1
|
Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. mBio 2023; 14:e0040823. [PMID: 37017580 PMCID: PMC10128050 DOI: 10.1128/mbio.00408-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Viruses with large, double-stranded DNA genomes captured the majority of their genes from their hosts at different stages of evolution. The origins of many virus genes are readily detected through significant sequence similarity with cellular homologs. In particular, this is the case for virus enzymes, such as DNA and RNA polymerases or nucleotide kinases, that retain their catalytic activity after capture by an ancestral virus. However, a large fraction of virus genes have no readily detectable cellular homologs, meaning that their origins remain enigmatic. We explored the potential origins of such proteins that are encoded in the genomes of orthopoxviruses, a thoroughly studied virus genus that includes major human pathogens. To this end, we used AlphaFold2 to predict the structures of all 214 proteins that are encoded by orthopoxviruses. Among the proteins of unknown provenance, structure prediction yielded clear indications of origin for 14 of them and validated several inferences that were previously made via sequence analysis. A notable emerging trend is the exaptation of enzymes from cellular organisms for nonenzymatic, structural roles in virus reproduction that is accompanied by the disruption of catalytic sites and by an overall drastic divergence that precludes homology detection at the sequence level. Among the 16 orthopoxvirus proteins that were found to be inactivated enzyme derivatives are the poxvirus replication processivity factor A20, which is an inactivated NAD-dependent DNA ligase; the major core protein A3, which is an inactivated deubiquitinase; F11, which is an inactivated prolyl hydroxylase; and more similar cases. For nearly one-third of the orthopoxvirus virion proteins, no significantly similar structures were identified, suggesting exaptation with subsequent major structural rearrangement that yielded unique protein folds. IMPORTANCE Protein structures are more strongly conserved in evolution than are amino acid sequences. Comparative structural analysis is particularly important for inferring the origins of viral proteins that typically evolve at high rates. We used a powerful protein structure modeling method, namely, AlphaFold2, to model the structures of all orthopoxvirus proteins and compared them to all available protein structures. Multiple cases of recruitment of host enzymes for structural roles in viruses, accompanied by the disruption of catalytic sites, were discovered. However, many viral proteins appear to have evolved unique structural folds.
Collapse
Affiliation(s)
- Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Wolfgang Resch
- Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tatiana G. Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Structure/Function analysis of the vaccinia virus F18 phosphoprotein, an abundant core component required for virion maturation and infectivity. J Virol 2010; 84:6846-60. [PMID: 20392848 DOI: 10.1128/jvi.00399-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Poxvirus virions, whose outer membrane surrounds two lateral bodies and a core, contain at least 70 different proteins. The F18 phosphoprotein is one of the most abundant core components and is essential for the assembly of mature virions. We report here the results of a structure/function analysis in which the role of conserved cysteine residues, clusters of charged amino acids and clusters of hydrophobic/aromatic amino acids have been assessed. Taking advantage of a recombinant virus in which F18 expression is IPTG (isopropyl-beta-d-thiogalactopyranoside) dependent, we developed a transient complementation assay to evaluate the ability of mutant alleles of F18 to support virion morphogenesis and/or to restore the production of infectious virus. We have also examined protein-protein interactions, comparing the ability of mutant and WT F18 proteins to interact with WT F18 and to interact with the viral A30 protein, another essential core component. We show that F18 associates with an A30-containing multiprotein complex in vivo in a manner that depends upon clusters of hydrophobic/aromatic residues in the N' terminus of the F18 protein but that it is not required for the assembly of this complex. Finally, we confirmed that two PSSP motifs within F18 are the sites of phosphorylation by cellular proline-directed kinases in vitro and in vivo. Mutation of both of these phosphorylation sites has no apparent impact on virion morphogenesis but leads to the assembly of virions with significantly reduced infectivity.
Collapse
|
3
|
The E6 protein from vaccinia virus is required for the formation of immature virions. Virology 2010; 399:201-11. [PMID: 20116821 DOI: 10.1016/j.virol.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.
Collapse
|
4
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
5
|
Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B. Protein composition of the vaccinia virus mature virion. Virology 2006; 358:233-47. [PMID: 17005230 DOI: 10.1016/j.virol.2006.08.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugations and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the virion mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins and proteins involved in translation.
Collapse
Affiliation(s)
- Wolfgang Resch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
7
|
Yoder JD, Chen TS, Gagnier CR, Vemulapalli S, Maier CS, Hruby DE. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 2006; 3:10. [PMID: 16509968 PMCID: PMC1540416 DOI: 10.1186/1743-422x-3-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/01/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines. RESULTS In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies) and an insoluble protein enriched fraction (virion cores). Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources). Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database. CONCLUSION Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed as novel proteins: E6R and L3L.
Collapse
Affiliation(s)
- Jennifer D Yoder
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Tsefang S Chen
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Cliff R Gagnier
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Srilakshmi Vemulapalli
- Oregon State University, Applied Biotechnology Program, 2082 Cordley Hall, Corvallis, OR 97331-8530, USA
| | - Claudia S Maier
- Oregon State University, Department of Chemistry, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Dennis E Hruby
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|
8
|
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 2006; 80:2127-40. [PMID: 16474121 PMCID: PMC1395410 DOI: 10.1128/jvi.80.5.2127-2140.2006] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/05/2005] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus is a large enveloped poxvirus with more than 200 genes in its genome. Although many poxvirus genomes have been sequenced, knowledge of the host and viral protein components of the virions remains incomplete. In this study, we used gel-free liquid chromatography and tandem mass spectroscopy to identify the viral and host proteins in purified vaccinia intracellular mature virions (IMV). Analysis of the proteins in the IMV showed that it contains 75 viral proteins, including structural proteins, enzymes, transcription factors, and predicted viral proteins not known to be expressed or present in the IMV. We also determined the relative abundances of the individual protein components in the IMV. Finally, 23 IMV-associated host proteins were also identified. This study provides the first comprehensive structural analysis of the infectious vaccinia virus IMV.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Szajner P, Jaffe H, Weisberg AS, Moss B. A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions. Virology 2005; 330:447-59. [PMID: 15567438 DOI: 10.1016/j.virol.2004.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/28/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Early events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinity chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature.
Collapse
Affiliation(s)
- Patricia Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Lackner CA, D'Costa SM, Buck C, Condit RC. Complementation analysis of the dales collection of vaccinia virus temperature-sensitive mutants. Virology 2003; 305:240-59. [PMID: 12573570 DOI: 10.1006/viro.2002.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of randomly generated temperature-sensitive (ts) vaccinia virus (strain IHD-W) mutants were reported by S. Dales et al., (1978, Virology, 84, 403-428) in 1978 and characterized by electron microscopy. We have performed further genetic analysis on the Dales collection of mutants to make the mutants more useful to the scientific community. We obtained the entire Dales collection, 97 mutants, from the American Type Culture Center (ATCC). All 97 mutants were grown and reassessed for temperature sensitivity. Of these, 16 mutants were either very leaky or showed unacceptably high reversion indices even after plaque purification and therefore were not used for further analysis. The remaining 81 ts mutants were used to perform a complete complementation analysis with each other and the existing Condit collection of ts vaccinia virus (strain WR) mutants. Twenty-two of these 81 Dales mutants were dropped during complementation analysis due to erratic or weak behavior in the complementation test. Of the 59 mutants that were fit for further investigation, 30 fall into 13 of Condit's existing complementation groups, 5 comprise 3 previously identified complementation groups independent of the Condit collection, and 24 comprise 18 new complementation groups. The 59 mutants which were successfully characterized by complementation will be accessioned by and made available to the scientific community through the ATCC.
Collapse
Affiliation(s)
- Cari A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
11
|
Shchelkunov SN, Totmenin AV, Safronov PF, Mikheev MV, Gutorov VV, Ryazankina OI, Petrov NA, Babkin IV, Uvarova EA, Sandakhchiev LS, Sisler JR, Esposito JJ, Damon IK, Jahrling PB, Moss B. Analysis of the monkeypox virus genome. Virology 2002; 297:172-94. [PMID: 12083817 PMCID: PMC9534300 DOI: 10.1006/viro.2002.1446] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Monkeypox virus (MPV) belongs to the orthopoxvirus genus of the family Poxviridae, is endemic in parts of Africa, and causes a human disease that resembles smallpox. The 196,858-bp MPV genome was analyzed with regard to structural features and open reading frames. Each end of the genome contains an identical but oppositely oriented 6379-bp terminal inverted repetition, which similar to that of other orthopoxviruses, includes a putative telomere resolution sequence and short tandem repeats. Computer-assisted analysis was used to identify 190 open reading frames containing >/=60 amino acid residues. Of these, four were present within the inverted terminal repetition. MPV contained the known essential orthopoxvirus genes but only a subset of the putative immunomodulatory and host range genes. Sequence comparisons confirmed the assignment of MPV as a distinct species of orthopoxvirus that is not a direct ancestor or a direct descendent of variola virus, the causative agent of smallpox.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The genome sequence of Yaba-like disease virus (YLDV), an unclassified member of the yatapoxvirus genus, has been determined. Excluding the terminal hairpin loops, the YLDV genome is 144,575 bp in length and contains inverted terminal repeats (ITRs) of 1883 bp. Within 20 nucleotides of the termini, there is a sequence that is conserved in other poxviruses and is required for the resolution of concatemeric replicative DNA intermediates. The nucleotide composition of the genome is 73% A+T, but the ITRs are only 63% A+T. The genome contains 151 tightly packed open reading frames (ORFs) that either are > or =180 nucleotides in length or are conserved in other poxviruses. ORFs within 23 kb of each end are transcribed toward the termini, whereas ORFs within the central region of the genome are encoded on either DNA strand. In the central region ORFs have a conserved position, orientation, and sequence compared with vaccinia virus ORFs and encode many enzymes, transcription factors, or structural proteins. In contrast, ORFs near the termini are more divergent and in seven cases are without counterparts in other poxviruses. The YLDV genome encodes several predicted immunomodulators; examples include two proteins with similarity to CC chemokine receptors and predicted secreted proteins with similarity to MHC class I antigen, OX-2, interleukin-10/mda-7, poxvirus growth factor, serpins, and a type I interferon-binding protein. Phylogenic analyses indicated that YLDV is very closely related to yaba monkey tumor virus, but outside the yatapoxvirus genus YLDV is more closely related to swinepox virus and leporipoxviruses than to other chordopoxvirus genera.
Collapse
Affiliation(s)
- H J Lee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
13
|
Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV, Chizhikov VE, Knight JC, Parsons JM, Massung RF, Esposito JJ. Alastrim smallpox variola minor virus genome DNA sequences. Virology 2000; 266:361-86. [PMID: 10639322 DOI: 10.1006/viro.1999.0086] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alastrim variola minor virus, which causes mild smallpox, was first recognized in Florida and South America in the late 19th century. Genome linear double-stranded DNA sequences (186,986 bp) of the alastrim virus Garcia-1966, a laboratory reference strain from an outbreak associated with 0.8% case fatalities in Brazil in 1966, were determined except for a 530-bp fragment of hairpin-loop sequences at each terminus. The DNA sequences (EMBL Accession No. Y16780) showed 206 potential open reading frames for proteins containing >/=60 amino acids. The amino acid sequences of the putative proteins were compared with those reported for vaccinia virus strain Copenhagen and the Asian variola major strains India-1967 and Bangladesh-1975. About one-third of the alastrim viral proteins were 100% identical to correlates in the variola major strains and the remainder were >/=95% identical. Compared with variola major virus DNA, alastrim virus DNA has additional segments of 898 and 627 bp, respectively, within the left and right terminal regions. The former segment aligns well with sequences in other orthopoxviruses, particularly cowpox and vaccinia viruses, and the latter is apparently alastrim-specific.
Collapse
Affiliation(s)
- S N Shchelkunov
- Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology (Vector), Koltsovo, Novosibirsk Region, 633159, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.
Collapse
Affiliation(s)
- D O Willer
- Department of Molecular Biology, The University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
15
|
Christen LM, Sanders M, Wiler C, Niles EG. Vaccinia virus nucleoside triphosphate phosphohydrolase I is an essential viral early gene transcription termination factor. Virology 1998; 245:360-71. [PMID: 9636376 DOI: 10.1006/viro.1998.9177] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deng and Shuman (J. Biol Chem. 271, 29386 (1996)) reported that an ATPase different from the known viral termination factor, VTF, is required for vaccinia virus early gene transcription termination. Properties of this ATPase were similar to those of a known vaccinia virus enzyme, nucleoside triphosphate phosphohydrolase I (NPH I) the product of gene D11L. Transcription-competent cell-free extracts were prepared from A549 cells infected with wild-type or mutant vaccinia virus harboring ts mutations in gene D11L. These extracts were employed to investigate the role of NPH I in early gene transcription termination. Extracts prepared under nonpermissive conditions from both wild-type virus and ts mutant virus-infected cells exhibited high levels of early and intermediate gene transcription activity but were incapable of supporting late gene transcription. ts mutant extract lacked signal-dependent early gene transcription termination activity, which was restored by the addition of either free NPH I or a GST-NPH I fusion protein. A comparison of the NPH I amino acid sequence to the protein databases revealed the presence of a set of sequences characteristic of nucleic acid helicase superfamily II members. A series of site-specific mutations in the helicase motifs and N-terminal and C-terminal deletion mutations were expressed as GST fusion proteins and their activities assessed. Of the mutations in helicase motifs I to VI, alteration of all but motif III reduced the ATPase activity. Removal of as few as 24 amino acids from the N-terminal end eliminated ATPase activity, while deletion of 68 C-terminal amino acids exhibited only a modest decrease in ATP hydrolysis. Larger C-terminal deletions eliminated ATPase activity. Each deletion mutation, and site-specific mutations other than the motif III mutation, failed to support transcription termination in vitro. Mutations in motifs I, II, V, and VI inhibit wild-type NPH I transcription termination activity. However, deletion of up to 68 amino acids from the C-terminal end eliminates this inhibitory property. This observation is particularly interesting since these C-terminal deletions retain both ATPase activity and single-stranded DNA binding activity. Their failure to inhibit transcription termination suggests that these C-terminal deletion mutations eliminate a site required for a function other than from DNA binding or ATP hydrolysis.
Collapse
Affiliation(s)
- L M Christen
- Department of Biochemistry, State University of New York, Buffalo 14214-3000, USA
| | | | | | | |
Collapse
|
16
|
Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 1998; 244:365-96. [PMID: 9601507 DOI: 10.1006/viro.1998.9123] [Citation(s) in RCA: 397] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete genomic DNA sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) was determined. The genome of MVA is 178 kb in length, significantly smaller than that of the vaccinia Copenhagen genome, which is 192 kb. The 193 open reading frames (ORFs) mapped in the MVA genome probably correspond to 177 genes, 25 of which are split and/or have suffered mutations resulting in truncated proteins. The left terminal genomic region of MVA contains four large deletions and one large insertion relative to the Copenhagen strain. In addition, many ORFs in this region are fragmented, leaving only eight genes structurally intact and therefore presumably functional. The inserted DNA codes for a cluster of genes that is also found in the vaccinia WR strain and in cowpox virus and includes a highly fragmented gene homologous to the cowpox virus host range gene, providing further evidence that a cowpox-like virus was the ancestor of vaccinia. Surprisingly, the central conserved region of the genome also contains some fragmented genes, including ORF F5L, encoding a major membrane protein, and ORFs F11L and O1L, encoding proteins of 39.7 and 77.6 kDa, respectively. The right terminal genomic region carries three large deletions all classical poxviral immune evasion genes and all ankyrin-like genes located in this region are fragmented except for those encoding the interleukin-1 beta receptor and the 68-kDa ankyrin-like protein B18R. Thus, the attenuated phenotype of MVA is the result of numerous mutations, particularly affecting the host interactive proteins, including the ankyrin-like genes, but also involving some structural proteins.
Collapse
Affiliation(s)
- G Antoine
- Biomedical Research Center, Hyland-Immuno, Orth/Donau, Austria
| | | | | | | |
Collapse
|
17
|
Sekiguchi J, Shuman S. Novobiocin inhibits vaccinia virus replication by blocking virus assembly. Virology 1997; 235:129-37. [PMID: 9300044 DOI: 10.1006/viro.1997.8684] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novobiocin inhibits the replication of vaccinia virus in cultured BSC40 cells. All classes of viral proteins were synthesized during synchronous infection in the presence of drug. The onset of DNA replication was delayed slightly, yet the extent of DNA replication in the presence of novobiocin was comparable to that of a control infection. A delay in the temporal transition to late viral protein synthesis was in keeping with the effects on DNA replication. Although the precursor forms of the major viral structural proteins were synthesized normally at late times, the proteolytic processing of these polypeptides was inhibited, which suggested an impediment to virus assembly. Electron microscopy revealed that novobiocin blocked virus morphogenesis at an early stage. Conversion of the concatemeric DNA replication intermediates into hairpin telomeres occurred in the presence of novobiocin, confirming that telomere resolution was not coupled to virus assembly. Novobiocin is the latest addition to a class of antipoxviral agents, which includes rifampin and IMCBH, that arrest morphogenesis.
Collapse
Affiliation(s)
- J Sekiguchi
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
18
|
Kane EM, Shuman S. Adenosine N1-oxide inhibits vaccinia virus replication by blocking translation of viral early mRNAs. J Virol 1995; 69:6352-8. [PMID: 7666536 PMCID: PMC189534 DOI: 10.1128/jvi.69.10.6352-6358.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenosine N1-oxide (ANO) is a potent and highly selective inhibitor of vaccinia virus replication. We examined the impact of ANO on vaccinia virus macromolecular synthesis during synchronous infection of BSC40 cells. Viral DNA replication and viral late protein synthesis were blocked completely by ANO, effects that were attributable to a defect in the expression of viral early genes. Vaccinia virus early proteins were not synthesized in the presence of ANO, even though vaccinia virus early mRNAs were produced. Cellular protein synthesis was unaffected by ANO, and virus infection in the presence of the drug did not elicit the normal shutoff of host protein synthesis. Adenosine N1-oxide triphosphate (ANO-TP), the predominant metabolite of the drug in vivo, could substitute for ATP in RNA synthesis by purified vaccinia virus RNA polymerase. ANO-TP could support early transcription by purified virions if dATP was provided as an energy source. ANO-TP did not inhibit early transcription in the presence of ATP. These findings suggest a novel antiviral mechanism whereby incorporation of a modified nucleotide into viral mRNAs might selectively block viral gene expression at the level of translation. We believe that ANO merits consideration as an antipoxvirus drug for topical treatment of molluscum contagiosum in humans.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
19
|
Wang S, Shuman S. Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J Virol 1995; 69:6376-88. [PMID: 7666539 PMCID: PMC189537 DOI: 10.1128/jvi.69.10.6376-6388.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four previously isolated temperature-sensitive (ts) mutants of vaccinia virus WR (ts28, ts54, ts61, and ts15) composing a single complementation group have been mapped by marker rescue to the F10 open reading frame located within the genomic HindIII F DNA fragment. Sequencing of the F10 gene from wild-type and mutant viruses revealed single-amino-acid substitutions in the F10 polypeptide responsible for thermolabile growth. Although the ts mutants displayed normal patterns of viral protein synthesis, electron microscopy revealed a profound morphogenetic defect at the nonpermissive temperature (40 degrees C). Virion assembly was arrested at an early stage, with scant formation of membrane crescents and no progression to normal spherical immature particles. The F10 gene encodes a 52-kDa serine/threonine protein kinase (S. Lin and S. S. Broyles, Proc. Natl. Acad. Sci. USA 91:7653-7657, 1994). We expressed a His-tagged version of the wild-type, ts54, and ts61 F10 polypeptides in bacteria and purified these proteins by sequential nickel affinity and phosphocellulose chromatography steps. The wild-type F10 protein kinase activity was characterized in detail by using casein as a phosphate acceptor. Whereas the wild-type and ts61 kinases displayed similar thermal inactivation profiles, the ts54 kinase was thermosensitive in vitro. These findings suggest that protein phosphorylation plays an essential role at an early stage of virion assembly.
Collapse
Affiliation(s)
- S Wang
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
20
|
Abstract
Comparison of the genomic organization of variola and vaccinia viruses has been carried out. Molecular factors of virulence of these viruses is the focus of this review. Possible roles of the genes of soluble cytokine receptors, complement control proteins, factors of virus replication, and dissemination in vivo for variola virus pathogenesis are discussed. The existence of "buffer" genes in the vaccinia virus genome is proposed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology, Vector, Koltsovo, Russia
| |
Collapse
|
21
|
Shchelkunov SN, Resenchuk SM, Totmenin AV, Blinov VM, Sandakhchiev LS. Analysis of the nucleotide sequence of 48 kbp of the variola major virus strain India-1967 located on the right terminus of the conservative genome region. Virus Res 1994; 32:37-55. [PMID: 8030365 DOI: 10.1016/0168-1702(94)90060-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Computer analysis of a variola major virus (VAR) genomic fragment bounded by the open reading frames (ORFs) D1R and A33L, which is 47,961 bp long, revealed 46 potential ORFs. The VAR proteins were compared to the analogous proteins of vaccinia virus strain Copenhagen. The subunits of DNA-dependent RNA polymerase, as well as the transcription factors, mRNA-capping enzymes, and proteins necessary for the virion morphogenesis proved to be highly conservative within orthopoxviruses. The most pronounced differences between the VAR genome fragment under study and the corresponding vaccinia virus fragment were revealed in the vicinity of the gene encoding the A-type inclusion bodies protein. Possible functions of the analysed viral proteins are discussed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, NPO Vector, Koltsovo, Novosibirsk region, Russia
| | | | | | | | | |
Collapse
|
22
|
Abstract
The three major vaccinia virus (VV) virion proteins (4a, 4b, and 25K) are proteolytically matured from larger precursors (P4a, P4b, and P25K) during virus assembly. Within the precursors, Ala-Gly-X motifs have been noted at the putative processing sites, with cleavage apparently taking place between the Gly and X residues. To identify the sequence and/or structural parameters which are required to define an efficient cleavage site, a trans-processing assay system has been developed by tagging the carboxy terminus of the P25K polypeptide (precursor of 25K) with an octapeptide FLAG epitope, which can be specifically recognized by a monoclonal antibody. By using transient expression assays with cells coinfected with VV, the proteolytic processing of the chimeric gene product (P25K:FLAG) was monitored by immunoblotting procedures. The relationship between the P25K:FLAG precursor and the 25K:FLAG cleavage product was established by pulse-chase experiments. The in vivo cleavage of P25K:FLAG was inhibited by the drug rifampin, implying that the reaction was utilizing the same pathway as authentic VV core proteins. Moreover, the 25K:FLAG protein was found in association with mature virions in accord with the notion that cleavage occurs concomitantly with virion assembly. Site-directed mutagenesis of the Ala-Gly-Ala motif at residues 31 to 33 of the P25K:FLAG precursor to Ile-Asp-Ile blocked production of the 25K:FLAG product. The efficiency of 25K:FLAG production (33.71%) is, however, approximately only half of the production of 25K (63.98%) within VV-infected cells transfected with pL4R:FLAG. One explanation for the lower efficiency of 25K:FLAG production was suggested by the observation in the immunofluorescent-staining experiment that 25K:FLAG-related proteins were not specifically localized to the virus assembly factories (virosomes) within VV-infected cells, although virosome localization was prominent for P25K-related polypeptides. Since VV core protein proteolytic processing is believed to take place during virion maturation, only the P25K:FLAG which was assembled into immature virions could undergo proteolytic maturation. Furthermore during these experiments, a potential cleavage intermediate (25K') of P25K was identified. Amino acid residues 17 to 19 (Ala-Gly-Ser) of the P25K precursor were implicated as the intermediate cleavage site, since no 25K':FLAG product was produced from a mutant precursor in which the sequence was altered to Ile-Asp-Ile. Taken together, these results provide biochemical and genetic evidence to support the hypothesis that the Ala-Gly-X cleavage motif plays a critical role in VV virion protein proteolytic maturation.
Collapse
Affiliation(s)
- P Lee
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
23
|
Upton C, Stuart DT, McFadden G. Identification of a poxvirus gene encoding a uracil DNA glycosylase. Proc Natl Acad Sci U S A 1993; 90:4518-22. [PMID: 8389453 PMCID: PMC46543 DOI: 10.1073/pnas.90.10.4518] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An open reading frame, BamHI D6R, from the central highly conserved region of the Shope fibroma virus (SFV) genome was sequenced and found to have significant homology to that of uracil DNA glycosylases from a number of organisms. Uracil DNA glycosylase catalyzes the initial step in the repair pathway that removes potentially mutagenic uracil from duplex DNA. The D6R polypeptide was expressed in reticulocyte lysates programmed with RNA transcribed from an expression vector containing the T7 RNA polymerase promoter. A highly specific ethidium bromide fluorescence assay of the in vitro translation product determined that the encoded protein does indeed possess uracil DNA glycosylase activity. Open reading frames from other poxviruses, including vaccinia virus (HindIII D4R) and fowlpox (D4), are highly homologous to D6R of SFV and are predicted to encode uracil DNA glycosylases. Identification of the SFV uracil DNA glycosylase provides evidence that this poxviral protein is involved in the repair of the viral DNA genome. Since this enzyme performs only the initial step required for the removal of uracil from DNA, creating an apyrimidinic site, we suggest that other, possibly virus-encoded, repair activities must be present in the cytoplasm of infected cells to complete the uracil excision repair pathway.
Collapse
Affiliation(s)
- C Upton
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
24
|
Kane EM, Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993; 67:2689-98. [PMID: 8386272 PMCID: PMC237591 DOI: 10.1128/jvi.67.5.2689-2698.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
25
|
Stuart DT, Upton C, Higman MA, Niles EG, McFadden G. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J Virol 1993; 67:2503-12. [PMID: 8474156 PMCID: PMC237569 DOI: 10.1128/jvi.67.5.2503-2512.1993] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Infection of cultured mammalian cells with the Leporipoxvirus Shope fibroma virus (SFV) causes the induction of a novel uracil DNA glycosylase activity in the cytoplasms of the infected cells. The induction of this activity, early in infection, correlates with the early expression of the SFV BamHI D6R open reading frame which possesses significant protein sequence similarity to eukaryotic and prokaryotic uracil DNA glycosylases. The SFV BamHI D6R open reading frame and the homologous HindIII D4R open reading frame from the Orthopoxvirus vaccinia virus were cloned under the regulation of a phage T7 promoter and expressed in Escherichia coli as insoluble high-molecular-weight aggregates. During electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, the E. coli-expressed proteins migrate with an apparent molecular mass of 25 kDa. The insoluble protein aggregate generated by expression in E. coli was solubilized in urea and, following a subsequent refolding step, displayed the ability to excise uracil residues from double-stranded plasmid DNA substrates, with the subsequent formation of apyrimidinic sites. The viral enzyme, like all other characterized uracil DNA glycosylases, is active in the presence of high concentrations of EDTA, is substrate inhibited by uracil, and does not display any endonuclease activity. Attempts to inactivate the HindIII D4R gene of vaccinia virus by targeted insertion of a dominant xanthine-guanine phosphoribosyltransferase selection marker or direct insertion of a frame-shifted oligonucleotide were uniformly unsuccessful demonstrating that, unlike the uracil DNA glycosylase described for herpesviruses, the poxvirus enzyme is essential for virus viability.
Collapse
Affiliation(s)
- D T Stuart
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
26
|
Kane EM, Shuman S. Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. J Virol 1992; 66:5752-62. [PMID: 1527841 PMCID: PMC241450 DOI: 10.1128/jvi.66.10.5752-5762.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Four previously isolated temperature-sensitive (ts) mutants of vaccinia virus WR (ts1, ts31, ts55, and ts58) comprising a single complementation group (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) have been mapped by marker rescue to the H4L open reading frame located within the genomic HindIII-H DNA fragment. The H4 gene is predicted to encode a 93.6-kDa polypeptide expressed at late times during infection. Nucleotide sequence alterations responsible for thermolabile growth lead to amino acid substitutions in the H4 gene product. All four ts alleles display "normal" patterns of early and late viral protein synthesis at the nonpermissive temperature (40 degrees C). Mature virion particles, microscopically indistinguishable from wild-type virions, are produced in the cytoplasm of cells infected with ts1 at 40 degrees C. Western immunoblot analysis localizes the H4 protein to the virion core. After solubilization from cores, the H4 protein is associated during purification with transcriptionally active vaccinia virus DNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|