1
|
Noden M, Taylor SD. Enantioselective Synthesis and Application of Small and Environmentally Sensitive Fluorescent Amino Acids for Probing Biological Interactions. J Org Chem 2021; 86:11407-11418. [PMID: 34387500 DOI: 10.1021/acs.joc.1c00907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmentally sensitive fluorescent amino acids (FlAAs) have been used extensively to probe biological interactions. However, most of these amino acids are large and do not resemble amino acid side chains. Here, we report the enantioselective synthesis of two small and environmentally sensitive fluorescent amino acids bearing 7-dialkylaminocoumarin side chains by alkylation of a Ni(II) glycine Schiff base complex. These amino acids exhibit a large increase in fluorescence as environment polarity decreases. One of these FLAAs was incorporated into a highly active analog of the cyclic lipopeptide antibiotic paenibacterin by Fmoc solid-phase peptide synthesis via a new and very efficient route. This peptide was used to probe the interaction of the antibiotic with model liposomes, lipopolysaccharides, and live bacteria.
Collapse
Affiliation(s)
- Michael Noden
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Singh R, Kaur P, Sachdeva R, Grewal JS, Sathe V, Saini G. Computational study of effect of solvents on vibrational spectra of coumarin 500. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Nizamov S, Sednev MV, Bossi ML, Hebisch E, Frauendorf H, Lehnart SE, Belov VN, Hell SW. "Reduced" Coumarin Dyes with an O-Phosphorylated 2,2-Dimethyl-4-(hydroxymethyl)-1,2,3,4-tetrahydroquinoline Fragment: Synthesis, Spectra, and STED Microscopy. Chemistry 2016; 22:11631-42. [PMID: 27385071 DOI: 10.1002/chem.201601252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/11/2022]
Abstract
Large Stokes-shift coumarin dyes with an O-phosphorylated 4-(hydroxymethyl)-2,2-dimethyl-1,2,3,4-tetrahydroquinoline fragment emitting in the blue, green, and red regions of the visible spectrum were synthesized. For this purpose, N-substituted and O-protected 1,2-dihydro-7-hydroxy-2,2,4-trimethylquinoline was oxidized with SeO2 to the corresponding α,β-unsaturated aldehyde and then reduced with NaBH4 in a "one-pot" fashion to yield N-substituted and 7-O-protected 4-(hydroxymethyl)-7-hydroxy-2,2-dimethyl-1,2,3,4-tetrahydroquinoline as a common precursor to all the coumarin dyes reported here. The photophysical properties of the new dyes ("reduced coumarins") and 1,2-dihydroquinoline analogues (formal precursors) with a trisubstituted C=C bond were compared. The "reduced coumarins" were found to be more photoresistant and brighter than their 1,2-dihydroquinoline counterparts. Free carboxylate analogues, as well as their antibody conjugates (obtained from N-hydroxysuccinimidyl esters) were also prepared. All studied conjugates with secondary antibodies afforded high specificity and were suitable for fluorescence microscopy. The red-emitting coumarin dye bearing a betaine fragment at the C-3-position showed excellent performance in stimulation emission depletion (STED) microscopy.
Collapse
Affiliation(s)
- Shamil Nizamov
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Maksim V Sednev
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Laboratorio de Nanoscopias Fotonicas, INQUIMAE-DQIAyQF (FCEyN), Universidad de Buenos Aires & Conicet, Buenos Aires, Argentina
| | - Elke Hebisch
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, Georg-August University, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Metternich JB, Gilmour R. One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (-)-Riboflavin. J Am Chem Soc 2016; 138:1040-5. [PMID: 26714650 DOI: 10.1021/jacs.5b12081] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Generating molecular complexity using a single catalyst, where the requisite activation modes are sequentially exploited as the reaction proceeds, is an attractive guiding principle in synthesis. This requires that each substrate transposition exposes a catalyst activation mode (AM) to which all preceding or future intermediates are resistant. While this concept is exemplified by MacMillan's beautiful merger of enamine and iminium ion activation, examples in other fields of contemporary catalysis remain elusive. Herein, we extend this tactic to organic photochemistry. By harnessing the two discrete photochemical activation modes of (-)-riboflavin, it is possible to sequentially induce isomerization and cyclization by energy transfer (ET) and single-electron transfer (SET) activation pathways, respectively. This catalytic approach has been utilized to emulate the coumarin biosynthesis pathway, which features a key photochemical E → Z isomerization step. Since the ensuing SET-based cyclization eliminates the need for a prefunctionalized aryl ring, this constitutes a novel disconnection of a pharmaceutically important scaffold.
Collapse
Affiliation(s)
- Jan B Metternich
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
6
|
You Y, Cho EJ, Kwon H, Hwang J, Lee SE. A singlet oxygen photosensitizer enables photoluminescent monitoring of singlet oxygen doses. Chem Commun (Camb) 2016; 52:780-3. [DOI: 10.1039/c5cc08411c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dichromophoric molecular dyad enables photosensitization and detection of sinlget oxygen.
Collapse
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Eun Jin Cho
- Department of Advanced Materials Engineering for Information and Electronics
- Kyung Hee University
- Gyeonggi-do 446-710
- Korea
| | - Hyeokseon Kwon
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Jieun Hwang
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Seung Eun Lee
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
7
|
Batista APS, Pires FCC, Teixeira ACS. The role of reactive oxygen species in sulfamethazine degradation using UV-based technologies and products identification. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Semin DJ, Winkler PC, Rowlen KL. Psoralen-olefin photoproducts: first observation of a photo-ene reaction. Photochem Photobiol 1994; 60:185-95. [PMID: 7972368 DOI: 10.1111/j.1751-1097.1994.tb05089.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methyl-substituted psoralens (4'-(hydroxymethyl)-4,5',8-trimethylpsoralen and 4,5',8-trimethylpsoralen) are found to yield an ene product as well as the expected [2 + 2] cycloaddition product from photochemical reaction with simple olefins. As determined by absorbance, liquid chromatography-mass spectrometry and nuclear magnetic resonance, both products are formed at the pyrone side of the respective psoralen. The product distribution is dependent on olefin concentration as well as the nature of the olefin. In deoxygenated solutions, cyclic olefins form as much as 50% ene product, while unsubstituted straight-chain olefins form as little as 3%. In oxygenated solutions, the product distribution is strongly affected by singlet oxygen.
Collapse
Affiliation(s)
- D J Semin
- University of Colorado, Department of Chemistry and Biochemistry, Boulder 80309
| | | | | |
Collapse
|
9
|
Nakagaki R, Kitamura N, Aoyama I, Ohtsubo H. Hydrogen bonding of aromatic amines in hydroxylic solvents 2. Absorption and emission spectroscopy of substituted 7-aminocoumarins and 7-aminocarbostyrils. J Photochem Photobiol A Chem 1994. [DOI: 10.1016/1010-6030(94)10139-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Mahoney RP, Koch TH. Borohydride anion exchange resin stabilization of flash-lamp-pumped coumarin dye lasers. J Photochem Photobiol A Chem 1991. [DOI: 10.1016/1010-6030(91)90022-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Kunjappu JT. Photochemical consequences of stabilization of laser dye 7-amino-4-methylcoumarin (C120) by 1,4-diazabicyclo[2.2.2.]octane. J Photochem Photobiol A Chem 1991. [DOI: 10.1016/1010-6030(91)80036-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Kirpichenok MA, Mel'nikova LM, Denisov LK, Grandberg II. Photochemical reactions of 7-aminocoumarins 1. [2 + 2]-cycloadducts with vinyl butyl ether and acrylonitrile. Chem Heterocycl Compd (N Y) 1988. [DOI: 10.1007/bf00474037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|