1
|
Cao J, Qu M, Liu H, Wan X, Li F, Hou A, Zhou Y, Sun B, Cai L, Su W, Jiang C. Myristoylation of EV71 VP4 is Essential for Infectivity and Interaction with Membrane Structure. Virol Sin 2020; 35:599-613. [PMID: 32399947 DOI: 10.1007/s12250-020-00226-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
The Enterovirus 71 (EV71) VP4 is co-translationally linked to myristic acid at its amino-terminal glycine residue. However, the role of this myristoylation in the EV71 life cycle remains largely unknown. To investigate this issue, we developed a myristoylation-deficient virus and reporter (luciferase) pseudovirus with a Gly-to-Ala mutation (G2A) on EV71 VP4. When transfecting the EV71-G2A genome encoding plasmid in cells, the loss of myristoylation on VP4 did not affect the expression of viral proteins and the virus morphology, however, it did significantly influence viral infectivity. Further, in myristoylation-deficient reporter pseudovirus-infected cells, the luciferase activity and viral genome RNA decreased significantly as compared to that of wild type virus; however, cytopathic effect and viral capsid proteins were not detected in myristoylation-deficient virus-infected cells. Also, although myristoylation-deficient viral RNA and proteins were detected in the second blind passage of infection, they were much fewer in number compared to that of the wild type virus. The replication of genomic RNA and negative-strand viral RNA were both blocked in myristoylation-deficient viruses, suggesting that myristoylation affects viral genome RNA release from capsid to cytoplasm. Besides, loss of myristoylation on VP4 altered the distribution of VP4-green fluorescent protein protein, which disappeared from the membrane structure fraction. Finally, a liposome leakage assay showed that EV71 myristoylation mediates the permeability of the model membrane. Hence, the amino-terminal myristoylation of VP4 is pivotal to EV71 infection and capsid-membrane structure interaction. This study provides novel molecular mechanisms regarding EV71 infection and potential molecular targets for antiviral drug design.
Collapse
Affiliation(s)
- Jiaming Cao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hongtao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xuan Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
3
|
The VP4 peptide of hepatitis A virus ruptures membranes through formation of discrete pores. J Virol 2014; 88:12409-21. [PMID: 25122794 DOI: 10.1128/jvi.01896-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Membrane-active peptides, components of capsid structural proteins, assist viruses in overcoming the host membrane barrier in the initial stages of infection. Several such peptides have been identified, and their roles in membrane fusion or disruption have been characterized through biophysical studies. In several members of the Picornaviridae family, the role of the VP4 structural peptide in cellular-membrane penetration is well established. However, there is not much information on the membrane-penetrating capsid components of hepatitis A virus (HAV), an unusual member of this family. The VP4 peptide of HAV differs from its analogues in other picornaviruses in being significantly shorter in length and in lacking a signal for myristoylation, thought to be a critical requisite for VP4-mediated membrane penetration. Here we report, for the first time, that the atypical VP4 in HAV contains significant membrane-penetrating activity. Using a combination of biophysical assays and molecular dynamics simulation studies, we show that VP4 integrates into membrane vesicles through its N-terminal region to finally form discrete pores of 5- to 9-nm diameter, which induces leakage in the vesicles without altering their overall size or shape. We further demonstrate that the membrane activity of VP4 is specific toward vesicles mimicking the lipid content of late endosomes at acidic pH. Taken together, our data indicate that VP4 might be essential for the penetration of host endosomal membranes and release of the viral genome during HAV entry. IMPORTANCE Hepatitis A virus causes acute hepatitis in humans through the fecal-oral route and is particularly prevalent in underdeveloped regions with poor hygienic conditions. Although a vaccine for HAV exists, its high cost makes it unsuitable for universal application in developing countries. Studies on host-virus interaction for HAV have been hampered due to a lack of starting material, since the virus is extremely slow growing in culture. Among the unknown aspects of the HAV life cycle is its manner of host membrane penetration, which is one of the most important initial steps in viral infection. Here, we present data to suggest that a small peptide, VP4, a component of the HAV structural polyprotein, might be essential in helping the viral genome cross cell membranes during entry. It is hoped that this work might help in elucidating the manner of initial host cell interaction by HAV.
Collapse
|
4
|
Pasha MK, Dimmock JR, Hollenberg MD, Sharma RK. Enhanced activity of human N-myristoyltransferase by dimethyl sulfoxide and related solvents in the presence of serine/threonine-containing peptide substrates. Biochem Pharmacol 2002; 64:1461-7. [PMID: 12417259 DOI: 10.1016/s0006-2952(02)01412-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human N-myristoyltransferase (hNMT) activity was found to be stimulated several-fold by DMSO and its analogues in the presence of serine-containing peptide substrates. DMSO caused a concentration-dependent 10-fold stimulation of hNMT activity in the presence of a pp60(src)-derived peptide substrate (Gly-Ser-Ser-Lys-Ser-Lys-Pro-Lys-Arg). However, the stimulation of hNMT activity was not observed by DMSO when a cyclic AMP (cAMP)-dependent protein kinase-derived Ser-free peptide substrate (Gly-Asn-Ala-Ala-Ala-Ala-Lys-Lys-Arg-Arg) was used. These findings suggested that the effect of DMSO is on the substrate rather than on the enzyme. When a MARCKS (myristoylated alanine-rich C-kinase substrate)-derived peptide substrate (Gly-Ala-Gln-Phe-Ser-Lys-Thr-Ala-Arg-Arg) and the M2 gene segment of the reovirus type 3 peptide substrate (Gly-Asn-Ala-Ser-Ser-Ile-Lys-Lys-Lys) were used, hNMT activity was increased by approximately 8.5- and 7-fold, respectively. Dimethyl sulfone (20%) increased hNMT activity between 2.5- and 3.5-fold in the presence of pp60(src), MARCKS, and M2 gene segment peptides. Dimethyl formamide (20%) increased the hNMT activity by 8.5-, 8.5-, 5.5- and 3.5-fold when pp60(src), MARCKS, M2, and cAMP-dependent protein kinase-derived peptide substrates were used, respectively. Acetone (20%) also increased the hNMT activity by 20-fold in the presence of the pp60(src) peptide substrate. Dimethyl ammonium chloride (20%) caused about 6.5- and 2.5-fold increases in the hNMT activity in the presence of the pp60(src) and cAMP-dependent protein kinase-derived peptide substrates, respectively. Infrared spectroscopy showed a decreased intensity in the band at 3500-3600cm(-1) when the infrared spectrum of the pp60(src)-derived peptide was determined in the presence of DMSO. These results suggest the involvement of hydrogen bonding between the heteroatoms of the organic molecules and the hydrogen atoms of the free hydroxyl groups of the serine/threonine-containing peptide substrates. Such interactions appear to enhance the activity of hNMT towards its serine-containing substrates.
Collapse
Affiliation(s)
- Mohammed Khysar Pasha
- Health Research Division, Department of Pathology, College of Medicine, and Cancer Research Unit, Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | |
Collapse
|
5
|
Rajala RV, Dehm S, Bi X, Bonham K, Sharma RK. Expression of N-myristoyltransferase inhibitor protein and its relationship to c-Src levels in human colon cancer cell lines. Biochem Biophys Res Commun 2000; 273:1116-20. [PMID: 10891381 DOI: 10.1006/bbrc.2000.3066] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier, we have reported that N-myristoyltransferase (NMT) activity is higher in colonic epithelial neoplasms than in normal appearing colonic tissue and that increase in NMT activity appears at an early stage in colonic carcinogenesis [Magnuson, B., Raju, R. V. S., Moyana, T. N., and Sharma, R. K. (1995) J. Natl. Cancer Inst. 87, 1630-1635]. In this study, we demonstrate increased NMT mRNA in well-differentiated adenocarcinomas. NMT and c-Src mRNA levels were generally elevated in a subset of human colon cancer cell lines. Western blotting analysis employing N-myristoyltransferase inhibitory protein (NIP(71)) antibody demonstrated low levels of NIP(71) in high-expressing c-Src cell lines and high levels of NIP(71) in low-expressing c-Src cell lines. Interestingly, down regulation of c-Src by antisense expression in the HT-29 cell line resulted in increased expression of NIP(71), suggesting c-Src may negatively regulate NIP(71) expression. Furthermore, this is the first study demonstrating the expression of NIP(71) in human colon cancer cell lines and a possible relationship to colon carcinogenesis.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, S7N 4H4, Canada
| | | | | | | | | |
Collapse
|
6
|
Sikorski JA, Devadas B, Zupec ME, Freeman SK, Brown DL, Lu HF, Nagarajan S, Mehta PP, Wade AC, Kishore NS, Bryant ML, Getman DP, McWherter CA, Gordon JI. Selective peptidic and peptidomimetic inhibitors of Candida albicans myristoylCoA: protein N-myristoyltransferase: a new approach to antifungal therapy. Biopolymers 2000; 43:43-71. [PMID: 9174411 DOI: 10.1002/(sici)1097-0282(1997)43:1<43::aid-bip5>3.0.co;2-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MyristoylCoA: protein N-myristoyltransferase (NMT) catalyzes the cotranslational covalent attachment of a rare cellular fatty acid, myristate, to the N-terminal Gly residue of a variety of eukaryotic proteins. The myristoyl moiety is often essential for expression of the biological functions for these proteins. Attachment of C14:0 alone provides barely enough hydrophobicity to allow stable association with membranes. The partitioning of N-myrisotylproteins is therefore often modulated by "switches" that function through additional covalent or noncovalent modifications. Candida albicans, the principal cause of systemic fungal infection in immunocompromised humans, contains a single NMT gene that is essential for its viability. The functional properties of the acylCoA binding site of human and C. albicans NMT are very similar. However, there are distinct differences in their peptide binding sites. An ADP ribosylation factor (Arf) is included among the few cellular protein substrates of the fungal enzyme. Alanine scanning mutagenesis of an octapeptide derived from an N-terminal Arf sequence (GLYASKLS-NH2) disclosed that Gly1, Ser5, and Lys6 play predominant roles in binding. ALYASKLS-NH2 is an inhibitor competitive for peptide [Ki(app) = 15.3 +/- 6.4 microM] and noncompetitive for myristoylCoA. Remarkably, replacement of the N-terminal tetrapeptide with an 11-aminoundecanoyl group results in a competitive inhibitor (11-aminoundecanoyl-SKLS-NH2) that is approximately 40-fold more potent [Ki(app) = 0.40 +/- 0.03 microM] than the starting octapeptide. Removal of Leu-Ser from the C-terminus generates a competitive dipeptide inhibitor (11-aminoundecanoyl-SK-NH2) with a Ki(app) of 11.7 +/- 0.4 microM, equivalent to that of the starting octapeptide. A derivative dipeptide inhibitor containing a C-terminal N-cyclohexylethyl lysinamide moiety has the advantage of being more potent (IC50 = 0.11 +/- 0.03 microM) and resistant to digestion by cellular carboxypeptidases. Rigidifying the flexible aminoundecanoyl chain results in very potent general NMT inhibitors (IC50 = 40-50 nM). Substituting a 2-methylimidazole for the N-terminal amine and adding a benzylic alpha-methyl group with R stereochemistry to the rigidifying element produces even more potent inhibitors (IC50 = 20-50 nM) that are up to 500-fold selective for the fungal compared to human enzyme. A related less potent member of this series of compounds is fungistatic. Its growth inhibitory effects are associated with a reduction in cellular protein N-myristoylation, judged using cellular Arf as a reporter. These studies establish that NMT is a new antifungal target.
Collapse
Affiliation(s)
- J A Sikorski
- G.D. Searle Research and Development, Monsanto Company, St. Louis, Missouri 63198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Myristoylation refers to the co-translational addition of a myristoyl group to an amino-terminal glycine residue of a protein by an ubiquitously distributed enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97). This review describes the basic enzymology, molecular cloning and regulation of NMT activity in various pathophysiological processes such as colon cancer and diabetes.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology and Saskatoon Cancer Centre, College of Medicine, Royal University Hospital, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Raju RV, Datla RS, Sharma RK. Genomic organization of human myristoyl-CoA: protein N-myristoyltransferase-1. Biochem Biophys Res Commun 1999; 257:284-8. [PMID: 10198204 DOI: 10.1006/bbrc.1999.0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myristoylation is a biochemical modification of proteins in which the lipid myristate becomes covalently bound to various cellular, viral, and oncoproteins catalyzed by a monomeric enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT). This modification is important for the biological activity of several proteins, especially the regulation of several oncoproteins involved in various types of cancers. Complementary DNA encoding human NMT-1 (hNMT-1) has been previously reported; however, the genomic organization of hNMT-1 has not been available. Attempts to amplify genomic fragments corresponding to hNMT-1 cDNA sequence yielded only one fragment. We have searched databases using both the cDNA and sequence of one of the intron sequence and this identified a human BAC clone sequence from chromosome 17. Alignment of hNMT-1 cDNA coding information on human chromosome 17 resulted in the complete structural identity of 23,960 bp of the hNMT-1 gene. The hNMT-1 gene is composed of 11 exons and 10 introns with consensus GT/AG boundaries. Finally, we show that 140 bp from the 5' end of recently reported full-length cDNA of hNMT-1 was not part of this genomic region raising the possibility for posttranscriptional modification in generating larger transcripts likely by trans splicing. Further, the availability of this genomic sequence will assist in unraveling the molecular basis for several observed NMT isoforms.
Collapse
Affiliation(s)
- R V Raju
- Saskatoon Cancer Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4H4, Canada.
| | | | | |
Collapse
|
9
|
Zhao WD, Wimmer E, Lahser FC. Poliovirus/Hepatitis C virus (internal ribosomal entry site-core) chimeric viruses: improved growth properties through modification of a proteolytic cleavage site and requirement for core RNA sequences but not for core-related polypeptides. J Virol 1999; 73:1546-54. [PMID: 9882360 PMCID: PMC103979 DOI: 10.1128/jvi.73.2.1546-1554.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
H.-H. Lu and E. Wimmer (Proc. Natl. Acad. Sci. USA 93:1412-1417, 1996) have demonstrated that the internal ribosomal entry site (IRES) of poliovirus (PV) can be functionally replaced by the related genetic element from hepatitis C virus (HCV). One important finding of this study was that open reading frame sequences 3' of the initiating AUG, corresponding to the open reading frame of the HCV core polypeptide, are required to create a viable chimeric virus. This made necessary the inclusion of a PV 3C protease (3Cpro) cleavage site for proper polyprotein processing to create the authentic N terminus of the PV capsid precursor. Chimeric PV/HCV (P/H) viruses, however, grew poorly relative to PV. The goal of this study was to determine the molecular basis of impaired replication and enhance the growth properties of this chimeric virus. Genetic modifications leading to a different proteinase (PV 2Apro) cleavage site between the HCV core sequence and the PV polyprotein (P/H701-2A) proved far superior with respect to viral protein expression, core-PV fusion polyprotein processing, plaque phenotype, and viral titer than the original prototype PV/HCV chimera containing the PV 3Cpro-specific cleavage site (P/H701). We have used this new virus model to answer two questions concerning the role of the HCV core protein in P/H chimeric viral proliferation. First, a derivative of P/H701-2A with frameshifts in the core-encoding sequence was used to demonstrate that production of the core protein was not necessary for the translation and replication of the P/H chimera. Second, a viral construct with a C-terminal truncation of 23 amino acids of the core gene was used to show that a signal sequence for signal peptidase processing, when present in the viral construct, is detrimental to P/H virus growth. The novel P/H chimera described here are suitable models for analyzing the function(s) of the HCV elements by genetic analyses in vivo and for antiviral drug discovery.
Collapse
Affiliation(s)
- W D Zhao
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794-5222, USA
| | | | | |
Collapse
|
10
|
Raju RV, Datla RS, Kakkar R, Sharma RK. Recombinant bovine spleen myristoyl CoA: protein N-myristoyltransferase. Mol Cell Biochem 1998; 189:91-7. [PMID: 9879658 DOI: 10.1023/a:1006861417562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the co-translational transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. Recently, we have isolated full length cDNA encoding bovine spleen NMT [27] the full length cDNA was cloned and expressed in E. coli, resulting in the expression of functionally active 50 kDa NMT. Using the combination of SP-Sepharose fast flow and Mono S fast protein liquid chromatography, the enzyme was purified 20-fold with a high yield. The spleen NMT (sNMT) fusion protein exhibited an apparent molecular weight of 53 kDa on SDS-PAGE. Upon cleavage by the Enterokinase the sNMT exhibited an apparent molecular weight of 50 kDa without loss of catalytic activity. The two synthetic peptide substrates based on the N-terminal sequence of pp60src (GSSKSKMR) and cAMP dependent protein kinase (GNAAAKKRR) have different kinetic parameters of Km values of 40 and 200 microM. Recombinant sNMT was also potently inhibited by Ni2+ (histidine binder) in a concentration dependent manner with a half maximal inhibition of 280 microM. The E. coli expressed sNMT was homogenous and showed enzyme activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology and Saskatoon Cancer Centre, College of Medicine, University of Saskatchewan, Canada
| | | | | | | |
Collapse
|
11
|
Raju RV, Anderson JW, Datla RS, Sharma RK. Molecular cloning and biochemical characterization of bovine spleen myristoyl CoA:protein N-myristoyltransferase. Arch Biochem Biophys 1997; 348:134-42. [PMID: 9390183 DOI: 10.1006/abbi.1997.0333] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. We have isolated full-length cDNA encoding bovine spleen NMT (sNMT). The single long open reading frame of 1248 bp of sNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The protein coding sequence was expressed in Escherichia coli resulting in the production of functionally active 50-kDa NMT. Deletion mutagenesis showed that the C-terminus is essential for activity whereas up to 52 amino acids can be deleted from the N-terminus without affecting the function. One of the N-terminal deletions resulted in threefold higher NMT activity. Genomic Southern analysis indicated the presence of two strong hybridizing bands with three different restriction enzyme digests suggesting the possibility of two copies of the NMT gene in the bovine genome. RNA blot hybridization analysis of total cellular RNA prepared from bovine brain, heart, spleen, lung, liver, kidney, and skeletal muscle probed with bovine sNMT cDNA revealed a single 1.7-kb mRNA. Western blot analysis of various bovine tissues with human NMT peptide antibody indicated a common prominent immunoreactive band with an apparent molecular mass of 48.5-50 kDa in all tissues. Additional immunoreactive bands were observed in brain (84 and 50 kDa), lung (58 kDa), and skeletal muscle (58 kDa). Activity measurements demonstrated that brain contained the highest NMT activity followed by spleen, lung, kidney, heart, skeletal muscle, pancreas, and liver. It appears therefore that mRNA and protein expression do not correlate with NMT activity, suggesting the presence of regulators of the enzyme activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
12
|
Lodge JK, Jackson-Machelski E, Devadas B, Zupec ME, Getman DP, Kishore N, Freeman SK, McWherter CA, Sikorski JA, Gordon JI. N-myristoylation of Arf proteins in Candida albicans: an in vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):357-366. [PMID: 9043113 DOI: 10.1099/00221287-143-2-357] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myristoyl-CoA: protein N-myristoyltransferase (Nmt) catalyses the covalent attachment of myristate to the N-terminal glycine of a small subset of cellular proteins produced during vegetative growth of Candida albicans. nmt447D is a mutant NMT allele encoding an enzyme with a Gly447-->ASP substitution and reduced affinity for myristoyl-CoA. Among isogenic NMT/NMT, NMT/ delta nmt and nmt delta/nmt447D strains, only nmt delta/nmt447D cells require myristate for growth on yeast/peptone/dextrose media (YPD) at 24 or 37 degrees C. When switched from YPD/myristate to YPD alone, 60% of the organisms die with 4 h. Antibodies raised against the C-terminal eight residues of Saccharomyces cerevisiae Arf1p were used to probe Western blots of total cellular proteins prepared from these isogenic Candida strains. N-Myristoylation of C. albicans ADP-ribosylation factor (Arf) produced a change in its electrophoretic mobility during SDS-PAGE: the myristoylated species migrated more rapidly than the nonmyristoylated species. In an NMT/nmt delta strain, 100% of the Arf is N-myristoylated based on this mobility shift assay. When exponentially growing nmt delta/nmt447D cells were incubated at 24 degrees C in YPD/myristate, < 25% cellular Arf was nonmyristoylated. In contrast, 2 or 4 h after withdrawal of myristate, > or = 50% of total cellular Arf was nonmyristoylated. This finding suggests that > or = 50% reduction in Arf N-myristoylation is a biochemical marker of a growth-arrested cell. A similar conclusion was made after assaying isogenic S. cerevisiae strains containing various combinations of NMT1, nmt1-451D, ARF1, arf1 delta, ARF2 and arf2 delta alleles and grown at 24-37 degrees C on YPD of YPD/myristate. Peptidomimetic inhibitors of C. albicans Nmt were synthesized based on the N-terminal sequence of an S. cerevisiae Aft. SC-59383 has an IC50 of 1.45 +/- 0.08 microM for purified C. albicans Nmt and is 560-fold selective for the fungal compared to human N-myristoyltransferase. It had an EC50 of 51 +/- 17 and 67 +/- 6 microM, 24 and 48 h after a single administration of the drug to cultures of C. albicans. The Arf gel mobility shift assay indicated that a single dose of 200 microM produced a < 50% reduction in Arf N-myristoylation after 4 h, which is consistent with the fungistatic, but not fungicidal, activity. The effect on Nmt was specific: an enantiomer, SC-59840, had no inhibitory effect on purified C. albicans Nmt (IC50 > 1,000 microM), and 200 microM of the compound produced no detectable reduction in Arf N-myristoylation in vivo. SC-58272, which is related to SC-59383, was a more potent inhibitor in vitro (IC50 0.056 +/- 0.01 microM), but had no growth inhibitory activity and did not produce any detectable reduction in Arf N-myristoylation. These findings highlight the utility of the Arf protein gel mobility shift assay for demonstrating the mechanism-based antifungal activity of SC-59383, a selective inhibitor of C. albicans Nmt.
Collapse
Affiliation(s)
- Jennifer K Lodge
- Department of Molecular Biology and Pharmacology Washington University School of Medicine Box 8103, St Louis, MO 63110 USA
| | - Emily Jackson-Machelski
- Department of Molecular Biology and Pharmacology Washington University School of Medicine Box 8103, St Louis, MO 63110 USA
| | - Balekudru Devadas
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Mark E Zupec
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Daniel P Getman
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Nandini Kishore
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Sandra K Freeman
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Charles A McWherter
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - James A Sikorski
- Department of Medicinal and Structural ChemistryG. D. Searle & Co., 700 Chesterfield Parkway, St Louis, MO 63198USA
| | - Jeffrey I Gordon
- Department of Molecular Biology and Pharmacology Washington University School of Medicine Box 8103, St Louis, MO 63110 USA
| |
Collapse
|