• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598788)   Today's Articles (9735)   Subscriber (49356)
For: Meek TD, Rodriguez EJ, Angeles TS. Use of steady state kinetic methods to elucidate the kinetic and chemical mechanisms of retroviral proteases. Methods Enzymol 1994;241:127-56. [PMID: 7854175 DOI: 10.1016/0076-6879(94)41063-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Number Cited by Other Article(s)
1
Muttathukattil AN, Srinivasan S, Halder A, Reddy G. Role of Guanidinium-Carboxylate Ion Interaction in Enzyme Inhibition with Implications for Drug Design. J Phys Chem B 2019;123:9302-9311. [DOI: 10.1021/acs.jpcb.9b06130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
2
Transition states of native and drug-resistant HIV-1 protease are the same. Proc Natl Acad Sci U S A 2012;109:6543-8. [PMID: 22493227 DOI: 10.1073/pnas.1202808109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]  Open
3
Singh N, Frushicheva MP, Warshel A. Validating the vitality strategy for fighting drug resistance. Proteins 2012;80:1110-22. [PMID: 22275047 DOI: 10.1002/prot.24012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 11/08/2022]
4
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011;1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
5
Bora RP, Barman A, Zhu X, Ozbil M, Prabhakar R. Which One Among Aspartyl Protease, Metallopeptidase, and Artificial Metallopeptidase is the Most Efficient Catalyst in Peptide Hydrolysis? J Phys Chem B 2010;114:10860-75. [DOI: 10.1021/jp104294x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
6
Singh R, Barman A, Prabhakar R. Computational Insights into Aspartyl Protease Activity of Presenilin 1 (PS1) Generating Alzheimer Amyloid β-Peptides (Aβ40 and Aβ42). J Phys Chem B 2009;113:2990-9. [DOI: 10.1021/jp811154w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
7
Torbeev VY, Kent SBH. Convergent chemical synthesis and crystal structure of a 203 amino acid "covalent dimer" HIV-1 protease enzyme molecule. Angew Chem Int Ed Engl 2007;46:1667-70. [PMID: 17397076 DOI: 10.1002/anie.200604087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
8
Torbeev V, Kent S. Convergent Chemical Synthesis and Crystal Structure of a 203 Amino Acid “Covalent Dimer” HIV-1 Protease Enzyme Molecule. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Dunn BM. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 2002;102:4431-58. [PMID: 12475196 DOI: 10.1021/cr010167q] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 2002;10:369-81. [PMID: 12005435 DOI: 10.1016/s0969-2126(02)00720-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
11
Waxman L, Darke PL. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir Chem Chemother 2000;11:1-22. [PMID: 10693650 DOI: 10.1177/095632020001100101] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
12
Xie D, Suvorov L, Erickson JW, Gulnik AS. Real-time measurements of dark substrate catalysis. Protein Sci 1999;8:2460-4. [PMID: 10595550 PMCID: PMC2144198 DOI: 10.1110/ps.8.11.2460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
13
Short GF, Lodder M, Laikhter AL, Arslan T, Hecht SM. Caged HIV-1 Protease:  Dimerization Is Independent of the Ionization State of the Active Site Aspartates. J Am Chem Soc 1999. [DOI: 10.1021/ja9838054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Swairjo MA, Towler EM, Debouck C, Abdel-Meguid SS. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Biochemistry 1998;37:10928-36. [PMID: 9692985 DOI: 10.1021/bi980784h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
15
Ding YS, Owen SM, Lal RB, Ikeda RA. Efficient expression and rapid purification of human T-cell leukemia virus type 1 protease. J Virol 1998;72:3383-6. [PMID: 9525666 PMCID: PMC109825 DOI: 10.1128/jvi.72.4.3383-3386.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
16
Szeltner Z, Polgár L. Rate-determining steps in HIV-1 protease catalysis. The hydrolysis of the most specific substrate. J Biol Chem 1996;271:32180-4. [PMID: 8943273 DOI: 10.1074/jbc.271.50.32180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]  Open
17
Szeltner Z, Polgár L. Conformational stability and catalytic activity of HIV-1 protease are both enhanced at high salt concentration. J Biol Chem 1996;271:5458-63. [PMID: 8621402 DOI: 10.1074/jbc.271.10.5458] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA