1
|
Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA. Theories of Aging and the Prevalence of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9171424. [PMID: 31317043 PMCID: PMC6601487 DOI: 10.1155/2019/9171424] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Aging and AD are associated in some way, then it is reasonable to ask whether or not it is possible to age without AD inexorably appearing at any moment, depending on the period of life. Therefore, the goal of this review is to verify, in light of some aging theories, the prevalence of AD. METHODS For the purpose of this manuscript, the indexers Alzheimer, aging, Alzheimer, and aging were considered; theories of aging were researched. The research was conducted using PubMed, Medline, Scopus, Elsevier, and Google Scholar. RESULTS The most common subjects in the papers analyzed for this manuscript were aging and Alzheimer's disease. The association between Alzheimer and theories of aging seems inconclusive. CONCLUSIONS Accordingly, the general idea is that AD is associated with aging in such a way that almost all people will present this disease; however, it is plausible to consider that the increase in life expectancy will generate a high prevalence of AD. In a general sense, it seems that the theories of aging explain the origin of AD under superlative and catastrophic considerations and use more biomolecular data than social or behavioral data as the bases of analysis, which may be the problem.
Collapse
Affiliation(s)
- Kaynara Trevisan
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Renata Cristina-Pereira
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Danyelle Silva-Amaral
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
| | - Tales Alexandre Aversi-Ferreira
- Laboratory of Physical Anthropology and Biomathematics, Department of Anatomy, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, Brazil
- Department of Physiology, School of Medicine and Pharmaceutical Sciences, System Emotional Science, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Aranda-Anzaldo A. The interphase mammalian chromosome as a structural system based on tensegrity. J Theor Biol 2016; 393:51-9. [PMID: 26780650 DOI: 10.1016/j.jtbi.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Each mammalian chromosome is constituted by a DNA fiber of macroscopic length that needs to be fitted in a microscopic nucleus. The DNA fiber is subjected at physiological temperature to random thermal bending and looping that must be constrained so as achieve structural stability thus avoiding spontaneous rupturing of the fiber. Standard textbooks assume that chromatin proteins are primarily responsible for the packaging of DNA and so of its protection against spontaneous breakage. Yet the dynamic nature of the interactions between chromatin proteins and DNA is unlikely to provide the necessary long-term structural stability for the chromosomal DNA. On the other hand, longstanding evidence indicates that stable interactions between DNA and constituents of a nuclear compartment commonly known as the nuclear matrix organize the chromosomal DNA as a series of topologically constrained, supercoiled loops during interphase. This results in a primary level of DNA condensation and packaging within the nucleus, as well as in protection against spontaneous DNA breakage, independently of chromatin proteins which nevertheless increase and dynamically modulate the degree of DNA packaging and its role in the regulation of DNA function. Thus current evidence, presented hereunder, supports a model for the organization of the interphase chromosome as resilient system that satisfies the principles of structural tensegrity.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180 Edo. Méx., México.
| |
Collapse
|
3
|
Putative mechanisms responsible for the decline in cancer prevalence during organism senescence. Biogerontology 2015; 16:559-65. [PMID: 25702285 DOI: 10.1007/s10522-015-9559-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Most scientific literature reports that aging favors the development of cancers. Each type of cancer, however, initiates and evolves differently, and their natural history can start much earlier in life before their clinical manifestations. The incidence of cancers is spread throughout human life span, and is the result of pre- and post-natal aggressions, individual susceptibility, developmental changes that evolve continuously throughout an individual's life, and time of exposure to carcinogens. Finally, during human senescence, the incidence declines for all cancers. Frequently, the progression of cancers is also slower in aged individuals. There are several possible explanations for this decline at the tissue, cell, and molecular levels, which are described here in. It is time to ask why some tumors are characteristic of either the young, the aged, or during the time of a decline in the reproductive period, and finally, why the incidence of cancers declines late during senescence of human beings. These questions need to be addressed before the origin of cancers can be understood.
Collapse
|
4
|
Alva-Medina J, Dent MAR, Aranda-Anzaldo A. Aged and post-mitotic cells share a very stable higher-order structure in the cell nucleus in vivo. Biogerontology 2010; 11:703-16. [PMID: 20512413 DOI: 10.1007/s10522-010-9285-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
In the mammalian liver the quiescent primary hepatocytes preserve a proliferating potential in vivo, yet natural aging correlates with loss of proliferating potential and progression towards terminal differentiation of the hepatocytes. Thus aged, terminally-differentiated hepatocytes may survive in a de facto post-mitotic state, similarly to early post-mitotic cells, like neurons, suggesting that there might be a common factor linking both cellular states. In the interphase of metazoan cells the nuclear DNA is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). The DNA-NM interactions define a higher-order structure in the cell nucleus (NHOS). Natural aging of the rat liver correlates with a progressive strengthening of the NM framework and the stabilization of the DNA-NM interactions in the hepatocytes indicating that the NHOS becomes highly stable with age. We compared the NHOS of post-mitotic rat neurons with that of aged rat hepatocytes. Our results indicate that a very stable NHOS is a common feature of both aged and post-mitotic cells in vivo.
Collapse
Affiliation(s)
- Janeth Alva-Medina
- Universidad Autónoma del Estado de México, Toluca, Estado de Mexico, Mexico
| | | | | |
Collapse
|
5
|
Aranda-Anzaldo A. A structural basis for cellular senescence. Aging (Albany NY) 2009; 1:598-607. [PMID: 20157542 PMCID: PMC2806039 DOI: 10.18632/aging.100074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 07/28/2009] [Indexed: 12/18/2022]
Abstract
Replicative
senescence (RS) that limits the proliferating potential of normal
eukaryotic cells occurs either by a cell-division counting mechanism linked
to telomere erosion or prematurely through induction by cell stressors such
as oncogene hyper-activation. However, there is evidence that RS also
occurs by a stochastic process that is independent of number of cell
divisions or cellular stress and yet it leads to a highly-stable,
non-reversible post-mitotic state that may be long-lasting and that such a
process is widely represented among higher eukaryotes. Here I present and
discuss evidence that the interactions between DNA and the nuclear
substructure, commonly known as the nuclear matrix, define a higher-order
structure within the cell nucleus that following thermodynamic constraints,
stochastically evolves towards maximum stability, thus becoming limiting
for mitosis to occur. It is suggested that this process is responsible for
ultimate replicative senescence and yet it is compatible with long-term
cell survival.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza, Toluca, Edo. Méx., México.
| |
Collapse
|
6
|
Cancers and the concept of cell senescence. Biogerontology 2009; 11:211-27. [DOI: 10.1007/s10522-009-9241-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 02/04/2023]
|
7
|
Oza J, Yang J, Chen KY, Liu AYC. Changes in the regulation of heat shock gene expression in neuronal cell differentiation. Cell Stress Chaperones 2008; 13:73-84. [PMID: 18347944 PMCID: PMC2666217 DOI: 10.1007/s12192-008-0013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/01/2007] [Accepted: 08/09/2007] [Indexed: 11/28/2022] Open
Abstract
Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.
Collapse
Affiliation(s)
- Jay Oza
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| | - Jingxian Yang
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, NJ USA
| | - Alice Y.-C. Liu
- Department of Cell Biology and Neuroscience, Division of Life Sciences, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082 USA
| |
Collapse
|
8
|
Macieira-Coelho A. Asymmetric distribution of DNA between daughter cells with final symmetry breaking during aging of human fibroblasts. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:227-42. [PMID: 17585503 DOI: 10.1007/978-3-540-69161-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Human fibroblasts proliferating in vitro go through functional modifications, lose progressively their capacity to divide, and enter finally a post-mitotic state. These events are supposed to reproduce the developmental steps taking place in vivo during aging of the organism. The gradual changes occurring through proliferation are incompatible with an even distribution of the genetic material during cell division. We measured the amount of DNA on pairs of daughter cells at different population doubling levels of human fibroblasts. It was found that at each doubling in a significant fraction of cells, the distribution of DNA between sister cells is asymmetric. The cell system is in a steady state through the different phases of the fibroblast population life span; then during the last mitoses when the cells enter the terminal phase IV there is symmetry breaking with a phase transition, the cells settling into a new state.
Collapse
|
9
|
Macieira-Coelho A. Neoplastic growth through the developmental stages of the organism. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:217-50. [PMID: 17153486 DOI: 10.1007/3-540-27671-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
10
|
Abstract
From Weismann's theory to present day gerontology--Weismann's theory was based on the concept that through natural selection the division potential of somatic cells become finite thus limiting the regeneration of the soma and the life span of the organism. Indeed, the somatic cells of some animals have a finite division potential but what became apparent is that the implications for aging are more complex. Experiments showed that at each cell division the genetic information received by each daughter cell differs; cells are this way progressively modified through division creating a functional drift that is responsible in part for the continuous modifications going on in the organism from its very beginning to its extinction. Comparative biology showed that the finite or the infinite division potential of somatic cells has a complex connotation with developmental characteristics of the respective organism with implications for longevity that are far from being understood.
Collapse
|
11
|
Macieira-Coelho A. Topological constraints carry signaling from the cell matrix to the genome. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:1-19. [PMID: 10986715 DOI: 10.1007/978-3-642-59766-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Matsumura T. Cellular genealogy of in-vitro senescence and immortalization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 24:103-19. [PMID: 10547860 DOI: 10.1007/978-3-662-06227-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- T Matsumura
- Meiji Cell Technology Center, Meiji Milk Products Co., Ltd., Odawara, Japan
| |
Collapse
|
13
|
Macieira-Coelho A. Comparative biology of cell immortalization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 24:51-80. [PMID: 10547858 DOI: 10.1007/978-3-662-06227-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
14
|
Macieira-Coelho A. Growth inhibition of human fibroblasts in vitro. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:249-70. [PMID: 9928533 DOI: 10.1007/978-3-642-72149-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Abstract
In the current literature cells that have finished their proliferative life span in vitro and have reached a terminal post-mitotic state are called senescent cells. This definition originated from the belief that the irreversible non-dividing state has a relationship with aging of the organism. Attempts have been made to find markers of the so-called senescent cell in order to detect their presence in vivo in donors of different ages. One marker which was supposed to demonstrate an increase of post-mitotic cells with aging is a marker of a long resting phase whether reversible or irreversible. Other markers suggest that the postmitotic cell does not increase with aging of the organism, that it is irrelevant for aging, that it is found in an increased number in pathology, and that the term senescent cell is a misnomer that should be used only in an operational manner.
Collapse
|
16
|
Schächter F. Causes, effects, and constraints in the genetics of human longevity. Am J Hum Genet 1998; 62:1008-14. [PMID: 9545419 PMCID: PMC1377106 DOI: 10.1086/301849] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- F Schächter
- Laboratory of Human Immunogenetics, Pasteur Institute, Paris, France.
| |
Collapse
|
17
|
Pignolo RJ, Martin BG, Horton JH, Kalbach AN, Cristofalo VJ. The pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the cell cycle from a true G0 state. Exp Gerontol 1998; 33:67-80. [PMID: 9467718 DOI: 10.1016/s0531-5565(97)00090-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Senescent human diploid fibroblasts have an undefined arrest state partially characterized by the differential expression of cell cycle-regulated genes and a failure to complete the mitogen-stimulated cascade of signalling events that lead to DNA synthesis. We present evidence that this arrest state precludes the entry of senescent fibroblasts into a normally reversible G0 or quiescent state. Both nuclear association kinetics and quinacrine dihydrochloride nuclear fluorescence show chromatin condensation patterns consistent with arrest in late G1 and exclusion of senescent cells from the G0 phase of the cell cycle. Steady-state thymidine kinase mRNA levels indicate that some of the signalling cascades initiated from a functional G0 state may be intact in senescent cells, at least qualitatively, and that this expression may represent an abortive attempt to complete pathways required for DNA replication. Taken together, the evidence suggests that growth arrest in senescent cells likely occurs in a physiologic state fundamentally distinct from that of the G0, quiescent state that is achieved by nonproliferating young cells. A full response to serum or growth factor addition, leading from quiescence to DNA synthesis, may require cells to initiate this traverse from a true G0 state. If so, senescent cells would be excluded from this pathway.
Collapse
Affiliation(s)
- R J Pignolo
- Center for Gerontological Research, Allegheny University of Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|