1
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits IFN-β expression induced by dsRNA. Virus Res 2022; 307:198619. [PMID: 34742812 DOI: 10.1016/j.virusres.2021.198619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus that belongs to the Poxviridae family. Type I interferons (IFN) are critical in the host defence against viruses. They induce hundreds of interferon stimulated genes (ISGs) many of which have an antiviral role. The ability of ORFV to modulate type I IFN production was undertaken to investigate whether ORFV could inhibit IFN-β expression via dsRNA dependant signalling pathways. HEK293 cells are known to lack DNA pattern-recognition receptors and Toll-like receptors however, they do express the cytosolic dsRNA receptors RIG-I and MDA5. HEK293 cells were shown to produce high levels of IFN-β when cells were stimulated with poly(I:C) and this was shown to be predominantly via RIG-I-dependant signalling as confirmed by siRNA knock-down of RIG-I. Further we showed that HEK293 cells are permissive for ORFV and caused potent inhibition of IFN-β transcription when cells were stimulated with poly(I:C) post-viral infection. Studies using heat inactivated ORFV suggested that de novo synthesis of early genes was required. In addition our findings showed that the ORFV encoded factor ORF020, that is known to bind dsRNA, is involved in antagonising IFN expression. Overall, this study has shown for first time the ability of ORFV to counteract type I IFN expression by antagonising dsRNA-activated RIG-I signalling.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
4
|
Abstract
Highly contagious pustular skin infections of sheep, goats and cattle that were unwittingly transmitted to humans from close contact with infected animals, have been the scourge of shepherds, herdsmen and dairy farmers for centuries. In more recent times we recognise that these proliferative pustular lesions are likely to be caused by a group of zoonotic viruses that are classified as parapoxviruses. In addition to infecting the above ungulates, parapoxviruses have more recently been isolated from seals, camels, red deer and reindeer and most have been shown to infect man. The parapoxviruses have one of the smallest genomes of the poxvirus family (140 kb) yet share over 70% of their genes with the most virulent members. Like other poxviruses, the central core of the genomes encode factors for virus transcription and replication, and structural proteins, whereas the terminal regions encode accessory factors that give the parapoxvirus group many of its unique features. Several genes of parapoxviruses are unique to this genus and encode factors that target inflammation, the innate immune responses and the development of acquired immunity. These factors include a homologue of mammalian interleukin (IL)-10, a chemokine binding protein and a granulocyte-macrophage colony stimulating factor /IL-2 binding protein. The ability of this group to reinfect their hosts, even though a cell-mediated memory response is induced during primary infection, may be related to their epitheliotropic niche and the immunomodulators they produce. In this highly localised environment, the secreted immunomodulators only interfere with the local immune response and thus do not compromise the host’s immune system. The discovery of a vascular endothelial growth factor-like gene may explain the highly vascular nature of parapoxvirus lesions. There are many genes of parapoxviruses which do not encode polypeptides with significant matches with protein sequences in public databases, separating this genus from most other mammalian poxviruses. These genes appear to be involved in inhibiting apoptosis, manipulating cell cycle progression and degradation of cellular proteins that may be involved in the stress response, thus allowing the virus to subvert intracellular antiviral mechanisms and enhance the availability of cellular molecules required for replication. Parapoxviruses in common with Molluscum contagiosum virus lack a number of genes that are highly conserved in other poxviruses, including factors for nucleotide metabolism, serine protease inhibitors and kelch-like proteins. It is apparent that parapoxviruses have evolved a unique repertoire of genes that have allowed adaptation to the highly specialised environment of the epidermis.
Collapse
|
5
|
Abstract
The full complement of genes encoded by Orf virus (ORFV) is not yet known. A cDNA library was constructed using mRNA isolated 5 h post-infection from cells infected with ORFV in vitro and grown in the presence of cytosine arabinoside. Using 12 non-overlapping probes representing the entire genome of the Orf-11 strain of the virus, cDNA clones representing individual genes expressed early in infection were isolated. Thirty-eight early genes were identified, either via isolation of their cDNA from the library or via Northern blotting. Twenty-nine of the isolated cDNAs represented orthologues of other poxvirus genes or had been identified previously as genes of ORFV, whilst seven appeared unrelated to any known poxvirus gene or indeed to any known gene in the DNA databases. The sequences described in this paper constitute approximately 30 kb of the ORFV genome and contain the complete or partial sequence of 47 genes.
Collapse
Affiliation(s)
- Ann R Wood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Colin J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
6
|
Abstract
Orf virus is a DNA parapoxvirus that causes orf, an acute debilitating skin disease of sheep, goats and humans. In sheep, a vigorous immune response involving neutrophils, dermal dendritic cells, T cells, B cells and antibody is generated after infection. CD4(+) T cells, IFN-gamma and to a lesser extent CD8(+) T cells are involved in partial protection against infection. In spite of this, orf virus can repeatedly infect sheep albeit with reduced lesion size and time to resolution compared to primary infection. This is due at least in part to the action of virus immuno-modulator proteins that interfere with host immune and inflammatory responses. These include: an interferon resistance protein; a viral orthologue of mammalian IL-10 (vIL-10) that is an anti-inflammatory cytokine; and a novel inhibitor of the cytokines GM-CSF and IL-2 (GIF). The virus also encodes a virulence protein that is an orthologue of mammalian vascular endothelial growth factor. The study of the immuno-modulator proteins provides an insight into disease pathogenesis and important elements of a host protective response. This information will be used to devise a rational disease control strategy.
Collapse
Affiliation(s)
- David M Haig
- Moredun Research Institute, Pentlands Science Park, Bush Loan, EH26 OPZ, Scotland, Penicuik, UK.
| | | |
Collapse
|
7
|
Cottone R, Büttner M, Bauer B, Henkel M, Hettich E, Rziha HJ. Analysis of genomic rearrangement and subsequent gene deletion of the attenuated Orf virus strain D1701. Virus Res 1998; 56:53-67. [PMID: 9784065 DOI: 10.1016/s0168-1702(98)00056-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orf virus (OV) strain D1701 belongs to the genetically heterogenous parapoxvirus (PPV) genus of the family Poxviridae. The attenuated OV D1701 has been licensed as a live vaccine against contagious ecthyma in sheep. Detailed knowledge on the genetic structure and organization of this PPV vaccine strain is an important prerequisite to reveal possible genetic mechanisms of PPV attenuation. The present study demonstrates a genomic map of the approximately 158 kbp DNA of OV D1701 established by hybridization studies of cloned restriction fragments covering the complete viral genome. The results show an enlargement of the inverted terminal repeats (ITR) to up to 18 kbp due to recombination between nonhomologous sequences during cell culture adaptation. DNA sequencing of the region adjacent to the ITR junction revealed the absence of one open reading frame designated E2L. In contrast to a transposition-deletion variant of the New Zealand OV strain NZ2 (Fleming et al., 1995) the two genes E3L (a homologue of dUTPase) and G1L neighbouring E2L are retained in OV D1701. DNA and RNA analyses proved the presence of E2L gene in wild-type OV isolated directly from scab material. The data presented indicate that the E2L gene is nonessential for virus replication in vitro and in vivo, and may represent one important viral gene in determining virulence and pathogenesis of OV.
Collapse
Affiliation(s)
- R Cottone
- Federal Research Centre for Virus Diseases of Animals, Institute For Vaccines, Tübingen, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
8
|
Mercer A, Fleming S, Robinson A, Nettleton P, Reid H. Molecular genetic analyses of parapoxviruses pathogenic for humans. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1997; 13:25-34. [PMID: 9413523 DOI: 10.1007/978-3-7091-6534-8_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current members of the genus parapoxvirus are orf virus (ORFV), bovine papular stomatitis virus (BPSV), pseudocowpoxvirus (PCPV) and parapoxvirus of red deer in New Zealand (PVNZ). BPSV and PCPV are maintained in cattle while ORFV is maintained in sheep and goats, but all three are zoonoses. Only the recently reported PVNZ has yet to be recorded as infecting humans. Tentative members of the genus are camel contagious ecthyma virus, chamois contagious ecthyma virus and sealpoxvirus. The separation of the parapoxviruses into 4 distinct groups has been based on natural host range, pathology and, more recently, on restriction endonuclease and DNA/DNA hybridisation analyses. The latter studies have shown that the parapoxviruses share extensive homology between central regions of their genomes, but much lower levels of relatedness within the genome termini. The high G + C content of parapoxvirus DNA is in contrast to most other poxviruses and suggests that a significant genetic divergence from other genera of this family has occurred. DNA sequencing of portions of the genome of ORFV, the type species of the genus, has allowed a detailed comparison with the fully sequenced genome of the orthopoxvirus, vaccinia virus (VACV). These studies have provided a genetic map of ORFV and revealed a central core of 88 kbp within which the genomic content was strikingly similar to that of VACV. This conservation is not maintained in the genome termini where insertions, deletions and translocations have occurred. The characterisation of specific ORFV genes may lead to the construction of attenuated vaccine strains in which genes such as those with the potential to interfere with the immune response of the host have been deleted. The current ORFV vaccines are living unattenuated virus and vaccination lesions produce virus which contaminates the environment in a manner similar to natural infection. The virus in scab material is relatively resistant to inactivation and this virus both perpetuates the disease in sheep and provides the most likely source of human infections. A vaccine which immunises animals without perpetuating the disease could be the best way of reducing the incidence of ORFV infection of humans. It is likely that protection against infection by ORFV is cell mediated and will require the endogenous production of relevant antigens. We have recently constructed a series of VACV recombinants each of which contains a large multigene fragment of ORFV DNA. Together the recombinants represent essentially all of the ORFV genome in an overlapping manner. Vaccination of sheep with the recombinant library provided protection against challenge with virulent ORFV. Further studies with this library may enable dominant protective antigens of ORFV to be identified and lead to their incorporation into a subunit vaccine.
Collapse
Affiliation(s)
- A Mercer
- Virus Research Unit, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
9
|
Hammond JM, Oke PG, Coupar BE. A synthetic vaccinia virus promoter with enhanced early and late activity. J Virol Methods 1997; 66:135-8. [PMID: 9220399 DOI: 10.1016/s0166-0934(97)00045-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A synthetic vaccinia virus promoter (Psel) was constructed based upon sequences which increase activity of the P7.5 early/late promoter. Comparison of luciferase activity in lysates from cells infected with recombinant vaccinia viruses expressing the luciferase gene either under the control of the P7.5 promoter or Psel, demonstrated significantly enhanced activity mediated by Psel at both early and late times post infection. This promoter may be of considerable benefit in the construction of recombinant poxviruses where early foreign gene expression is important for generating a protective immune response in vaccinated animals, or in reporter/target gene expression in vitro.
Collapse
Affiliation(s)
- J M Hammond
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | |
Collapse
|
10
|
Fleming SB, McCaughan CA, Andrews AE, Nash AD, Mercer AA. A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol 1997; 71:4857-61. [PMID: 9151886 PMCID: PMC191714 DOI: 10.1128/jvi.71.6.4857-4861.1997] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A gene encoding a polypeptide with homology to interleukin-10 (IL-10) has been discovered in the genome of orf virus (OV) strain NZ2, a parapoxvirus that infects sheep, goats, and humans. The predicted polypeptide sequence shows high levels of amino acid identity to IL-10 of sheep (80%), cattle (75%), humans (67%), and mice (64%), as well as IL-10-like proteins of Epstein-Barr virus (63%) and equine herpesvirus (67%). The C-terminal region, comprising two-thirds of the OV protein, is identical to ovine IL-10, which suggests that this gene has been captured from its host sheep during the evolution of OV. The IL-10-like gene is transcribed early. Conditioned medium from COS cells transfected with a eukaryotic expression vector containing the OV IL-10-like gene showed the same biological activity as ovine IL-10 in a murine thymocyte proliferation assay. OV IL-10 is likely to be important in immune evasion by OV, since IL-10 is a multifunctional cytokine that has inhibitory effects on nonspecific immunity and Th1 effector function.
Collapse
Affiliation(s)
- S B Fleming
- Health Research Council Virus Research Unit and University of Otago Centre for Gene Research, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Mercer AA, Yirrell DL, Whelan EM, Nettleton PF, Pow I, Gilray JA, Reid HW, Robinson AJ. A novel strategy for determining protective antigens of the parapoxvirus, orf virus. Virology 1997; 229:193-200. [PMID: 9123861 DOI: 10.1006/viro.1996.8433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the feasibility of using vaccinia virus (VAC) recombinants containing large multigene fragments of orf virus DNA to identify protective antigens of orf virus (OV). Sixteen OV strain NZ2 DNA fragments with an average size of 11.4 kb were recombined into VAC strain Lister. Each fragment was mapped relative to OV restriction endonuclease maps but was otherwise uncharacterized. Together the recombinants represent 95% of the OV genome in an overlapping manner. Immunofluorescence showed all 16 constructs expressed products recognized by OV antiserum and radioimmune precipitation with the same antiserum allowed the localization of the major antigens of OV to specific recombinants. These data indicated the approximate genomic locations of the genes encoding the OV major antigens and showed that their expression was authentic rather than resulting from read through from VAC sequences adjacent to the site of recombination. Vaccination of OV-naive sheep with the recombinant library provided protection against a subsequent challenge with virulent OV. These data confirm the feasibility of the proposed strategy.
Collapse
Affiliation(s)
- A A Mercer
- Virus Research Unit, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mercer AA, Fraser KM, Esposito JJ. Gene homology between orf virus and smallpox variola virus. Virus Genes 1996; 13:175-8. [PMID: 8972571 DOI: 10.1007/bf00568910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
About 47% identity was observed between the deduced amino acid sequences of a protein encoded by a gene of the parapoxvirus orf virus (OV) strain NZ2 and a 6 kDa protein of unknown function reported to be produced by an open reading frame expressed early after infection by the orthopoxvirus Western Reserve vaccinia virus (VAC); the open reading frame is absent from VAC strain Copenhagen. Examination of sequences reported for variola virus (VAR) strains Bangladesh, India, Congo- 1970, Somalia- 1977 and Garcia- 1966 revealed each encoded a correlate 58 amino acid protein. The open reading frame was not reported in the original analyses of these sequences because a lower limit of 60 amino acids was used to identify potential encoded proteins. Inspection of partial reading frames reported for cowpox virus (CWV) and ectromelia virus (EMV) suggested that these viruses might also code for a correlate of the VAC WR protein. DNA sequencing of cloned fragments of CWV and EMV confirmed that both these orthopoxviruses encode closely related, full length variants of the VAC and VAR open reading frames. The OV homologue is coded in the OV strain NZ2 BamHI-E fragment E2L open reading frame, which we reported is transcribed early postinfection; moreover, analysis of an NZ2 variant showed E2L was absent, indicating that E2L, like the VAC cognate, is nonessential for virus replication in cell culture. The parapoxvirus and orthopoxvirus correlates have about 20% amino acid sequence resemblance to African swine fever virus DNA binding protein p10, suggesting an ancestral relation of genes.
Collapse
Affiliation(s)
- A A Mercer
- Health Research Council Virus Research Unit, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
13
|
Sullivan JT, Fleming SB, Robinson AJ, Mercer AA. Sequence and transcriptional analysis of a near-terminal region of the orf virus genome. Virus Genes 1995; 11:21-9. [PMID: 8808331 DOI: 10.1007/bf01701658] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 3605 bp region located approximately 6.6 kb from the left end of the orf virus genome (strain NZ2) was sequenced. The sequence revealed two open reading frames, which we have designated G2L and B1L. The predicted amino acid sequences of G2L and B1L were found to be homologous to the vaccinia virus (VAC) F11L and F12L gene products, respectively, and were found to be arranged on the genome in the same orientation and relative position as their VAC counterparts. Transcriptional analysis of both G2L and B1L showed they were transcribed toward the genome terminus during the early phase of infection. S1 nuclease and primer-extension analyses showed that the transcriptional start sites of both genes were located a short distance downstream from A+T-rich sequences, similar to vac virus early promoters.
Collapse
Affiliation(s)
- J T Sullivan
- Health Research Council Virus Research Unit, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
14
|
Sullivan JT, Fraser KM, Fleming SB, Robinson AJ, Mercer AA. Sequence and transcriptional analysis of an orf virus gene encoding ankyrin-like repeat sequences. Virus Genes 1995; 9:277-82. [PMID: 7597806 DOI: 10.1007/bf01702883] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 1608 bp region located approximately 5.0 kb from the left end of the orf virus (OV) genome (strain NZ2) was sequenced. The sequence revealed a single open reading frame designated G1L. The predicted amino acid sequence of G1L contained eight ankyrinlike repeat sequences. Transcriptional analysis of G1L showed it was transcribed towards the genome terminus during the early phase of infection. S1 nuclease and primer extension analyses showed that the transcriptional start site of the gene was located a short distance downstream from an A + T-rich sequence similar to a vaccinia virus early promoter.
Collapse
Affiliation(s)
- J T Sullivan
- Health Research Council Virus Research Unit, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
15
|
Klemperer N, Lyttle DJ, Tauzin D, Traktman P, Robinson AJ. Identification and characterization of the orf virus type I topoisomerase. Virology 1995; 206:203-15. [PMID: 7831775 DOI: 10.1016/s0042-6822(95)80035-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaccinia virus (VV) and Shope fibroma virus (SFV), representatives of the orthopox and leporipox genera, respectively, encode type I DNA topoisomerases. Here we report that the 957-nt F4R open reading frame of orf virus (OV), a representative of the parapox genus, is predicted to encode a 318-aa protein with extensive homology to these enzymes. The deduced amino acid sequence of F4R has 54.7 and 50.6% identity with the VV and SFV enzymes, respectively. One hundred forty amino acids are predicted to be conserved in all three proteins. The F4R protein was expressed in Escherichia coli under the control of an inducible T7 promoter, partially purified, and shown to be a bona fide type I topoisomerase. Like the VV enzyme, the OV enzyme relaxed negatively supercoiled DNA in the absence of divalent cations or ATP and formed a transient covalent intermediate with cleaved DNA that could be visualized by SDS-PAGE. Both the noncovalent and covalent protein/DNA complexes could be detected in an electrophoretic mobility shift assay. The initial PCR used to prepare expression constructs yielded a mutant allele of the OV topoisomerase with a G-A transition at nt 677 that was predicted to replace a highly conserved Tyr residue with a Cys. This allele directed the expression of an enzyme which retained noncovalent DNA binding activity but was severely impaired in DNA cleavage and relaxation. Incubation of pUC19 DNA with the wild-type OV or VV enzyme yielded an indistinguishable set of DNA cleavage fragments, although the relative abundance of the fragments differed for the two enzymes. Using a duplex oligonucleotide substrate containing the consensus site for the VV enzyme, we demonstrated that the OV enzyme also cleaved efficiently immediately downstream of the sequence CCCTT.
Collapse
Affiliation(s)
- N Klemperer
- Department of Cell Biology, Cornell University Medical College, New York, New York
| | | | | | | | | |
Collapse
|
16
|
Mercer AA, Yirrell DL, Reid HW, Robinson AJ. Lack of cross-protection between vaccinia virus and orf virus in hysterectomy-procured, barrier-maintained lambs. Vet Microbiol 1994; 41:373-82. [PMID: 7801537 DOI: 10.1016/0378-1135(94)90033-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hysterectomy-procured, barrier maintained lambs were immunised with either of virus or vaccinia virus and subsequently challenged with both viruses. Under these conditions lambs were protected from challenge with the homologous virus but no cross-protection was observed. The feeding of colostrum that contained antibodies to orf virus had no effect on the duration of viral lesions. Immunoblotting analysis and ELISA of serum samples taken during the course of the experiment indicated that the animals mounted antibody responses to both viruses. The cross recognition of 3 vaccinia virus antigens by the hyperimmune anti-orf virus serum was revealed by immunoblotting.
Collapse
Affiliation(s)
- A A Mercer
- Health Research Council Virus Research Unit, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|