1
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
2
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
3
|
R-Loop Formation In Trans at an AGGAG Repeat. J Nucleic Acids 2013; 2013:629218. [PMID: 24066229 PMCID: PMC3770058 DOI: 10.1155/2013/629218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/02/2022] Open
Abstract
Formation of RNA-DNA hybrid, or R-loop, was studied in vitro by transcribing an AGGAG repeat with T7 RNA polymerase. When ribonuclease T1 was present, R-loop formation in cis was diminished, indicating that the transcript was separated from the template and reassociated with it. The transcript was found to form an R-loop in trans with DNA comprising the AGGAG repeat, when the DNA was supercoiled. Results of chemical modification indicated that the duplex opened at the AGGAG repeat under negative supercoiling.
Collapse
|
4
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
SATB1-mediated functional packaging of chromatin into loops. Methods 2012; 58:243-54. [PMID: 22782115 DOI: 10.1016/j.ymeth.2012.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/21/2012] [Accepted: 06/28/2012] [Indexed: 01/15/2023] Open
Abstract
Mammalian genomes are organized into multiple layers of higher-order chromatin structure, and in this organization chromatin looping is a striking and crucial feature that brings together distal genomic loci into close spatial proximity. Such three-dimensional organization of chromatin has been suggested to be functionally important in gene regulation. Many important questions need to be addressed, such as what types of nuclear proteins are responsible for folding chromatin into loops, whether there are any genomic marks that serve as the core sites of chromatin folding events, how distal genomic sites are brought together, and what are the biological consequences for interactions between distal genomic loci. In order to address these fundamental questions, it is essential to devise and employ methods that can capture higher-order structures formed by specific nuclear proteins at high resolution. In this article, in order to describe methods of analyzing protein-mediated chromatin interactions, we will use as an example a global genome-organizer protein, SATB1, which mediates chromatin looping.
Collapse
|
6
|
Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol 2012; 23:72-9. [PMID: 22771615 DOI: 10.1016/j.semcancer.2012.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 02/07/2023]
Abstract
When cells change functions or activities (such as during differentiation, response to extracellular stimuli, or migration), gene expression undergoes large-scale reprogramming, in cell type- and function-specific manners. Large changes in gene regulation require changes in chromatin architecture, which involve recruitment of chromatin remodeling enzymes and epigenomic modification enzymes to specific genomic loci. Transcription factors must also be accurately assembled at these loci. SATB1 is a genome organizer protein that facilitates these processes, providing a nuclear architectural platform that anchors hundreds of genes, through its interaction with specific genomic sequences; this activity allows expression of all these genes to be regulated in parallel, and enables cells to thereby alter their function. We review and describe future perspectives on SATB1 function in higher-order chromatin structure and gene regulation, and its role in metastasis of breast cancer and other tumor types.
Collapse
Affiliation(s)
- Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009; 48:54-62. [PMID: 19245837 PMCID: PMC2693251 DOI: 10.1016/j.ymeth.2009.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/15/2009] [Indexed: 11/16/2022] Open
Abstract
Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e., non-B) conformations. In this regard, at least 10 different forms of non-B DNA conformations have been identified; many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms by which instability occurs remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Junhua Zhao
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
8
|
Daujotyte D, Liutkeviciūte Z, Tamulaitis G, Klimasauskas S. Chemical mapping of cytosines enzymatically flipped out of the DNA helix. Nucleic Acids Res 2008; 36:e57. [PMID: 18450817 PMCID: PMC2425465 DOI: 10.1093/nar/gkn200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein-DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein-DNA complexes.
Collapse
Affiliation(s)
- Dalia Daujotyte
- Institute of Biotechnology, Graiciūno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
9
|
Tanaka K, Tainaka K, Umemoto T, Nomura A, Okamoto A. An osmium-DNA interstrand complex: application to facile DNA methylation analysis. J Am Chem Soc 2007; 129:14511-7. [PMID: 17963391 DOI: 10.1021/ja076140r] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acids often acquire new functions by forming a variety of complexes with metal ions. Osmium, in an oxidized state, also reacts with C5-methylated pyrimidines. However, control of the sequence specificity of osmium complexation with DNA is still immature, and the value of the resulting complexes is unknown. We have designed a bipyridine-attached adenine derivative for sequence-specific osmium complexation. Sequence-specific osmium complexation was achieved by hybridization of a short DNA molecule containing this functional nucleotide to a target DNA sequence and resulted in the formation of a cross-linked structure. The interstrand cross-link clearly distinguished methylated cytosines from unmethylated cytosines and was used to quantify the degree of methylation at a specific cytosine in the genome.
Collapse
Affiliation(s)
- Kazuo Tanaka
- Frontier Research System, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-1098, Japan
| | | | | | | | | |
Collapse
|
10
|
Flechsig GU, Reske T. Electrochemical detection of DNA hybridization by means of osmium tetroxide complexes and protective oligonucleotides. Anal Chem 2007; 79:2125-30. [PMID: 17326604 DOI: 10.1021/ac062075c] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have utilized protective oligonucleotides to modify DNA fragments with osmium tetroxide complexes without compromising their ability to hybridize with immobilized thiol-linked probe-SAMs on gold electrodes. Due to reversible voltammetric signals of Os(VI/IV), this method allowed sensitive electrochemical hybridization detection of short (25 bases) and long (120 bases) thymine-containing DNA targets. The detection limit was 3.2 nM for the long target. We found an optimum 40 degrees C hybridization temperature for the short target. No interference by noncomplementary DNA was observed. At least 10 repetitive hybridization experiments at the same probe-SAM were possible with thermal denaturation in between. Such use of protective strands could be useful also for other types of DNA recognition and even for other DNA-modifying agents. Moreover, it is possible to produce electrochemically active oligonucleotides (targets and reporter probes) in ones own laboratory in a simple way.
Collapse
Affiliation(s)
- Gerd-Uwe Flechsig
- Department of Chemistry, University of Rostock, Dr.-Lorenz-Weg 1, D-18059 Rostock, Germany.
| | | |
Collapse
|
11
|
Tanaka K, Tainaka K, Kamei T, Okamoto A. Direct labeling of 5-methylcytosine and its applications. J Am Chem Soc 2007; 129:5612-20. [PMID: 17408269 DOI: 10.1021/ja068660c] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytosine methylation is one of the most important epigenetic events, and much effort has been directed to develop a simple reaction for methylcytosine detection. In this paper, we describe the design of tag-attachable ligands for direct methylcytosine labeling and their application to fluorescent and electrochemical assays. The effect of the location of bipyridine substituents on the efficiency of osmium complexation at methylcytosine was initially investigated. As a result, a bipyridine derivative with a substituent at the C4 position showed efficient complexation at the methylcytosine residue of single-stranded DNA in a reaction mixture containing potassium osmate and potassium hexacyanoferrate(III). On the basis of this result, a bipyridine derivative with a tag-attachable amino linker at the C4 position was synthesized. The efficiency of metal complex formation in the presence of the osmate and the synthetic ligand was clearly changed by the presence/absence of a methyl group at the C5 position of cytosine. The succinimidyl esters of functional labeling units were then attached to the bipyridine ligand fixed on the methylcytosine. These labels attached to methylcytosine enabled us to detect the target methylcytosine in DNA both fluorometrically and electrochemically. For example, we were able to fluorometrically obtain information on the methylation status at a specific site by means of fluorescence resonance energy transfer from a hybridized fluorescent DNA probe to a fluorescent label on methylcytosine. In addition, by the combination of electrochemically labeled methylcytosine and an electrode modified by probe DNAs, a methylcytosine-selective characteristic current signal was observed. This direct labeling of methylcytosine is a conceptually new methylation detection assay with many merits different from conventional assays.
Collapse
Affiliation(s)
- Kazuo Tanaka
- Frontier Research System, RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
12
|
Fojta M, Kostecka P, Trefulka M, Havran L, Palecek E. “Multicolor” Electrochemical Labeling of DNA Hybridization Probes with Osmium Tetroxide Complexes. Anal Chem 2007; 79:1022-9. [PMID: 17263330 DOI: 10.1021/ac0616299] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Labeling of oligonucleotide reporter probes (RP) with electroactive markers has frequently been utilized in electrochemical detection of DNA hybridization. Osmium tetroxide complexes with tertiary amines (Os,L) bind covalently to pyrimidine (predominantly thymine) bases in DNA, forming stable, electrochemically active adducts. We propose a technique of electrochemical "multicolor" DNA coding based on RP labeling with Os,L markers involving different nitrogenous ligands (such as 2,2' -bipyridine, 1,10-phenanthroline derivatives or N,N,N',N'-tetramethylethylenediamine). At carbon electrodes the Os,L-labeled RPs produce specific signals, with the potentials of these differing depending on the ligand type. When using Os,L markers providing sufficiently large differences in their peak potentials, parallel analysis of multiple target DNA sequences can easily be performed via DNA hybridization at magnetic beads followed by voltammetric detection at carbon electrodes. Os,L labeling of oligonucleotide probes comprising a segment complementary to target DNA and an oligo(T) tail (to be modified with the osmium complex) does not require any organic chemistry facilities and can be achieved in any molecular biological laboratory. We also for the first time show that this technology can be used for labeling of oligonucleotide probes hybridizing with target DNAs that contain both purine and pyrimidine bases.
Collapse
Affiliation(s)
- Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Fojta M, Havran L, Vojtiskova M, Palecek E. Electrochemical detection of DNA triplet repeat expansion. J Am Chem Soc 2004; 126:6532-3. [PMID: 15161263 DOI: 10.1021/ja048781h] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hereditary neurodegenerative diseases are connected with the expansion of trinucleotide repetitive sequences in genomic DNA. Molecular diagnosis of these diseases is based on the determination of the triplet repeat length. Currently used methods involve PCR amplification followed by electrophoretic determination of the amplicon size. We propose a novel electrochemical technique based on hybridization of target DNA (tDNA) immobilized at magnetic beads with a reporter probe (RP) complementary to the triplet repeats (12 units per RP). The biotin-labeled RP is detected via an enzyme-linked electrochemical assay involving binding of streptavidin-alkaline phosphatase conjugate and transformation of electroinactive 1-naphthyl phosphate to electroactive 1-naphthol. Pyrimidine residues within sequences flanking the homopurine (GAA)n repeat in tDNA are premodified with osmium tetroxide, 2,2'-bipyridine (Os,bipy), introducing electroactive labels in tDNA. The length of the triplet expansion is calculated from the ratio of the intensities of electrochemical signals of hybridized RP/tDNA-Os,bipy. The normalized signal increases linearly with the repeat length between 0 and about 200 triplet units, allowing for discrimination between normal, premutated, and mutated alleles. Application of this method for the detection of the asymptomatic heterozygous carrier of expanded alleles is demonstrated.
Collapse
Affiliation(s)
- Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Dere R, Napierala M, Ranum LPW, Wells RD. Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. J Biol Chem 2004; 279:41715-26. [PMID: 15292165 DOI: 10.1074/jbc.m406415200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic instabilities of (CCTG.CAGG)(n) tetranucleotide repeats were investigated to evaluate the molecular mechanisms responsible for the massive expansions found in myotonic dystrophy type 2 (DM2) patients. DM2 is caused by an expansion of the repeat from the normal allele of 26 to as many as 11,000 repeats. Genetic expansions and deletions were monitored in an African green monkey kidney cell culture system (COS-7 cells) as a function of the length (30, 114, or 200 repeats), orientation, or proximity of the repeat tracts to the origin (SV40) of replication. As found for CTG.CAG repeats related to DM1, the instabilities were greater for the longer tetranucleotide repeat tracts. Also, the expansions and deletions predominated when cloned in orientation II (CAGG on the leading strand template) rather than I and when cloned proximal rather than distal to the replication origin. Biochemical studies on synthetic d(CAGG)(26) and d(CCTG)(26) as models of unpaired regions of the replication fork revealed that d(CAGG)(26) has a marked propensity to adopt a defined base paired hairpin structure, whereas the complementary d(CCTG)(26) lacks this capacity. The effect of orientation described above differs from all previous results with three triplet repeat sequences (including CTG.CAG), which are also involved in the etiologies of other hereditary neurological diseases. However, similar to the triplet repeat sequences, the ability of one of the two strands to form a more stable folded structure, in our case the CAGG strand, explains this unorthodox "reversed" behavior.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
15
|
Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 2003; 34:42-51. [PMID: 12692553 DOI: 10.1038/ng1146] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 03/28/2003] [Indexed: 11/08/2022]
Abstract
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.
Collapse
Affiliation(s)
- Shutao Cai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road (84-171), University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
16
|
Becker NA, O'Neill HA, Zimmerman JM, Maher LJ. In vitro and in vivo ligation-mediated polymerase chain reaction analysis of a polypurine/polypyrimidine sequence upstream of the mouse metallothionein-I gene. J Biol Chem 2000; 275:40218-25. [PMID: 10986295 DOI: 10.1074/jbc.m909658199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse metallothionein-I homopurine/homopyrimidine (MT-I R/Y) sequence is a 128-base pair element located approximately 1.2 kilobase pairs upstream of the MT-I gene. Previous in vitro studies of this sequence in purified plasmids indicated the formation of a non-B DNA structure stabilized by acidic pH and negative supercoiling. We now present a detailed in vitro and in vivo analysis of the MT-I R/Y sequence using chemical probes of DNA structure and ligation-mediated polymerase chain reaction. In vivo analysis suggests neither profound base unpairing nor protein binding within the MT-I R/Y sequence before or after metal induction of MT-I. We conclude for this element that the propensity to adopt an unusual DNA structure in vitro does not imply the occurrence of such a structure in vivo. We were able to show both in purified genomic DNA and in vivo that only isolated thymines and the 3' terminal thymine in strings of consecutive thymines are modified significantly by KMnO(4), indicating an altered thymine accessibility pattern within the R/Y sequence. This KMnO(4) reactivity pattern is more consistent and predictable within the R/Y sequence when compared with flanking sequences. We propose a simple steric interference model to explain the observed pattern of KMnO(4) modification of thymines.
Collapse
Affiliation(s)
- N A Becker
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
17
|
Nakatani K, Hagihara S, Sando S, Miyazaki H, Tanabe K, Saito I. Site Selective Formation of Thymine Glycol-Containing Oligodeoxynucleotides by Oxidation with Osmium Tetroxide and Bipyridine-Tethered Oligonucleotide. J Am Chem Soc 2000. [DOI: 10.1021/ja0004478] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiko Nakatani
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| | - Shinya Hagihara
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| | - Shinsuke Sando
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| | - Hiroshi Miyazaki
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| | - Kazuhito Tanabe
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| | - Isao Saito
- Department of Synthetic Chemistry and Biological Chemistry Faculty of Engineering, Kyoto University CREST, Japan Science and Technology Corporation (JST) Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000. [PMID: 10716941 DOI: 10.1101/gad.14.5.521] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3(-)CD4(-)CD8(-) triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4(+) single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Ralpha and IL-7Ralpha genes were ectopically transcribed in CD4(+)CD8(+) double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.
Collapse
Affiliation(s)
- J D Alvarez
- Nippon Roche Research Center, Kamakura 247, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Zahedi K, Bissler JJ, Prada AE, Prada JA, Davis AE. The Promoter of the C1 Inhibitor Gene Contains a Polypurine·Polypyrimidine Segment that Enhances Transcriptional Activity. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The C1 inhibitor (C1INH) promoter is unusual in two respects: 1) It contains no TATA sequence, but instead contains a TdT-like initiator element (Inr) at nucleotides −3 to +5; 2) it contains a polypurine·polypyrimidine tract between nucleotides −17 and −45. Disruption of the Inr by the introduction of point mutations reduced promoter activity by 40%. A TATA element inserted at nucleotide −30 in the wild-type promoter and in promoter constructs containing the mutated Inr led to a 2-fold increase in basal promoter activity. Previous studies suggested that the potential hinged DNA-forming polypurine·polypyrimidine tract might be important in the regulation of C1INH promoter activity. The present studies indicate that this region is capable of such intramolecular triple helix formation. Disruption of the polypurine·polypyrimidine sequence by substitution of 5 of the 23 cytosine residues with adenine prevented triple helix formation. Site-directed mutagenesis experiments demonstrate that the regulation of promoter activity is independent of hinged DNA-forming capacity but requires an intact AC box (ACCCTNNNNNACCCT) or the overlapping PuF binding site (GGGTGGG). The C1INH gene also contains a number of potential regulatory elements, including an Sp-1 and an hepatocyte nuclear factor-1 binding site and a CAAT box. The role of these elements in regulation of the C1INH promoter was examined. Elimination of the hepatocyte nuclear factor-1 site at nucleotides −94 to −81 by truncation reduced the activity of the promoter by ∼50%. Similarly, site-directed mutations that disrupt this site reduce promoter activity by 70%.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology, Children’s Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - John J. Bissler
- Division of Nephrology, Children’s Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Anne E. Prada
- Division of Nephrology, Children’s Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge A. Prada
- Division of Nephrology, Children’s Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Alvin E. Davis
- Division of Nephrology, Children’s Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Children’s Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
20
|
Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y, Mandel-Gutfroind Y, Lee JR, Drescher B, Sas DE, Margalit H, Platzer M, Weiss A, Tsui LC, Rosenthal A, Kerem B. Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 1998; 95:8141-6. [PMID: 9653154 PMCID: PMC20943 DOI: 10.1073/pnas.95.14.8141] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement, hypothesized to provide targets for foreign DNA integration. We cloned a simian virus 40 integration site and showed by fluorescent in situ hybridization analysis that the integration event had occurred within a common aphidicolin-induced fragile site on human chromosome 7, FRA7H. A region of 161 kb spanning FRA7H was defined and sequenced. Several regions with a potential unusual DNA structure, including high-flexibility, low-stability, and non-B-DNA-forming sequences were identified in this region. We performed a similar analysis on the published FRA3B sequence and the putative partial FRA7G, which also revealed an impressive cluster of regions with high flexibility and low stability. Thus, these unusual DNA characteristics are possibly intrinsic properties of common fragile sites that may affect their replication and condensation as well as organization, and may lead to fragility.
Collapse
Affiliation(s)
- D Mishmar
- Department of Genetics, The Hebrew University, Jerusalem, Israel 91904, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de Belle I, Cai S, Kohwi-Shigematsu T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 1998; 141:335-48. [PMID: 9548713 PMCID: PMC2148460 DOI: 10.1083/jcb.141.2.335] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Revised: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1-1. 1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island-containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear "halos" with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type-specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell-specific gene regulation.
Collapse
Affiliation(s)
- I de Belle
- Ernest Orlando Lawrence Berkeley National Laboratory, Life Science Division, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
22
|
Cal S, Connolly BA. DNA distortion and base flipping by the EcoRV DNA methyltransferase. A study using interference at dA and T bases and modified deoxynucleosides. J Biol Chem 1997; 272:490-6. [PMID: 8995288 DOI: 10.1074/jbc.272.1.490] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The EcoRV DNA methyltransferase introduces a CH3 group at the 6-amino position of the first dA in the duplex sequence d(GATATC). It has previously been reported that the methylase contacts the four phosphates (pNpNpGpA) at, and preceding, the 5'-end of the recognition sequence as well as the single dG in this sequence (Szczelkun, M. D., Jones, H., and Connolly, B. A. (1995) Biochemistry 34, 10734-10743). To study the possible role of the dA and T bases within the ATAT sequence, interference studies have been carried out using diethylpyrocarbonate and osmium tetroxide. The methylase bound very strongly to hemimethylated oligonucleotides modified at the second AT, of the ATAT sequence, in the unmethylated strand of the duplex. This probably arises because these modifications facilitate DNA distortion that follows the binding of the nucleic acid to the protein. Oligonucleotides containing modified bases at both the target dA base and its complementary T were used to determine whether this dA methylase flips out its target base in a similar manner to that observed for dC DNA methylases. In binary EcoRV methylase-DNA complexes, analogues that weakened the base pair caused an increase in affinity between the protein and the nucleic acid. In contrast, in ternary EcoRV methylase-DNA-sinefungin (an analogue of the natural co-factor, S-adenosyl-L-methionine (AdoMet)) complexes, only small differences in affinity were observed between the normal dA-T base pair and the analogues. These results are almost identical to those seen with DNA dC methylases (Klimasauskas, S., and Roberts R. J. (1995) Nucleic Acid Res. 23, 1388-1395; Yang, S. A., Jiang-Cheng, S., Zingg, J. M., Mi, S., and Jones, P. A. (1995) Nucleic Acids Res. 23, 1380-1387) and support a base-flipping mechanism for DNA dA methylases.
Collapse
Affiliation(s)
- S Cal
- Department of Biochemistry and Genetics, The University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
23
|
Potaman VN, Ussery DW, Sinden RR. Formation of a combined H-DNA/open TATA box structure in the promoter sequence of the human Na,K-ATPase alpha2 gene. J Biol Chem 1996; 271:13441-7. [PMID: 8662935 DOI: 10.1074/jbc.271.23.13441] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Structural variation of DNA within the promoter of the human Na, K-ATPase alpha2 gene, which contains a 35-base pair (bp) homopyrimidine.homopurine (Py.Pu) tract adjacent to a TATA box has been studied. The Py.Pu tract contains a 26-bp quasi-mirror repeat sequence with a potential for intramolecular triplex formation. As analyzed by two-dimensional agarose gel electrophoresis, a plasmid containing 151 bp of the promoter sequence including the 35-bp Py.Pu tract undergoes structural transitions under moderately acidic pH. Chemical probing with chloroacetaldehyde, dimethyl sulfate, and potassium permanganate is consistent with the formation of triplex DNA within the Py.Pu tract at native superhelical density as isolated from Escherichia coli. Chemical probing was used to determine a supercoil dependence for the formation of this combined unwound structure. At the superhelical density sufficient to locally unwind DNA, an H-y3 isomer of intermolecular triplex likely forms. However, at higher superhelical tension an H-y5 structure forms in the Py.Pu tract, and with increasing supercoiling the local DNA unwinding extends into the abutting TATA box. The H-y5/open TATA box combination structure might be favorable at higher superhelical densities since it relaxes more supercoils. The possible involvement of the H-y5/open TATA box structure in transcription is discussed.
Collapse
Affiliation(s)
- V N Potaman
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
24
|
Bacolla A, Ulrich MJ, Larson JE, Ley TJ, Wells RD. An intramolecular triplex in the human gamma-globin 5'-flanking region is altered by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem 1995; 270:24556-63. [PMID: 7592674 DOI: 10.1074/jbc.270.41.24556] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The properties of an intramolecular triplex formed in vitro at the 5'-flanking region of the human gamma-globin genes were studied by chemical and physical probes. Chemical modifications performed with osmium tetroxide, chloroacetaldehyde, and diethyl pyrocarbonate revealed the presence of non-paired nucleotides on the "coding strand" at positions -209 through -217. These reactivities were induced by negative supercoiling, low pH, and magnesium ions. Downstream point mutations associated with hereditary persistence of fetal hemoglobin (HPFH) altered the extent of the modifications and some of the patterns. Specifically, C-202-->G and C-202-->T significantly decreased the reactivities, whereas the patterns were increased and altered in the T-198-->C. C-196-->T and C-195-->G caused local decreases in reactivity. Modifications at the upstream flanking duplex were modulated by the composition of the vector sequence. In summary, our data indicates the formation of an intramolecular triplex between nucleotides -209 to -217 of the "non-coding strand" and the downstream sequence containing the HPFH mutations. All of the HPFH point mutations altered the structure. More than one sequence alignment is possible for each of the triplexes. In addition, a consequence of some of the point mutations may be to facilitate slippage of the third strand relative to the Watson-Crick duplex.
Collapse
Affiliation(s)
- A Bacolla
- Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston 77030-3303, USA
| | | | | | | | | |
Collapse
|
25
|
Liang G, Gannett P, Gold B. The use of 2-hydroperoxytetrahydrofuran as a reagent to sequence cytosine and to probe non-Watson-Crick DNA structures. Nucleic Acids Res 1995; 23:713-9. [PMID: 7899093 PMCID: PMC306743 DOI: 10.1093/nar/23.4.713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
2-Hydroperoxytetrahydrofuran (THF-OOH) can be employed to sequence cytosine (C) and to probe for non-canonical DNA structures involving C. Using 32P-labeled oligomers and a DNA restriction fragment, it is demonstrated that THF-OOH has a strong preference for Cs in single-stranded (s-s) DNA regions, and in bulges, loops and mismatches. The reactivity of C is diminished below pH 6.0, but is not affected by substitution of 5-methylcytosine. To demonstrate the utility of the reagent, it is directly compared to methoxylamine and chloroacetaldehyde, two other reagents commonly used to chemically probe C residues in non-Watson-Crick DNA structures.
Collapse
Affiliation(s)
- G Liang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68198-6805
| | | | | |
Collapse
|
26
|
Huertas D, Lipps H, Azorin F. Characterization of the Structural Conformation Adopted by (TTAGGG)nTelomeric DNA Repeats of Different Length in Closed Circular DNA. J Biomol Struct Dyn 1994; 12:79-90. [DOI: 10.1080/07391102.1994.10508089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Kladde MP, Kohwi Y, Kohwi-Shigematsu T, Gorski J. The non-B-DNA structure of d(CA/TG)n differs from that of Z-DNA. Proc Natl Acad Sci U S A 1994; 91:1898-902. [PMID: 8127902 PMCID: PMC43271 DOI: 10.1073/pnas.91.5.1898] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chemical probing of two predominantly alternating purine-pyrimidine d(CA/TG)n repeats led us to propose previously that in supercoiled plasmids these elements adopt a non-B-DNA structure distinct from that of Z-DNA formed by d(CG)n sequences. Here, we present further evidence supporting this contention. Reactivity with the conformation-sensitive reagent chloroacetaldehyde, which reacts with unpaired adenines and cytosines, was confined strictly to adenines in the d(CA/TG)n repeat. In contrast, only bases outside the d(CG)n repeat exhibited chloroacetaldehyde reactivity. Two-dimensional gel analysis of topoisomers containing d(CA/TG)n tracts with bases out of strict purine-pyrimidine alteration revealed multiple superhelical-dependent transitions to an alternative left-handed structure. Within individual plasmid molecules, these multiple transitions resulted from the stepwise conversion of contiguous segments of alternating purine-pyrimidine sequence, which are delimited by bases out of alternation, to the full-length alternative conformation. When the left-handed helices increased in length to include more bases out of alternation, the average helical pitch changed substantially to produce a less tightly wound left-handed helix. Overall, these data indicate that d(CA/TG)n tracts adopt a left-handed conformation significantly different from that of the canonical Z-DNA structure of d(CG)n sequences.
Collapse
Affiliation(s)
- M P Kladde
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
28
|
Abstract
The homologous recombination between direct repeat sequences separated by either 200 or 1000 bp was induced by active transcription of the downstream gene when poly(dG)-poly(dC) sequences exist between the two direct repeats. This dG tract-mediated and transcription-induced recombination was RecA independent, and the frequency of recombination was dependent on both the length and the orientation of the poly(dG)-poly(dC) sequences relative to the gene. An intramolecular dG.dG.dC triplex formation was detected in Escherichia coli cells in a length-dependent manner when the transcription of the downstream gene was activated. We suggest that the negative superhelical strain generated by active transcription of the downstream gene induces poly(dG)-poly(dC) sequences to adopt a triple-helix structure in vivo and that this structure brings two remote sequences together to stimulate homologous recombination.
Collapse
Affiliation(s)
- Y Kohwi
- La Jolla Cancer Research Foundation, California 92037
| | | |
Collapse
|