557.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Accepted: 12/26/2001] [Indexed: 11/20/2022] Open
Abstract
A hybrid virus (CMVcymMP) constructed by replacing the movement protein (MP) of cucumber mosaic cucumovirus (CMV) with that of cymbidium ringspot tombusvirus (CymRSV) was viable and could efficiently spread both cell to cell and long distance in host plants. The hybrid virus was able to move cell to cell in the absence of functional CP, whereas CP-deficient CMV was restricted to single inoculated cells. In several Chenopodium and Nicotiana species, the symptom phenotype of the hybrid virus infection was clearly determined by the foreign MP gene. In Nicotiana debneyi and Nicotiana tabacum cv. Xanthi, the hybrid virus could move systemically, contrary to CymRSV.
Collapse
Affiliation(s)
- Emese Huppert
- Agricultural Biotechnology Center, Environmental Biosafety Research Institute, H-2100 Gödöllö, Hungary
| | | | | | | | | |
Collapse
|
9
|
Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M. Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2000; 2:826-32. [PMID: 11056538 DOI: 10.1038/35041072] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.
Collapse
Affiliation(s)
- V Boyko
- Friedrich Miescher-Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Reichel C, Beachy RN. Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 2000; 74:3330-7. [PMID: 10708450 PMCID: PMC111834 DOI: 10.1128/jvi.74.7.3330-3337.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 12/02/1999] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-beta-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.
Collapse
Affiliation(s)
- C Reichel
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
11
|
Más P, Beachy RN. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 1999; 147:945-58. [PMID: 10579716 PMCID: PMC2169346 DOI: 10.1083/jcb.147.5.945] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 10/05/1999] [Indexed: 11/22/2022] Open
Abstract
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.
Collapse
Affiliation(s)
- Paloma Más
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Roger N. Beachy
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
12
|
Atabekov JG, Malyshenko SI, Morozov YuS, Taliansky ME, Solovyev AG, Agranovsky AA, Shapka NA. Identification and study of tobacco mosaic virus movement function by complementation tests. Philos Trans R Soc Lond B Biol Sci 1999; 354:629-35. [PMID: 10212942 PMCID: PMC1692541 DOI: 10.1098/rstb.1999.0414] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phenomenon of trans-complementation of cell-to-cell movement between plant positive-strand RNA viruses is discussed with an emphasis on tobamoviruses. Attention is focused on complementation between tobamoviruses (coding for a single movement protein, MP) and two groups of viruses that contain the triple block of MP genes and require four (potato virus X) or three (barley stripe mosaic virus) proteins for cell-to-cell movement. The highlights of complementation data obtained by different experimental approaches are given, including (i) double infections with movement-deficient (dependent) and helper viruses; (ii) infections with recombinant viral genomes bearing a heterologous MP gene; (iii) complementation of a movement-deficient virus in transgenic plants expressing the MP of a helper virus; and (iv) co-bombardment of plant tissues with the cDNAs of a movement-dependent virus genome and the MP gene of a helper virus.
Collapse
Affiliation(s)
- J G Atabekov
- Department of Virology, Moscow State University, Russia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kahn TW, Lapidot M, Heinlein M, Reichel C, Cooper B, Gafny R, Beachy RN. Domains of the TMV movement protein involved in subcellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:15-25. [PMID: 9744091 DOI: 10.1046/j.1365-313x.1998.00172.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To identify and map functionally important regions of the tobacco mosaic virus movement protein, deletions of three amino acids were introduced at intervals of 10 amino acids throughout the protein. Mutations located between amino acids 1 and 160 abolished the capacity of the protein to transport virus from cell to cell, while some of the mutations in the C-terminal third of the protein permitted function. Despite extensive tests, no examples were found of intermolecular complementation between mutants, suggesting that function requires each movement protein molecule to be fully competent. Many of the mutants were fused to green fluorescent protein, and their subcellular localizations were determined by fluorescence microscopy in infected plants and protoplasts. Most mutants lost the ability to accumulate in one or more of the multiple subcellular sites targeted by wild-type movement protein, suggesting that specific functional domains were disrupted. The order in which accumulation at subcellular sites occurs during infection does not represent a targeting pathway. Association of the movement protein with microtubules or with plasmodesmata can occur in the absence of other associations. The region of the protein around amino acids 9-11 may be involved in targeting the protein to cortical bodies (probably associated with the endoplasmic reticulum) and to plasmodesmata. The region around residues 49-51 may be involved in co-alignment of the protein with microtubules. The region around residues 88-101 appears to play a role in targeting to both the cortical bodies and microtubules. Thus, the movement protein contains independently functional domains.
Collapse
Affiliation(s)
- T W Kahn
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Nagano H, Okuno T, Mise K, Furusawa I. Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. J Virol 1997; 71:2270-6. [PMID: 9032362 PMCID: PMC191335 DOI: 10.1128/jvi.71.3.2270-2276.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The movement protein (MP) gene of brome mosaic virus (BMV) was precisely replaced with that of cucumber mosaic virus (CMV). Infectivity tests of the chimeric BMV on Chenopodium quinoa, a permissive host for cell-to-cell movement of both BMV and CMV, showed that the chimeric BMV failed to move from cell to cell even though it replicated in protoplasts. A spontaneous mutant of the chimeric BMV that displayed cell-to-cell movement was subsequently obtained from a local lesion during one of the experiments. A cloned cDNA representing the genomic RNA encoding the MP of the chimeric BMV mutant was analyzed and found to contain a mutation in the CMV MP gene resulting in deletion of the C-terminal 33 amino acids of the MP. Directed mutagenesis of the CMV MP gene showed that the C-terminal deletion was responsible for the movement capability of the mutant. When the mutation was introduced into CMV, the CMV mutant moved from cell to cell in C. quinoa, though the movement was less efficient than that of the wild-type CMV. These results indicate that the CMV MP, except the C-terminal 33 amino acids, potentiates cell-to-cell movement of both BMV and CMV in C. quinoa. In addition, since C. quinoa is a common host for both BMV and CMV, these results suggest that the CMV MP has specificity for the viral genomes during cell-to-cell movement of the virus and that the C-terminal 33 amino acids of the CMV MP are involved in that specificity.
Collapse
Affiliation(s)
- H Nagano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Japan.
| | | | | | | |
Collapse
|
15
|
|
16
|
Casper SJ, Holt CA. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 1996; 173:69-73. [PMID: 8707059 DOI: 10.1016/0378-1119(95)00782-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cDNA fragment encompassing the Aequorea victoria green fluorescent protein-encoding gene (gfp) was introduced into a genomic cDNA clone of tobacco mosaic virus (TMV). Infectious RNA transcripts produced in vitro were used to inoculate tobacco (Nicotiana benthamiana) leaves. After 1-2 days, bright green fluorescent areas could be visualized upon illumination with a long-wave ultraviolet (UV) light source. The virus was capable of infecting and expressing gfp in plant tissues both locally (in the inoculated leaf) and systemically (throughout the entire plant). Continued observation of inoculated plants indicated that systemic infection resulted from a combination of two forms of virus movement: a slow, cell-to-cell spread with concomitant virus replication and gfp expression, and a rapid, vascular-mediated form of transport without gfp expression.
Collapse
Affiliation(s)
- S J Casper
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
García-Luque I, Ferrero ML, Rodríquez JM, Alonso E, de la Cruz A, Sanz AI, Vaquero C, Serra MT, Díaz-Ruíz JR. The nucleotide sequence of the coat protein genes and 3' non-coding regions of two resistance-breaking tobamoviruses in pepper shows that they are different viruses. Arch Virol 1993; 131:75-88. [PMID: 8328918 PMCID: PMC7086834 DOI: 10.1007/bf01379081] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1992] [Accepted: 01/04/1993] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence of the coat protein genes and 3' non-coding regions of two different resistance-breaking tobamoviruses in pepper have been determined. The deduced coat protein of an Italian isolate of pepper mild mottle virus (PMMV-I) consists of 156 amino acids and its 3' non-coding region is 198 nucleotides long. They have been found to be very similar in sequence and structure to those previously reported for a Spanish isolate (PMMV-S). In contrast, a Dutch isolate termed P 11 codes for a coat protein of 160 amino acids and its 3' non-coding region is 291 nucleotides long, which may have arisen by duplication. The nucleotide and the predicted coat protein amino acid sequence analysis show that this isolate should be considered as a new virus within the tobamovirus group. The term paprika mild mottle virus (PaMMV) is proposed.
Collapse
Affiliation(s)
- I García-Luque
- U.E.I. Fitopatología, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
De Jong W, Ahlquist P. A hybrid plant RNA virus made by transferring the noncapsid movement protein from a rod-shaped to an icosahedral virus is competent for systemic infection. Proc Natl Acad Sci U S A 1992; 89:6808-12. [PMID: 1495969 PMCID: PMC49593 DOI: 10.1073/pnas.89.15.6808] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For many plant RNA viruses, multiple viral gene products, including noncapsid movement proteins and capsid proteins, contribute to the spread of infection within plants. The extent to which these factors interact to support infection spread is not known, but, for movement protein mutants of certain viruses, the inability of coinoculated "helper" viruses to complement defective movement has suggested a possible requirement for coadaptation between noncapsid movement proteins and other virus factors. To test directly for required coadaptation, the 3a movement protein gene of cowpea chlorotic mottle virus, an icosahedral bromovirus, was replaced with the nonhomologous 30-kDa movement protein gene of sunn-hemp mosaic virus, a rod-shaped, cowpea-adapted tobamovirus. The resulting hybrid virus is competent for systemic infection of cowpea, with systemic infection dependent upon expression of the 30-kDa gene. In view of the dramatic differences between cowpea chlorotic mottle virus and sunn-hemp mosaic virus in genetic organization and particle morphology, the ability of the hybrid to systemically infect cowpea implies that the tobamovirus 30-kDa movement protein functions independently of sequence-specific interactions with other viral components or sequences. Similarly, the required contribution of bromovirus capsid protein to infection movement appears to be independent of specific interaction with the natural 3a movement protein. In addition to other implications concerning movement protein and coat protein function, the results are consistent with the possibility that two or more distinguishable transfer processes may be involved in crossing different tissue barriers to achieve full systemic spread of infection.
Collapse
Affiliation(s)
- W De Jong
- Institute for Molecular Virology, University of Wisconsin-Madison 53706-1596
| | | |
Collapse
|
19
|
Abstract
It is clear that the genetic information responsible for the phenomenon we think of as TMV not only consists of the genes carried in the viral genome, but that numerous plant genes are equally important in viral gene functions. These gene products not only allow the virus to replicate, but may effect functions of evolution that determine what the virus is. Even the processes of pathogenesis and resistance appear to involve similarly precise plant interactions. The challenge of the future is to identify the plant genes involved in these precise interactions and to understand both components of genetic information that comprise plant viruses.
Collapse
Affiliation(s)
- W O Dawson
- Department of Plant Pathology, University of California, Riverside 92521
| |
Collapse
|