1
|
Copedo JS, Webb SC, Ragg NLC, Ericson JA, Venter L, Schmidt AJ, Delorme NJ, Alfaro AC. Histopathological changes in the greenshell mussel, Perna canaliculus, in response to chronic thermal stress. J Therm Biol 2023; 117:103699. [PMID: 37708787 DOI: 10.1016/j.jtherbio.2023.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Climate change associated temperature challenges pose a serious threat to the marine environment. Elevations in average sea surface temperatures are occurring and increasing frequency of marine heatwaves resulting in mortalities of organisms are being reported. In recent years, marine farmers have reported summer mass mortality events of the New Zealand Greenshell mussel, Perna canaliculus, during the summer months; however, the etiological agents have yet to be determined. To elucidate the role of thermal stress, adult P. canaliculus were exposed to three chronic temperature treatments: a benign control of 17 °C and stressful elevations of 21 °C and 24 °C. Eight mussels per treatment were collected each month throughout a 14-month challenge period to identify and investigate histopathological differences among P. canaliculus populations exposed to the three temperatures. Histopathology revealed several significant deleterious alterations to tissues associated with temperature and exposure time. Increasing temperature and progression of time resulted in 1) an increase in the number of focal lipofuscin-ceroid aggregations, 2) an increase in focal hemocytosis, 3) an increase in the thickness of the sub-epithelial layer of the intestinal tract and 4) a decreased energy reserve cell (glycogen) coverage in the mantle. Prolonged exposure, irrespective of temperature, impacted gametogenesis, which was effectively arrested. Furthermore, increased levels of the heat shock protein 70 kDa (HSP 70) were seen in gill and gonad from thermally challenged mussels. The occurrence of the parasite Perkinsus olseni at month 5 in the 24 °C treatment, and month 7 at 21 °C was unexpected and may have exacerbated the fore-mentioned tissue conditions. Prolonged exposure to stable thermal conditions therefore appears to impact P. canaliculus, tissues with implications for broodstock captivity. Mussels experiencing elevated, temperatures of 21 and 24 °C demonstrated more rapid pathological signs. This research provides further insight into the complex host-pathogen-environment interactions for P. canaliculus in response to prolonged elevated temperature.
Collapse
Affiliation(s)
- Joanna S Copedo
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Stephen C Webb
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Alfonso J Schmidt
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | | | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NY, Plummer G, Pasolli HA, Matthies D, Bellen HJ, Ioannou MS. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol 2023; 222:e202207130. [PMID: 37036445 PMCID: PMC10098143 DOI: 10.1083/jcb.202207130] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
During oxidative stress neurons release lipids that are internalized by glia. Defects in this coordinated process play an important role in several neurodegenerative diseases. Yet, the mechanisms of lipid release and its consequences on neuronal health are unclear. Here, we demonstrate that lipid-protein particle release by autolysosome exocytosis protects neurons from ferroptosis, a form of cell death driven by lipid peroxidation. We show that during oxidative stress, peroxidated lipids and iron are released from neurons by autolysosomal exocytosis which requires the exocytic machinery VAMP7 and syntaxin 4. We observe membrane-bound lipid-protein particles by TEM and demonstrate that these particles are released from neurons using cryoEM. Failure to release these lipid-protein particles causes lipid hydroperoxide and iron accumulation and sensitizes neurons to ferroptosis. Our results reveal how neurons protect themselves from peroxidated lipids. Given the number of brain pathologies that involve ferroptosis, defects in this pathway likely play a key role in the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Matthew J. Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Lindsey D. Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Nathanael Y.J. Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Greg Plummer
- Faculty of Medicine & Dentistry Cell Imaging Core, University of Alberta, Edmonton, Canada
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Hartenstein V, Martinez P. Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages. Cell Tissue Res 2019; 377:527-547. [PMID: 31485720 PMCID: PMC6750737 DOI: 10.1007/s00441-019-03096-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
The uptake of macromolecules and larger energy-rich particles into the cell is known as phagocytosis. Phagocytosed material is enzymatically degraded in membrane-bound vesicles of the endosome/lysosome system (intracellular digestion). Whereas most, if not all, cells of the animal body are equipped with the molecular apparatus for phagocytosis and intracellular digestion, a few cell types are specialized for a highly efficient mode of phagocytosis. These are the ("professional") macrophages, motile cells that seek out and eliminate pathogenic invaders or damaged cells. Macrophages form the backbone of the innate immune system. Developmentally, they derive from specialized compartments within the embryonic mesoderm and early vasculature as part of the process of hematopoiesis. Intensive research has revealed in detail molecular and cellular mechanisms of phagocytosis and intracellular digestion in macrophages. In contrast, little is known about a second type of cell that is "professionally" involved in phagocytosis, namely the "enteric phagocyte." Next to secretory (zymogenic) cells, enteric phagocytes form one of the two major cell types of the intestine of most invertebrate animals. Unlike vertebrates, these invertebrates only partially digest food material in the intestinal lumen. The resulting food particles are absorbed by phagocytosis or pinocytosis and digested intracellularly. In this review, we provide a brief overview of the enteric phagocytes described electron microscopically for diverse invertebrate clades, to then to compare these cells with the "canonical" phagocyte ultrastructure established for macrophages. In addition, we will review observations and speculations associated with the hypothesis that macrophages are evolutionarily derived from enteric phagocytes. This idea was already proposed in the late nineteenth century by Elias Metschnikoff who pioneered the research of phagocytosis for both macrophages and enteric phagocytes. We presume that modern approaches to better understand phagocytosis will be helped by considering the deep evolutionary relationship between the two cell types.
Collapse
Affiliation(s)
- V Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluı's Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Christensen MM. Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride. THE HISTOCHEMICAL JOURNAL 1996; 28:217-25. [PMID: 8735289 DOI: 10.1007/bf02331446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of mercury in the spleen, liver, lymph nodes, thymus and bone marrow was studied by autometallography in mice exposed to mercuric chloride intraperitoneally. Application of immunofluorescence histochemistry and an autometallographic silver amplification method was employed to the same tissue section. Mercury was not only detected in macrophages marked by the antibody M1/70 but also in macrophage-like cells, which were either autofluorescent or devoid of fluorescent signals. These two cell types were identified as macrophages at the electron microscopical level. Autometallographically stained macrophages were observed in the spleen, lymph nodes, thymus and in Kupffer cells of the liver. Furthermore, mercury was observed in endothelial cells. No obvious pathological disturbances were observed at light and electron microscopical level. At the subcellular level mercury was localized in lysosomes of macrophages and endothelial cells.
Collapse
|
5
|
Winterbourne DJ, Weingast-Johnson J. Purines induce lipofuscin formation in a colon carcinoma cell line. Biochem J 1994; 301 ( Pt 2):373-7. [PMID: 7519008 PMCID: PMC1137090 DOI: 10.1042/bj3010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipofuscin was produced when HT29, a colon carcinoma cell line, was cultured in millimolar concentrations of xanthine and guanine but not in the presence of other bases. Using a simple assay developed to quantify the fluorescent pigment, it was found that maximum levels of lipofuscin were developed in 3 days. Methylxanthines that are not substrates of xanthine dehydrogenase, such as caffeine and theophylline, did not induce formation of lipofuscin. Xanthine-induced lipofuscin formation could be inhibited by oxypurinol, indicating that the pigment may be formed by free radicals generated by xanthine dehydrogenase. It is suggested that the lipofuscin seen in pseudomelanosis coli may result from the accumulation of purines in the colon.
Collapse
Affiliation(s)
- D J Winterbourne
- Department of Surgery, St. George's Hospital Medical School, London, U.K
| | | |
Collapse
|
6
|
Choo D, Malmgren LT, Rosenberg SI. Age-related changes in Schwann cells of the internal branch of the rat superior laryngeal nerve. Otolaryngol Head Neck Surg 1990; 103:628-36. [PMID: 2123324 DOI: 10.1177/019459989010300418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While previous studies have examined the role of neurons in age-related changes of laryngeal sensory nerve function, investigators have not focused on the significant role of Schwann cells in the aging process. This investigation used an electron microscopic morphometric technique to systematically study Schwann cells of the internal branch of the superior laryngeal nerve of three Wistar rat age groups: young = 3 to 5 months; old = 25 months; very old = 29 to 31 months. In Schwann cells of myelinated axons, a substantial and significant reduction (p = 0.0127) in mitochondrial volume fraction was found between the young and old groups, and also between the young and very old groups (young = 0.0034, old = 0.00175, very old = 0.0019). The volume fraction of compact myelin also showed a trend (p = 0.0683) toward decreasing with age. The volume fractions of cytoplasm, nuclei, and lipofuscin granules showed no significant age-related changes (lipofuscin in myelinating Schwann cells: young = 0.0025, old = 0.0020, very old = 0.0051; lipofuscin in non-myelinating Schwann cells: young = 0.012, old = 0.0061, very old = 0.0051). Our observations on mitochondria lead to two possible conclusions regarding energy availability in aged Schwann cells. One possibility is that aged cells have a decreased energy requirement, which is reflected in the decreased mitochondrial densities in old and very old specimens. The other possibility is the reduced mitochondrial volume fractions are independent of cellular energy requirements and are indicative of some aging or pathologic process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Choo
- State University of New York Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
7
|
Nunoi H, Yanabe Y, Higuchi S, Tsuchiya H, Yamamoto J, Matsuda I, Naito M, Takahashi K, Fujita K, Uchida M, Kobayashi K, Jono M, Malech H. Severe hypoplasia of lymphoid tissues in Mo1 deficiency. Hum Pathol 1988; 19:753-9. [PMID: 2969863 DOI: 10.1016/s0046-8177(88)80257-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A lymph node was examined from a 4-year-old female child with documented "Mo1" (CR3) deficiency. There was hypoplasia of the lymph node, with small, poorly delineated germinal centers and overall lymphopenia. Retrospective analysis of the clinical course of a decreased elder sister of the index patient indicated that the elder sister probably also had "Mo1" deficiency. Review of findings at autopsy revealed severe hypoplasia of all lymphoid organs with lymphopenia. Our observations suggest that lymphoid tissue hypoplasia may be a feature of CR3 deficiency and is likely a result of the defective lymphocyte adherence functions to endothelium associated with absent lymphocyte function-associated antigen (LFA-1).
Collapse
Affiliation(s)
- H Nunoi
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|