1
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
2
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proc Natl Acad Sci U S A 2015; 113:356-61. [PMID: 26715746 DOI: 10.1073/pnas.1513284113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.
Collapse
|
4
|
Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol 2015; 5:1594. [PMID: 25657632 PMCID: PMC4302711 DOI: 10.3389/fpsyg.2014.01594] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
5
|
Rudvin I, Valberg A. Flicker VEPs reflecting multiple rod and cone pathways. Vision Res 2006; 46:699-717. [PMID: 16171839 DOI: 10.1016/j.visres.2005.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/18/2005] [Accepted: 07/24/2005] [Indexed: 11/24/2022]
Abstract
In an attempt to determine whether the relative contributions of magno-mediated and parvo-mediated inputs to the cortex are significantly altered in the transition from cone to rod vision, VEPs were recorded at different luminance levels (photopic to scotopic) for 2Hz square-wave, isochromatic flicker. The VEP mass response appears capable of reflecting major parvo-mediated contributions even at luminance levels for which responses from individual cells in the parvocellular pathway are reported to be weak. Our findings suggest that parvo-mediated responses are the dominant source of high-contrast isochromatic flicker VEPs at all light levels.
Collapse
Affiliation(s)
- Inger Rudvin
- Institute of Physics, Section of Biophysics, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
6
|
Cao D, Pokorny J, Smith VC. Matching rod percepts with cone stimuli. Vision Res 2005; 45:2119-28. [PMID: 15845243 DOI: 10.1016/j.visres.2005.01.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 01/29/2005] [Indexed: 10/25/2022]
Abstract
Traditional methods for studying the effects of rod activity on color vision make it hard to assess the underlying physiological mechanisms. In this study, rod-mediated changes in color appearance were assessed by matching them with cone-mediated color changes. A four-primary photostimulator allowed independent control of rod and cone stimulation and identification of the cone types that generate color sensations equivalent to rod color sensations. The results showed that increases in rod stimulation required matches with cone stimuli that excited M-cones more than L-cones for all conditions. Matches for low-luminance conditions also required some S-cone stimulation. A subsidiary experiment showed that increases in rod modulation of an inducing field produced chromatic contrast effects like those produced by the M-cone system. The data are consistent with a hypothesis of perceptual normalization of scotopic vision to the chromatic appearance of objects under photopic conditions.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Health Studies, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
7
|
Abstract
Hue-naming was used in conjunction with a probe-flash procedure to determine the time-course of rod-mediated effects on hue appearance across the spectrum. Two types of rod influence on hue are distinguishable on the basis of differences in both spectral specificity and time course of effect: (1) a "faster" rod influence enhances green relative to red and (2) a "slower" rod influence enhances short-wavelength red relative to green and blue relative to yellow. The results show that there are separable rod hue biases that operate over different time courses and that the overall rod influence on hue appearance depends importantly on the temporal properties of the stimuli, presumably because rods interact in different ways with different portions of the neural pathways that mediate human color vision.
Collapse
Affiliation(s)
- Roger Knight
- Department of Psychology, University of Washington, Box 351525, Seattle, WA 98195, USA.
| | | |
Collapse
|
8
|
Abstract
The strength of rod inputs to ganglion cells was assessed in the macaque retina at retinal positions within 3-15 deg eccentricity. The experimental paradigm used temporally modulated heterochromatic lights whose relative phase was varied. This paradigm provided a sensitive test to detect rod input. In parvocellular (PC) pathway cells, the gain of the cone-driven signal decreased with decrease in luminance. At 2 td a weak rod response, of a few impulses per second for 100% rod modulation, was revealed in about 60% of cells. For blue-on cells, the cone-driven response also decreased with retinal illuminance, but no rod response could be found. In magnocellular (MC) pathway cells, rod input was much more apparent. Responses became rod dominated at and below 20 td; we cannot exclude rod intrusion at higher retinal illuminances. Responsivity was maintained even at low retinal illuminances. Temporal-frequency dependent rod-cone interactions were observed in MC-pathway cells. Rod responses were of longer latency than cone responses, but there was no evidence of any difference in rod latency between parvocellular and magnocellular pathways.
Collapse
Affiliation(s)
- B B Lee
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | | | |
Collapse
|
9
|
Abstract
After viewing a coloured patch for 30 sec, successive contrast colours were triggered by stimulating either rods or cones. The conditions were arranged so that the rod and cone stimuli matched both with respect to chromaticness and brightness in a chromatically neutral state of adaptation. The results showed that the contrast colours triggered by rods were strikingly similar to those triggered by cones. Yet, the scotopic contrast colours, as compared with the photopic ones, were generally found to be somewhat displaced toward blue. This displacement was attributed to the difference in test conditions. Thus, it was suggested that, although rods may excite all the different types of spectrally opponent cells, they generally tend to prefer the short-wave cells. Moreover, it was concluded that the scotopic successive contrast colours are triggered by rod signals feeding into the primary rod pathway and therefore must originate centrally to the receptor level.
Collapse
Affiliation(s)
- U Stabell
- Department of Psychology, University of Oslo, Blindern, Norway
| | | |
Collapse
|
10
|
Abstract
Two protanopes, two deuteranopes, and two normal subjects named 424 OSA Uniform Color Scales samples using single-word color terms of their choice under three different experimental conditions. When viewing a stimulus field subtending about 4 deg, the performance of the dichromats revealed a substantial ability to discriminate colors along the red-green axis. When the stimuli were limited to the central fovea, or when rods were excluded with a bleach, dichromats could no longer categorize colors in the red-green dimension. The different conditions did not affect the performance of the normals. The results suggest that rods contribute signals used by dichromats, along with lightness cues, to help discriminate and categorize surface colors.
Collapse
Affiliation(s)
- E D Montag
- Department of Psychology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
11
|
De Valois RL, Jacobs GH. Neural Mechanisms of Color Vision. Compr Physiol 1984. [DOI: 10.1002/cphy.cp010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Goldberg SH, Frumkes TE, Nygaard RW. Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker. Science 1983; 221:180-2. [PMID: 6857279 DOI: 10.1126/science.6857279] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the parafoveal retina of human observers, cone-mediated sensitivity to flicker decreases as rods become progressively more dark-adapted. This effect is greatest when a rod response to flicker is precluded. These results indicate that rods tonically inhibit cone pathways in the dark.
Collapse
|
13
|
|
14
|
Keating EG. Rudimentary color vision in the monkey after removal of striate and preoccipital cortex. Brain Res 1979; 179:379-84. [PMID: 116717 DOI: 10.1016/0006-8993(79)90454-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
|