1
|
Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol 2013; 14:R51. [PMID: 23718773 PMCID: PMC4053816 DOI: 10.1186/gb-2013-14-5-r51] [Citation(s) in RCA: 514] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/29/2013] [Indexed: 02/06/2023] Open
Abstract
Background DNA sequencing technologies deviate from the ideal uniform distribution of reads. These biases impair scientific and medical applications. Accordingly, we have developed computational methods for discovering, describing and measuring bias. Results We applied these methods to the Illumina, Ion Torrent, Pacific Biosciences and Complete Genomics sequencing platforms, using data from human and from a set of microbes with diverse base compositions. As in previous work, library construction conditions significantly influence sequencing bias. Pacific Biosciences coverage levels are the least biased, followed by Illumina, although all technologies exhibit error-rate biases in high- and low-GC regions and at long homopolymer runs. The GC-rich regions prone to low coverage include a number of human promoters, so we therefore catalog 1,000 that were exceptionally resistant to sequencing. Our results indicate that combining data from two technologies can reduce coverage bias if the biases in the component technologies are complementary and of similar magnitude. Analysis of Illumina data representing 120-fold coverage of a well-studied human sample reveals that 0.20% of the autosomal genome was covered at less than 10% of the genome-wide average. Excluding locations that were similar to known bias motifs or likely due to sample-reference variations left only 0.045% of the autosomal genome with unexplained poor coverage. Conclusions The assays presented in this paper provide a comprehensive view of sequencing bias, which can be used to drive laboratory improvements and to monitor production processes. Development guided by these assays should result in improved genome assemblies and better coverage of biologically important loci.
Collapse
|
2
|
Osoegawa K, de Jong PJ, Frengen E, Ioannou PA. Construction of bacterial artificial chromosome (BAC/PAC) libraries. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.15. [PMID: 18428289 DOI: 10.1002/0471142905.hg0515s21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes the construction of BAC and PAC libraries. Two vectors, pCYPAC2 and pPAC4 have been used for preparing PAC libraries, and a new BAC vector pBACe3.6 has been developed for construction of BAC libraries. A support protocol describes preparation of PAC or BAC vector DNA for cloning by digestion with BamHI or EcoRI, simultaneous dephosphorylation with alkaline phosphatase, and subsequent purification through pulsed-field gel electrophoresis (PFGE). For the preparation of high-molecular weight DNA for cloning, support protocols provide procedures for embedding total genomic DNA from lymphocytes or animal tissue cells, respectively, in InCert agarose. Another support protocol details the next steps for the genomic DNA: partial digestion with MboI or with a combination of EcoRI endonuclease and EcoRI methylase, and subsequent size fractionation by preparative PFGE. The final support protocol covers the isolation of BAC and PAC plasmid DNA for analyzing clones.
Collapse
Affiliation(s)
- K Osoegawa
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|
3
|
Osoegawa K, de Jong PJ, Frengen E, Ioannou PA. Construction of bacterial artificial chromosome (BAC/PAC) libraries. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.9. [PMID: 18265253 DOI: 10.1002/0471142727.mb0509s55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Large-insert genomic libraries are necessary for physical mapping of large chromosomal regions, for isolation of complete genes, and for use as intermediates in DNA sequencing of entire genomes. Construction of BAC and PAC libraries is detailed in the unit, including preparation of PAC or BAC vector DNA for cloning by digestion with BamHI or EcoRI, dephosphorylation with alkaline phosphatase, and purification through pulsed-field gel electrophoresis (PFGE). For the preparation of high-molecular weight DNA for cloning, procedures for embedding total genomic DNA from lymphocytes or animal tissue cells are also provided. Other protocols detail partial digestion of genomic DNA with MboI or with a combination of EcoRI endonuclease and EcoRI methylase (including methods for optimizing the extent of digestion), and subsequent size fractionation by preparative PFGE. Finally, the isolation of BAC and PAC plasmid DNA for analyzing clones is also presented.
Collapse
Affiliation(s)
- K Osoegawa
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | | | | | | |
Collapse
|
4
|
Song J, Bradeen JM, Naess SK, Helgeson JP, Jiang J. BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:958-64. [PMID: 12898019 DOI: 10.1007/s00122-003-1334-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 04/19/2003] [Indexed: 05/21/2023]
Abstract
Development of efficient methods to transfer large DNA fragments into plants will greatly facilitate the map-based cloning of genes. The recently developed BIBAC and TAC vectors have shown potential to deliver large DNA fragments into plants via Agrobacterium-mediated transformation. Here we report that BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. We tested the possible factors that may cause instability, including the insert sizes of the BIBAC and TAC constructs, potato DNA fragments consisting of highly repetitive or largely single-copy DNA sequences, different Agrobacterium transformation methods and different Agrobacterium strains. The insert sizes of the potato BIBAC and TAC constructs were found to be critical to their stability in Agrobacterium. All constructs containing a potato DNA fragment larger than 100 kb were not stable in any of the four tested Agrobacterium strains, including two recA deficient strains. We developed a transposon-based technique that can be used to efficiently subclone a BAC insert into two to three BIBAC/TAC constructs to circumvent the instability problem.
Collapse
Affiliation(s)
- J Song
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
5
|
Haruguchi Y, Horii K, Suzuki G, Suyemitsu T, Ishihara K, Yamasu K. Genomic organization of the gene that encodes the precursor to EGF-related peptides, exogastrula-inducing peptides, of the sea urchin Anthocidaris crassispina. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:311-20. [PMID: 11997097 DOI: 10.1016/s0167-4781(02)00229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exogastrula-inducing peptides (EGIPs) were identified in embryos of the sea urchin Anthocidaris crassispina as polypeptides with structural similarity to epidermal growth factor (EGF) that severely affect gastrulation of sea urchin embryos to induce exogastrulation. Here we have obtained genomic clones for the EGIP precursor gene (EGIP) and determined its genomic organization. The EGIP gene spans the length of 9 kb in the genome and is composed of seven exons and six introns. Each of the four EGF motifs in the precursor protein is encoded by a single exon, and all the exon boundaries are in phase 1, suggesting that EGIP have been generated during evolution by duplication of an exon encoding a single ancient EGIP sequence. The 5'-flanking sequence of EGIP from -4372 to +194 revealed the presence of multiple repeat sequences including direct and inverted repeats as well as two clusters of GGGG/CCCC elements. The function of the upstream flanking region of EGIP was examined by introducing the gene constructs into embryos in which different regions from the flanking DNA were placed upstream to the GFP reporter gene. Systematic deletion of the upstream DNA revealed the presence of potent enhancer activity between -372 and -210.
Collapse
Affiliation(s)
- Yoshiko Haruguchi
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama City, 338-8570, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Moore PM. Autoantibodies to nervous system tissue in human and murine systemic lupus erythematosus. Ann N Y Acad Sci 1997; 823:289-99. [PMID: 9292056 DOI: 10.1111/j.1749-6632.1997.tb48402.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P M Moore
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
7
|
Chissoe SL, Marra MA, Hillier L, Brinkman R, Wilson RK, Waterston RH. Representation of cloned genomic sequences in two sequencing vectors: correlation of DNA sequence and subclone distribution. Nucleic Acids Res 1997; 25:2960-6. [PMID: 9224593 PMCID: PMC146865 DOI: 10.1093/nar/25.15.2960] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Representation of subcloned Caenorhabditis elegans and human DNA sequences in both M13 and pUC sequencing vectors was determined in the context of large scale genomic sequencing. In many cases, regions of subclone under-representation correlated with the occurrence of repeat sequences, and in some cases the under-representation was orientation specific. Factors which affected subclone representation included the nature and complexity of the repeat sequence, as well as the length of the repeat region. In some but not all cases, notable differences between the M13 and pUC subclone distributions existed. However, in all regions lacking one type of subclone (either M13 or pUC), an alternate subclone was identified in at least one orientation. This suggests that complementary use of M13 and pUC subclones would provide the most comprehensive subclone coverage of a given genomic sequence.
Collapse
Affiliation(s)
- S L Chissoe
- Department of Genetics and Genome Sequencing Center, Washington University School of Medicine, St Louis, MO 63108, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Singer JT, Ma C, Boettcher KJ. Overcoming a defect in generalized recombination in the marine fish pathogen Vibrio anguillarum 775: construction of a recA mutant by marker exchange. Appl Environ Microbiol 1996; 62:3727-31. [PMID: 8837428 PMCID: PMC168180 DOI: 10.1128/aem.62.10.3727-3731.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A defect in generalized recombination has prevented the use of marker exchange for the construction of specific chromosomal mutations in the marine fish pathogen Vibrio anguillarum 775. Through the use of large segments of homologous DNA, we were successful in overcoming this defect and used marker exchange to construct a recA mutant of V. anguillarum H775-3. A recombinant cosmid carrying the recA gene of V. anguillarum 775 in the center of a 25-kb cloned DNA insert was isolated by complementation of methyl methanesulfonate (MMS) sensitivity in Escherichia coli HB101. The recA gene was inactivated by inserting a kanamycin resistance gene into recA, and the mutant gene was subsequently introduced into V. anguillarum H775-3 by conjugal mobilization. Isolation of recombinants between cosmid-borne recA::kan sequences and chromosomal DNA was facilitated by the introduction of an incompatible plasmid, and Southern hybridization was used to verify the presence of recA::kan in the chromosomal DNA of the recA mutant. V. anguillarum carrying recA::kan was considerably more sensitive to UV radiation and to MMS than was its parent, and near wild-type levels of resistance to MMS and UV light were restored by introduction of cloned recA genes from both E. coli and V. anguillarum. These results indicate that recA is required for DNA repair in V. anguillarum and demonstrate the utility of this modified marker exchange technique for the construction of mutations in this economically important fish pathogen.
Collapse
Affiliation(s)
- J T Singer
- Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono 04469-5735, USA.
| | | | | |
Collapse
|
9
|
Herman MA, Vassilieva LL, Horvitz HR, Shaw JE, Herman RK. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 1995; 83:101-10. [PMID: 7553861 DOI: 10.1016/0092-8674(95)90238-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations in the C. elegans gene lin-44 lead to reversals in the polarity of certain asymmetric cell divisions. We have discovered that lin-44 is a member of the Wnt family of genes, which encode secretory glycoproteins implicated in intercellular signaling. Both in situ hybridization experiments using lin-44 transcripts and experiments using reporter constructs designed to mimic patterns of lin-44 expression indicate that lin-44 is expressed in hypodermal cells at the tip of the tail and posterior to the cells with polarities affected by lin-44 mutations. Our mosaic analysis indicates that lin-44 acts cell nonautonomously. We propose that LIN-44 protein is secreted by tail hypodermal cells and affects the polarity of asymmetric cell divisions that occur more anteriorly in the tail.
Collapse
Affiliation(s)
- M A Herman
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
10
|
Hackett NR, Bobovnikova Y, Heyrovska N. Conservation of chromosomal arrangement among three strains of the genetically unstable archaeon Halobacterium salinarium. J Bacteriol 1994; 176:7711-8. [PMID: 8002597 PMCID: PMC197230 DOI: 10.1128/jb.176.24.7711-7718.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phenotypic variants of Halobacterium salinarium NRC-1 arise at a frequency of 10(-2). These result from transpositions of halobacterial insertion sequences and rearrangements mediated by halobacterial insertion sequences. We have tested the hypothesis that such mutations are confined to only a portion of the genome by comparing the chromosomal restriction map of H. salinarium NRC-1 and that of the derivative S9, which was made in 1969. The two chromosomes were mapped by using two-dimensional pulsed-field gel electrophoresis and the restriction enzymes AflII, AseI, and DraI. A comparison of the two deduced maps showed a domain of about 210 kbp to be subject to many rearrangements, including an inversion in S9 relative to NRC-1. However, the rest of the chromosome was conserved among NRC-1, S9, and an independent Halobacterium isolate, GRB, previously mapped by St. Jean et al. (A. St. Jean, B. A. Trieselmann, and R. L. Charlebois, Nucleic Acids Res. 22:1476-1483, 1994). This concurs with data from eubacteria suggesting strong selective forces maintaining gene order even in the face of rearrangement events occurring at a high frequency.
Collapse
Affiliation(s)
- N R Hackett
- Department of Microbiology, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
11
|
A small family of elements with long inverted repeats is located near sites of developmentally regulated DNA rearrangement in Tetrahymena thermophila. Mol Cell Biol 1994. [PMID: 8065327 DOI: 10.1128/mcb.14.9.5939] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extensive DNA rearrangement occurs during the development of the somatic macronucleus from the germ line micronucleus in ciliated protozoans. The micronuclear junctions and the macronuclear product of a developmentally regulated DNA rearrangement in Tetrahymena thermophila, Tlr1, have been cloned. The intrachromosomal rearrangement joins sequences that are separated by more than 13 kb in the micronucleus with the elimination of moderately repeated micronucleus-specific DNA sequences. There is a long, 825-bp, inverted repeat near the micronuclear junctions. The inverted repeat contains two different 19-bp tandem repeats. The 19-bp repeats are associated with each other and with DNA rearrangements at seven locations in the micronuclear genome. Southern blot analysis is consistent with the occurrence of the 19-bp repeats within pairs of larger repeated sequences. Another family member was isolated. The 19-mers in that clone are also in close proximity to a rearrangement junction. We propose that the 19-mers define a small family of developmentally regulated DNA rearrangements having elements with long inverted repeats near the junction sites. We discuss the possibility that transposable elements evolve by capture of molecular machinery required for essential cellular functions.
Collapse
|
12
|
Wells JM, Ellingson JL, Catt DM, Berger PJ, Karrer KM. A small family of elements with long inverted repeats is located near sites of developmentally regulated DNA rearrangement in Tetrahymena thermophila. Mol Cell Biol 1994; 14:5939-49. [PMID: 8065327 PMCID: PMC359120 DOI: 10.1128/mcb.14.9.5939-5949.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Extensive DNA rearrangement occurs during the development of the somatic macronucleus from the germ line micronucleus in ciliated protozoans. The micronuclear junctions and the macronuclear product of a developmentally regulated DNA rearrangement in Tetrahymena thermophila, Tlr1, have been cloned. The intrachromosomal rearrangement joins sequences that are separated by more than 13 kb in the micronucleus with the elimination of moderately repeated micronucleus-specific DNA sequences. There is a long, 825-bp, inverted repeat near the micronuclear junctions. The inverted repeat contains two different 19-bp tandem repeats. The 19-bp repeats are associated with each other and with DNA rearrangements at seven locations in the micronuclear genome. Southern blot analysis is consistent with the occurrence of the 19-bp repeats within pairs of larger repeated sequences. Another family member was isolated. The 19-mers in that clone are also in close proximity to a rearrangement junction. We propose that the 19-mers define a small family of developmentally regulated DNA rearrangements having elements with long inverted repeats near the junction sites. We discuss the possibility that transposable elements evolve by capture of molecular machinery required for essential cellular functions.
Collapse
Affiliation(s)
- J M Wells
- Department of Biology, Brandeis University, Waltham, Massachusetts 02154
| | | | | | | | | |
Collapse
|
13
|
Hochstenbach R, Pötgens A, Meijer H, Dijkhof R, Knops M, Schouren K, Hennig W. Partial reconstruction of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. Chromosoma 1993; 102:526-45. [PMID: 8243165 DOI: 10.1007/bf00368346] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present the analysis of genomic DNA fragments that were isolated as potential segments of the lampbrush loop pair Nooses on the short arm of the Y chromosome of Drosophila hydei. More than 300 kb of DNA were recovered in BamHI lambda and cosmid clone groups. This DNA is composed of the Y-specific ay1 family of repetitive DNA sequences, and of other repetitive DNA sequences, which at least in part are also located elsewhere in the genome (Y-associated sequences). Two additional classes of DNA fragments were obtained from an EcoRI library. One of them consists of ay1 repeats without apparent interspersion, including a total of more than 300 kb of DNA. The other is composed of tandemly repeated YsI sequences, a Y-specific sequence derived from ay1. This class includes more than 400 kb of DNA, which is also not interspersed by other sequences. Our results show that only the ay1 repeats interspersed by Y-associated DNA sequences can represent parts of the 260 kb transcription unit forming the lampbrush loop, whereas the ay1 and YsI repeats without interspersion form separate and nontranscribed clusters of repetitive DNA.
Collapse
Affiliation(s)
- R Hochstenbach
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 1992; 20:1083-5. [PMID: 1549470 PMCID: PMC312094 DOI: 10.1093/nar/20.5.1083] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Instability of complex mammalian genomic DNA inserts is commonplace in cosmid libraries constructed in conventional multicopy vectors. To develop a means to construct stable libraries, we have developed a low copy number cosmid vector based on the E. coli F factor replicon (Fosmid). We have tested relative stability of human DNA inserts in Fosmids and in two conventional multicopy vectors (Lawrist 16 and Supercos) by comparing the frequency of changes in restriction patterns of the inserts after propagating randomly picked human genomic clones based on these vectors. We found that the clones based on Fosmid vector undergo detectable changes at a greatly reduced frequency. We also observed that sequences that undergo drastic rearrangements and deletions during propagation in a conventional vector were stably propagated when recloned as Fosmids. The results indicate that Fosmid system may be useful for constructing stable libraries from complex genomes.
Collapse
Affiliation(s)
- U J Kim
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
15
|
Shirsat NV, Bittenbender S, Kreider BL, Rovera G. Structure of the murine lactotransferrin gene is similar to the structure of other transferrin-encoding genes and shares a putative regulatory region with the murine myeloperoxidase gene. Gene X 1992; 110:229-33. [PMID: 1311279 DOI: 10.1016/0378-1119(92)90653-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The structure and nucleotide sequence of the murine lactotransferrin-encoding gene (LTF) deduced partly by direct sequencing of genomic clones in the lambda phage vector and partly by enzymatic amplification of genomic DNA segments primed with the oligodeoxyribonucleotide primers homologous to the cDNA sequence. The lambda phage clones contained the 5' half of the gene corresponding to the first eight exons and an incomplete ninth exon interrupted by eight introns. Genomic clones corresponding to the 3' half of the LTF gene could not be obtained on repeated attempts from two different mouse genomic libraries, suggesting the possible presence of unclonable sequences in this part of the gene. Hence, PCR was used to clone the rest of the gene. Four out of the presumed eight remaining introns were cloned along with the flanking exons using PCR. Comparison of the structure of the LTF gene with those of the two other known transferrin-encoding genes, human serum transferrin-encoding gene and chicken ovotransferrin-encoding gene reveals that all three genes have a very similar intron-exon distribution pattern. The hypothesis that the present-day transferrin-encoding genes have originated from duplication of a common ancestral gene is confirmed here at the gene level. An interesting finding is the identification of a region of shared nucleotides between the 5' flanking regions of the murine LTF and myeloperoxidase-encoding genes, the two genes expressed specifically in neutrophilic granulocytes.
Collapse
Affiliation(s)
- N V Shirsat
- Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
16
|
Coulson A, Kozono Y, Lutterbach B, Shownkeen R, Sulston J, Waterston R. YACs and the C. elegans genome. Bioessays 1991; 13:413-7. [PMID: 1953703 DOI: 10.1002/bies.950130809] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the past decade, it has become apparent that it is within our grasp to understand fully the development and functioning of complex organisms. It is widely accepted that this undertaking must include the elucidation of the genetic blueprint - the genome sequence - of a number of model organisms. As a prelude to the determination of these sequences, clone-based physical maps of the genomes of a number of multicellular animals and plants are being constructed. Yeast artificial chromosome (YAC) vectors, by virtue of their relatively unbiased cloning capabilities and capacity to carry large inserts, have come to play a central role in the construction of these maps. The application of YACs to the physical map of the Caenorhabditis elegans genome has enabled cosmid clone 'islands' to be linked together in an efficient manner. The long-range continuity has improved the linkage between the genetic and physical maps, greatly increasing its utility. Since the genome can be represented by a relatively small number of YACs, it has been possible to make replica filters of genomically ordered YACs available to the community at large.
Collapse
Affiliation(s)
- A Coulson
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
17
|
Eisenberg SP, Brewer MT, Verderber E, Heimdal P, Brandhuber BJ, Thompson RC. Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism. Proc Natl Acad Sci U S A 1991; 88:5232-6. [PMID: 1828896 PMCID: PMC51846 DOI: 10.1073/pnas.88.12.5232] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities.
Collapse
|
18
|
Dame JB, Yowell CA, Courtney CH, Lindgren WG. Cloning and characterization of the ribosomal RNA gene repeat from Ostertagia ostertagi. Mol Biochem Parasitol 1991; 45:275-80. [PMID: 1674820 DOI: 10.1016/0166-6851(91)90095-n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clones of the rRNA genes of Ostertagia ostertagi were selected from a library prepared from the genomic DNA of adult worms of strain LA-2. A 13.4-kb insert in a clone, lambda OOR78, is comprised of one complete 7.5-kb rDNA unit and portions of two adjacent units. The rDNA unit is directly repeated in a head-to-tail fashion and represents approximately 0.9% of the total genomic DNA. This repeating unit appears to be the only long tandemly repeated sequence in the genome. Restriction enzyme recognition sites in the rDNAs of four strains of O. ostertagi were fully conserved with the exception of one PstI site present in the large rRNA gene which was absent from a proportion of the genes of the LA-2 strain. The rDNA of O. ostertagi is more similar to that of Caenorhabditis elegans in unit length and arrangement than to parasitic helminths previously examined.
Collapse
Affiliation(s)
- J B Dame
- Department of Infectious Diseases, University of Florida, Gainesville 32611-0633
| | | | | | | |
Collapse
|
19
|
Yokobata K, Trenchak B, de Jong PJ. Rescue of unstable cosmids by in vitro packaging. Nucleic Acids Res 1991; 19:403-4. [PMID: 2014178 PMCID: PMC333614 DOI: 10.1093/nar/19.2.403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- K Yokobata
- Human Genome Center, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | | |
Collapse
|
20
|
Hermans J, Westhoff P. Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Flaveria trinervia (C4) and F. pringlei (C3). MOLECULAR & GENERAL GENETICS : MGG 1990; 224:459-68. [PMID: 2266948 DOI: 10.1007/bf00262441] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPCase) was shown to be encoded by a multigene family in various Flaveria species analysed. Several clones were isolated from genomic libraries of F. pringlei (C3 species) and F. trinervia (C4 species) and classified into four distinct groups according to their hybridization behaviour to a full-length cDNA clone encoding the PEPCase C4 isozyme of F. trinervia. A detailed cross-hybridization analysis demonstrated that the closest relative of most of the PEPCase genes isolated from F. trinervia and F. pringlei was not found in the same but in the other species. Northern analysis, using stringent conditions, allowed discrimination of class-specific PEPCase transcripts and revealed characteristic organ-specific expression patterns.
Collapse
Affiliation(s)
- J Hermans
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
21
|
Abstract
Genome instability has been associated with progression of transformed cells to high tumorigenicity. Although genome instability may result from a variety of factors, some studies suggest that DNA in the region of a chromosome rearrangement can subsequently have much higher rates of DNA deletions or gene amplification. One approach to studying the factors that produce these high rates of DNA rearrangement is by analysis of unstable integration sites for DNA transfected into mammalian cells. Integrated sequences commonly show a temporary instability, and at rare locations this instability is continuous and can be observed even after multiple subclonings. These continuously unstable locations undergo DNA amplification of both the integrated sequences and the surrounding cell DNA, and it can occur either at the original site or on episomes after looping out from the chromosome. Because the adjacent cell DNA plays a role in this instability, and the region can be shown to be stable before integration, the results indicate that these recombinational hotspots can be formed de novo by the process of integration. Current studies are attempting to determine which sequences are responsible for the high rates of recombination and whether similar types of event are involved in the instability associated with endogenous cellular genes in cancer cells.
Collapse
Affiliation(s)
- J P Murnane
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750
| |
Collapse
|
22
|
Valgeirsdóttir K, Traverse KL, Pardue ML. HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. Proc Natl Acad Sci U S A 1990; 87:7998-8002. [PMID: 2122452 PMCID: PMC54879 DOI: 10.1073/pnas.87.20.7998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HeT DNA is a complex family of repeated DNA found only in pericentric and telomeric heterochromatin. In contrast to other DNA families that have been specifically associated with heterochromatin, HeT DNA is not principally a family of tandemly repeated elements. Much of the HeT DNA family appears to be a mosaic of several different classes of large sequence elements arranged in a scrambled array; however, some elements of the family can be found in tandem repeats. In spite of the variable order of the different elements in HeT DNA, the sequence homology between different members of each class of element is extremely high, suggesting that the members are evolving in a concerted fashion. Sequence analysis suggests that some elements in the HeT family may make up a novel family of heterochromatin-specific transposable elements and that the mosaic organization of the elements may be produced by retroposition and other mechanisms involved in the transposition of mobile elements. We suggest that such mechanisms may be a general feature for the maintenance of chromosome structure.
Collapse
Affiliation(s)
- K Valgeirsdóttir
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
23
|
Yamada K, Akasaka K, Shimada H. Structure of sea-urchin arylsulfatase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:405-10. [PMID: 2598936 DOI: 10.1111/j.1432-1033.1989.tb15223.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gene encoding arylsulfatase (Ars; EC 3.1.6.1) as well as two Ars pseudogenes were isolated from sea urchin genomic libraries. The Ars gene was 20-kbp long and contained six exons interrupted by five introns. Four polypyrimidine repetitive sequences were dispersed in its upstream-flanking region. Comparison of the amino acid sequence of sea-urchin arylsulfatase with those of human sterol sulfatase, human arylsulfatase A and bacterial arylsulfatase revealed that they have two similar sequences in common. The position of the transcription-start site of the Ars gene was determined to be approximately 40-bp upstream from the 5' end of the protein-coding region, and the nucleotide sequence of the 5'-flanking region was determined up to 3.3 kbp upstream from the transcription start point. Putative TATAA box and CCAAT consensus sequences were located at positions -28 and -82, respectively. A highly conserved hexamer motif, CTCTTT, localized near the transcription-start site of the sea-urchin Ars gene, was also detected in similar regions of other sea urchin genes such as CyIIIa, Spec 1, Spec 2a, Spec 2c, Spec 2d, and SM50, but not in the histone genes.
Collapse
Affiliation(s)
- K Yamada
- Zoological Institute, Faculty of Science, Hiroshima University, Japan
| | | | | |
Collapse
|
24
|
Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 1989; 17:3469-78. [PMID: 2657660 PMCID: PMC317789 DOI: 10.1093/nar/17.9.3469] [Citation(s) in RCA: 640] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many strains of E. coli K12 restrict DNA containing cytosine methylation such as that present in plant and animal genomes. Such restriction can severely inhibit the efficiency of cloning genomic DNAs. We have quantitatively evaluated a total of 39 E. coli strains for their tolerance to cytosine methylation in phage and plasmid cloning systems. Quantitative estimations of relative tolerance to methylation for these strains are presented, together with the evaluation of the most promising strains in practical recombinant cloning situations. Host strains are recommended for different recombinant cloning requirements. These data also provide a rational basis for future construction of 'ideal' hosts combining optimal methylation tolerance with additional advantageous mutations.
Collapse
Affiliation(s)
- D M Woodcock
- Molecular Science Group, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|