1
|
Goyal A, Bittleston LS, Leventhal GE, Lu L, Cordero O. Interactions between strains govern the eco-evolutionary dynamics of microbial communities. eLife 2022; 11:74987. [PMID: 35119363 PMCID: PMC8884728 DOI: 10.7554/elife.74987] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic data has revealed that genotypic variants of the same species, that is, strains, coexist and are abundant in natural microbial communities. However, it is not clear if strains are ecologically equivalent, and at what characteristic genetic distance they might exhibit distinct interactions and dynamics. Here, we address this problem by tracking 10 taxonomically diverse microbial communities from the pitcher plant Sarracenia purpurea in the laboratory for more than 300 generations. Using metagenomic sequencing, we reconstruct their dynamics over time and across scales, from distant phyla to closely related genotypes. We find that most strains are not ecologically equivalent and exhibit distinct dynamical patterns, often being significantly more correlated with strains from another species than their own. Although even a single mutation can affect laboratory strains, on average, natural strains typically decouple in their dynamics beyond a genetic distance of 100 base pairs. Using mathematical consumer-resource models, we show that these taxonomic patterns emerge naturally from ecological interactions between community members, but only if the interactions are coarse-grained at the level of strains, not species. Finally, by analyzing genomic differences between strains, we identify major functional hubs such as transporters, regulators, and carbohydrate-catabolizing enzymes, which might be the basis for strain-specific interactions. Our work suggests that fine-scale genetic differences in natural communities could be created and stabilized via the rapid diversification of ecological interactions between strains.
Collapse
Affiliation(s)
- Akshit Goyal
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Leonora S Bittleston
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Lu Lu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Otto Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
2
|
Christie GE, Calendar R. Bacteriophage P2. BACTERIOPHAGE 2016; 6:e1145782. [PMID: 27144088 DOI: 10.1080/21597081.2016.1145782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
P2 is the original member of a highly successful family of temperate phages that are frequently found in the genomes of gram-negative bacteria. This article focuses on the organization of the P2 genome and reviews current knowledge about the function of each open reading frame.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine , Richmond, VA, USA
| | - Richard Calendar
- Department of Molecular and Cell Biology, University of California , Berkeley, CA, USA
| |
Collapse
|
3
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Thomas JA, Hardies SC, Rolando M, Hayes SJ, Lieman K, Carroll CA, Weintraub ST, Serwer P. Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305phi8-36. Virology 2007; 368:405-21. [PMID: 17673272 PMCID: PMC2171028 DOI: 10.1016/j.virol.2007.06.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/09/2007] [Accepted: 06/30/2007] [Indexed: 10/23/2022]
Abstract
To investigate the apparent genomic complexity of long-genome bacteriophages, we have sequenced the 218,948-bp genome (6479-bp terminal repeat), and identified the virion proteins (55), of Bacillus thuringiensis bacteriophage 0305phi8-36. Phage 0305phi8-36 is an atypical myovirus with three large curly tail fibers. An accurate mode of DNA pyrosequencing was used to sequence the genome and mass spectrometry was used to accomplish the comprehensive virion protein survey. Advanced informatic techniques were used to identify classical morphogenesis genes. The 0305phi8-36 genes were highly diverged; 19% of 247 closely spaced genes have similarity to proteins with known functions. Genes for virion-associated, apparently fibrous proteins in a new class were found, in addition to strong candidates for the curly fiber genes. Phage 0305phi8-36 has twice the virion protein coding sequence of T4. Based on its genomic isolation, 0305phi8-36 is a resource for future studies of vertical gene transmission.
Collapse
Affiliation(s)
- Julie A. Thomas
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Stephen C. Hardies
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Mandy Rolando
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Shirley J. Hayes
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Karen Lieman
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Christopher A. Carroll
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| |
Collapse
|
5
|
Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma J, Young R. Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 2004; 340:49-65. [PMID: 15184022 DOI: 10.1016/j.jmb.2004.04.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/05/2004] [Accepted: 04/06/2004] [Indexed: 01/08/2023]
Abstract
We have isolated BcepMu, a Mu-like bacteriophage whose host range includes human pathogenic Burkholderia cenocepacia (formally B. cepacia genomovar III) isolates, and determined its complete 36748 bp genomic sequence. Like enteric bacteriophage Mu, the BcepMu genomic DNA is flanked by variable host sequences, a result of transposon-mediated replication. The BcepMu genome encodes 53 proteins, including capsid assembly components related to those of Mu, and tail sheath and tube proteins related to those of bacteriophage P2. Seventeen of the BcepMu genes were demonstrated to encode homotypic interacting domains by using a cI fusion system. Most BcepMu genes have close homologs to prophage elements present in the two published Salmonella typhi genomes, and in the database sequences of Photorhabdus luminescens, and Chromobacterium violaceum. These prophage elements, designated SalMu, PhotoMu and ChromoMu, respectively, are collinear with BcepMu through nearly their entire lengths and show only limited mosaicism, despite the divergent characters of their hosts. The BcepMu family of Mu-like phages has a number of notable differences from Mu. Most significantly, the critical left end region of BcepMu is inverted with respect to Mu, and the BcepMu family of transposases is clearly of a distinct lineage with different molecular requirements at the transposon ends. Interestingly, a survey of 33 B.cepacia complex strains indicated that the BcepMu prophage is widespread in human pathogenic B.cenocepacia ET12 lineage isolates, but not in isolates from the PHDC or Midwest lineages. Identified members of the BcepMu family all contain a gene possibly involved in bacterial pathogenicity, a homolog of the type-two-secretion component exeA, but only BcepMu also carries a lipopolysaccharide modification acyltransferase which may also contribute a pathogenicity factor.
Collapse
Affiliation(s)
- Elizabeth J Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Christie GE, Temple LM, Bartlett BA, Goodwin TS. Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 2002; 184:6522-31. [PMID: 12426340 PMCID: PMC135442 DOI: 10.1128/jb.184.23.6522-6531.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major structural components of the P2 contractile tail are encoded in the FETUD tail gene operon. The sequences of genes F(I) and F(II), encoding the major tail sheath and tail tube proteins, have been reported previously (L. M. Temple, S. L. Forsburg, R. Calendar, and G. E. Christie, Virology 181:353-358, 1991). Sequence analysis of the remainder of this operon and the locations of amber mutations Eam30, Tam5, Tam64, Tam215, Uam25, Uam77, Uam92, and Dam6 and missense mutation Ets55 identified the coding regions for genes E, T, U, and D, completing the sequence determination of the P2 genome. Inspection of the DNA sequence revealed a new open reading frame overlapping the end of the essential tail gene E. Lack of an apparent translation initiation site and identification of a putative sequence for a programmed translational frameshift within the E gene suggested that this new reading frame (E') might be translated as an extension of gene E, following a -1 translational frameshift. Complementation analysis demonstrated that E' was essential for P2 lytic growth. Analysis of fusion polypeptides verified that this reading frame was translated as a -1 frameshift extension of gpE, with a frequency of approximately 10%. The arrangement of these two genes within the tail gene cluster of phage P2 and their coupling via a translational frameshift appears to be conserved among P2-related phages. This arrangement shows a striking parallel to the organization in the tail gene cluster of phage lambda, despite a lack of amino acid sequence similarity between the tail gene products of these phage families.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA.
| | | | | | | |
Collapse
|
7
|
Jabrane A, Sabri A, Compère P, Jacques P, Vandenberghe I, Van Beeumen J, Thonart P. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol 2002; 68:5704-10. [PMID: 12406768 PMCID: PMC129874 DOI: 10.1128/aem.68.11.5704-5710.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia plymithicum J7 culture supernatant displayed activity against many pathogenic strains of Erwinia amylovora, the causal agent of the most serious bacterial disease of apple and pear trees, fire blight, and against Klebsiella pneumoniae, Serratia liquefaciens, Serratia marcescens, and Pseudomonas fluorescens. This activity increased significantly upon induction with mitomycin C. A phage-tail-like bacteriocin, named serracin P, was purified from an induced culture supernatant of S. plymithicum J7. It was found to be the only compound involved in the antibacterial activity against sensitive strains. The N-terminal amino acid sequence analysis of the two major subunits (23 and 43 kDa) of serracin P revealed high homology with the Fels-2 prophage of Salmonella enterica, the coliphages P2 and 168, the phiCTX prophage of Pseudomonas aeruginosa, and a prophage of Yersinia pestis. This strongly suggests a common ancestry for serracin P and these bacteriophages.
Collapse
Affiliation(s)
- Abdelhamid Jabrane
- Centre Wallon de Biologie Industrielle, Service de Technologie Microbienne, Université de Liège, Sart-Tilman, BE-4000 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Portelli R, Dodd IB, Xue Q, Egan JB. The late-expressed region of the temperate coliphage 186 genome. Virology 1998; 248:117-30. [PMID: 9705261 DOI: 10.1006/viro.1998.9263] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The late-lytic region of the genome of bacteriophage 186 encodes the phage proteins that synthesize the complex viral particle and lyse the bacterial host. We report the completion of the DNA sequence of the late region and the assignment of 18 previously identified genes to open reading frames in the sequence. The 186 late region is similar to the late region of phage P2, sharing 26 genes of known function: the single gene for activation of late gene transcription, 6 genes for construction of DNA-containing heads, 16 for tail morphogenesis, and 3 for cell lysis. We identified two 186 late genes with unknown function; one is homologous to previously unrecognised genes in P2, HP1, and phiCTX, and the other may modulate DNA packaging. The 186 late region, like the rest of the genome, lacks the lysogenic conversion genes that are carried by P2, allowing the 186 late region to be transcribed from only three late promoters rather than four. The relative absence of lysogenic conversion genes in 186 suggests that the two phages have evolved to use the lytic and lysogenic reproductive modes to different extents.
Collapse
Affiliation(s)
- R Portelli
- Department of Biochemistry, University of Adelaide, Adelaide, 5005, Australia
| | | | | | | |
Collapse
|
9
|
Takeda S, Sasaki T, Ritani A, Howe MM, Arisaka F. Discovery of the tail tube gene of bacteriophage Mu and sequence analysis of the sheath and tube genes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:88-92. [PMID: 9714755 DOI: 10.1016/s0167-4781(98)00102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleotide sequence was determined for 2.75 kbp of phage Mu DNA encoding the contractile tail sheath protein L. N-terminal sequence analysis of Mu tail tube and sheath proteins identified the open reading frame just downstream of gene L as the tube gene. This clustering and order of the sheath and tube genes appear to be common among the myoviridae. Database homology searches revealed high similarity between the Mu sheath and tube proteins and two proteins in a Haemophilus influenzae Mu-like prophage, suggesting that they are the sheath and tube proteins of that prophage.
Collapse
Affiliation(s)
- S Takeda
- Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
10
|
Bäumler AJ, Heffron F. Mosaic structure of the smpB-nrdE intergenic region of Salmonella enterica. J Bacteriol 1998; 180:2220-3. [PMID: 9555907 PMCID: PMC107151 DOI: 10.1128/jb.180.8.2220-2223.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The Salmonella enterica smpB-nrdE intergenic region contains about 45 kb of DNA that is not present in Escherichia coli. This DNA region was not introduced by a single horizontal transfer event, but was generated by multiple insertions and/or deletions that gave rise to a mosaic structure in this area of the chromosome.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843-1114, USA.
| | | |
Collapse
|
11
|
Hardt WD, Urlaub H, Galán JE. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci U S A 1998; 95:2574-9. [PMID: 9482928 PMCID: PMC19418 DOI: 10.1073/pnas.95.5.2574] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.
Collapse
Affiliation(s)
- W D Hardt
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
12
|
Abstract
Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.
Collapse
Affiliation(s)
- H W Ackermann
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
13
|
Huan PT, Whittle BL, Bastin DA, Lindberg AA, Verma NK. Shigella flexneri type-specific antigen V: cloning, sequencing and characterization of the glucosyl transferase gene of temperate bacteriophage SfV. Gene 1997; 195:207-16. [PMID: 9305766 DOI: 10.1016/s0378-1119(97)00144-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With lysogeny by bacteriophage SfV, Shigella flexneri serotype Y is converted to serotype 5a. The glucosyl transferase gene (gtr) from bacteriophage SfV of S. flexneri, involved in serotype-specific conversion, was cloned and characterized. The DNA sequence of a 3.7 kb EcoRI-BamHI fragment of bacteriophage SfV which includes the gtr gene was determined. This gene, encoding a polypeptide of 417 aa with 47.67 kDa molecular mass, caused partial serotype conversion of S. flexneri from serotype Y to type V antigen as demonstrated by Western blotting and the sensitivity of the hybrid strain to phage Sf6. The deduced protein of the partially sequenced open reading frame upstream of the gtr showed similarity to various glycosyl transferases of other bacteria. Orf3, separated from the gtr by a non-coding region and transcribed convergently, codes for a 167 aa (18.8 kDa) protein found to have homology with tail fibre genes of phage lambda and P2.
Collapse
Affiliation(s)
- P T Huan
- Division of Biochemistry and Molecular Biology, School of Life Sciences, The Australian National University, Canberra
| | | | | | | | | |
Collapse
|
14
|
Kakikawa M, Oki M, Tadokoro H, Nakamura S, Taketo A, Kodaira K. Cloning and nucleotide sequence of the major capsid proteins of Lactobacillus bacteriophage phi gle. Gene 1996; 175:157-65. [PMID: 8917093 DOI: 10.1016/0378-1119(96)00142-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacteriophage phi gle was induced from a lysogenic Lactobacillus strain Gle. phi gle genome is double-stranded DNA of approximately 42.5 kilo-base (kb) pairs. SDS poly-acrylamide gel electrophoresis demonstrated that the phage particles contain 4 major structural (capsid) proteins, gpB, gpG, gpO, and gpP, whose molecular weights (MW) are estimated to be 64, 43, 29 and 26 kilodaltons (kDa), respectively. More than 16 minor proteins ranging from 113 to 9.6 kDa were also detected. The genes for the major capsid proteins were cloned and each DNA sequence was determined. N-terminal amino acid alignments determined by protein sequencing completely coincided with those deduced from the nucleotide sequences.
Collapse
Affiliation(s)
- M Kakikawa
- Molecular Biology Group, Faculty of Engineering, Toyama University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Esposito D, Fitzmaurice WP, Benjamin RC, Goodman SD, Waldman AS, Scocca JJ. The complete nucleotide sequence of bacteriophage HP1 DNA. Nucleic Acids Res 1996; 24:2360-8. [PMID: 8710508 PMCID: PMC145952 DOI: 10.1093/nar/24.12.2360] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The complete nucleotide sequence of the temperate phage HP1 of Haemophilus influenzae was determined. The phage contains a linear, double-stranded genome of 32 355 nt with cohesive termini. Statistical methods were used to identify 41 probable protein coding segments organized into five plausible transcriptional units. Regions encoding proteins involved in recombination, replication, transcriptional control, host cell lysis and phage production were identified. The sizes of proteins in the mature HP1 particle were determined to assist in identifying genes for structural proteins. Similarities between HP1 coding sequences and those in databases, as well as similar gene organizations and control mechanisms, suggest that HP1 is a member of the P2-like phage family, with strong similarities to coliphages P2 and 186 and some similarity to the retronphage Ec67.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ackermann HW, Elzanowski A, Fobo G, Stewart G. Relationships of tailed phages: a survey of protein sequence identity. Arch Virol 1995; 140:1871-84. [PMID: 7503687 DOI: 10.1007/bf01384350] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Thaler JO, Baghdiguian S, Boemare N. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol 1995; 61:2049-52. [PMID: 7646048 PMCID: PMC167475 DOI: 10.1128/aem.61.5.2049-2052.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xenorhabdicin, the phage tail-like bacteriocins of Xenorhabdus nematophilus, and phage head particles, elements produced together after mitomycin induction in X. nematophilus lysogenic strain F1 cultures, were separated by DEAE chromatography, examined by transmission electron microscopy, and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis of xenorhabdicin showed two major subunits of 43 and 20 kDa corresponding to the sheath and the inner core, respectively. At least five other minor subunits of 67, 54, 35, 28, and 16 kDa were also characterized. Electrophoresis of the phage head capsids showed a major 40-kDa subunit and two minor 50- and 34-kDa subunits. Bactericidal activity recorded against closely related bacterial species and spontaneously produced by X. nematophilus resides in the xenorhabdicin particles and is another antimicrobial barrier to save the symbiotic association.
Collapse
Affiliation(s)
- J O Thaler
- Laboratoire de Pathologie Comparée, Université de Montpelier II, France
| | | | | |
Collapse
|
18
|
Lindqvist BH, Dehò G, Calendar R. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol Rev 1993; 57:683-702. [PMID: 8246844 PMCID: PMC372931 DOI: 10.1128/mr.57.3.683-702.1993] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Temperate coliphage P2 and satellite phage P4 have icosahedral capsids and contractile tails with side tail fibers. Because P4 requires all the capsid, tail, and lysis genes (late genes) of P2, the genomes of these phages are in constant communication during P4 development. The P4 genome (11,624 bp) and the P2 genome (33.8 kb) share homologous cos sites of 55 bp which are essential for generating 19-bp cohesive ends but are otherwise dissimilar. P4 turns on the expression of helper phage late genes by two mechanisms: derepression of P2 prophage and transactivation of P2 late-gene promoters. P4 also exploits the morphopoietic pathway of P2 by controlling the capsid size to fit its smaller genome. The P4 sid gene product is responsible for capsid size determination, and the P2 capsid gene product, gpN, is used to build both sizes. The P2 capsid contains 420 capsid protein subunits, and P4 contains 240 subunits. The size reduction appears to involve a major change of the whole hexamer complex. The P4 particles are less stable to heat inactivation, unless their capsids are coated with a P4-encoded decoration protein (the psu gene product). P4 uses a small RNA molecule as its immunity factor. Expression of P4 replication functions is prevented by premature transcription termination effected by this small RNA molecule, which contains a sequence that is complementary to a sequence in the transcript that it terminates.
Collapse
Affiliation(s)
- B H Lindqvist
- Biologisk Institutt og Bioteknologisenteret i Oslo, Universitetet i Oslo, Norway
| | | | | |
Collapse
|
19
|
Haggård-Ljungquist E, Halling C, Calendar R. DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 1992; 174:1462-77. [PMID: 1531648 PMCID: PMC206541 DOI: 10.1128/jb.174.5.1462-1477.1992] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.
Collapse
|
20
|
Linderoth NA, Ziermann R, Haggård-Ljungquist E, Christie GE, Calendar R. Nucleotide sequence of the DNA packaging and capsid synthesis genes of bacteriophage P2. Nucleic Acids Res 1991; 19:7207-14. [PMID: 1837355 PMCID: PMC332578 DOI: 10.1093/nar/19.25.7207] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Overlapping DNA fragments containing the DNA packaging and capsid synthesis gene region of bacteriophage P2 were cloned and sequenced. In this report we present the complete nucleotide sequence of this 6550 bp region. Each of six open reading frames found in the interval was assigned to one of the essential genes (Q, P, O, N, M and L) by correlating genetic, physical and mutational data with DNA and protein sequence information. Polypeptides predicted were: a capsid completion protein, gpL; the major capsid precursor, gpN; the presumed capsid scaffolding protein; gpO; the ATPase and proposed endonuclease subunits of terminase, gpP and gpM, respectively; and a candidate for the portal protein, gpQ. These gene and protein sequences exhibited no homology to analogous genes or proteins of other bacteriophages. Expression of gene Q in E. coli from a plasmid caused production of a Mr 39,000 Da protein that restored Qam34 growth. This sequence analysis found only genes previously known from analysis of conditional-lethal mutations. No new capsid genes were found.
Collapse
Affiliation(s)
- N A Linderoth
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|