1
|
Sinha S, Eisenhaber B, Jensen LJ, Kalbuaji B, Eisenhaber F. Darkness in the Human Gene and Protein Function Space: Widely Modest or Absent Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 2000. Proteomics 2018; 18:e1800093. [PMID: 30265449 PMCID: PMC6282819 DOI: 10.1002/pmic.201800093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The mentioning of gene names in the body of the scientific literature 1901-2017 and their fractional counting is used as a proxy to assess the level of biological function discovery. A literature score of one has been defined as full publication equivalent (FPE), the amount of literature necessary to achieve one publication solely dedicated to a gene. It has been found that less than 5000 human genes have each at least 100 FPEs in the available literature corpus. This group of elite genes (4817 protein-coding genes, 119 non-coding RNAs) attracts the overwhelming majority of the scientific literature about genes. Yet, thousands of proteins have never been mentioned at all, ≈2000 further proteins have not even one FPE of literature and, for ≈4600 additional proteins, the FPE count is below 10. The protein function discovery rate measured as numbers of proteins first mentioned or crossing a threshold of accumulated FPEs in a given year has grown until 2000 but is in decline thereafter. This drop is partially offset by function discoveries for non-coding RNAs. The full human genome sequencing does not boost the function discovery rate. Since 2000, the fastest growing group in the literature is that with at least 500 FPEs per gene.
Collapse
Affiliation(s)
- Swati Sinha
- Bioinformatics Institute (BII)Agency for Science and Technology (A*STAR)Matrix138671Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII)Agency for Science and Technology (A*STAR)Matrix138671Singapore
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenDK-2200 CopenhagenDenmark
| | - Bharata Kalbuaji
- Bioinformatics Institute (BII)Agency for Science and Technology (A*STAR)Matrix138671Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII)Agency for Science and Technology (A*STAR)Matrix138671Singapore
- School of Computer Science and Engineering (SCSE)Nanyang Technological University (NTU)637553Singapore
| |
Collapse
|
2
|
Eisenhaber B, Eisenhaber S, Kwang TY, Grüber G, Eisenhaber F. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle 2014; 13:1912-7. [PMID: 24743167 PMCID: PMC4111754 DOI: 10.4161/cc.28761] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore
| | - Stephan Eisenhaber
- Department of Physical Chemistry; University of Vienna; Wien/Vienna, Republic of Austria
| | - Toh Yew Kwang
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore; Nanyang Technological University; School of Biological Sciences; Singapore, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore; Department of Biological Sciences (DBS); National University of Singapore (NUS); Singapore, Republic of Singapore; School of Computer Engineering (SCE); Nanyang Technological University (NTU); Singapore, Republic of Singapore
| |
Collapse
|
3
|
|
4
|
Cao W, Maruyama JI, Kitamoto K, Sumikoshi K, Terada T, Nakamura S, Shimizu K. Using a new GPI-anchored-protein identification system to mine the protein databases of Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus oryzae. J GEN APPL MICROBIOL 2009; 55:381-93. [DOI: 10.2323/jgam.55.381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Zacks MA, Garg N. Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [review]. Mol Membr Biol 2006; 23:209-25. [PMID: 16785205 DOI: 10.1080/09687860600601494] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glycoconjugates are utilized by eukaryotic organisms ranging from yeast to humans for the cell surface expression of a wide variety of proteins and lipids. These glycoconjugates are expressed as enzymes or receptors and serve a diversity of functions, including cell signaling and cell survival. In parasitic protozoans, glycoconjugates play roles in infectivity, survival, virulence and immune evasion. Among the alternate glycoconjugate structures that have been identified, glycosylphosphatidylinositols (GPIs) represent a universal structure for the anchorage of proteins, lipids, and phosphosaccharides to cellular membranes. Biosynthesis of the GPI is a multi-step process that culminates in the attachment of the assembled GPI to a precursor protein. This final step in the transfer of the GPI to a protein is catalyzed by GPI8 of the putative transamidase complex (TAM). GPI8 functions dually to perform the proteolytic cleavage of the C-terminal signal sequence of the precursor protein, followed by the formation of an amide bond between the protein and the ethanolamine phosphate of the GPI. This review summarizes the current aggregate of biochemical, gene-disruption and active site mutagenesis studies, which provide evidence that GPI8 is responsible for the protein-GPI anchoring reaction. We describe recently published studies that have identified other potential components of the TAM complex and that have elucidated their likely role in protein-GPI attachment. Further, we discuss the biochemical, molecular and functional differences between protozoan and mammalian GPI8 and the protein-GPI anchoring machinery. Finally, we will present the implications of these studies for the development of anti-parasite drug therapies.
Collapse
Affiliation(s)
- Michele A Zacks
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | |
Collapse
|
6
|
Dalley JA, Bulleid NJ. The endoplasmic reticulum (ER) translocon can differentiate between hydrophobic sequences allowing signals for glycosylphosphatidylinositol anchor addition to be fully translocated into the ER lumen. J Biol Chem 2003; 278:51749-57. [PMID: 14530277 DOI: 10.1074/jbc.m303978200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal sequence within polypeptide chains that designates whether a protein is to be anchored to the membrane by a glycosylphosphatidylinositol (GPI) anchor is characterized by a carboxyl-terminal hydrophobic domain preceded by a short hydrophilic spacer linked to the GPI anchor attachment (omega) site. The hydrophobic domain within the GPI anchor signal sequence is very similar to a transmembrane domain within a stop transfer sequence. To investigate whether the GPI anchor signal sequence is translocated across or integrated into the endoplasmic reticulum membrane we studied the translocation, GPI anchor addition, and glycosylation of different variants of a model GPI-anchored protein. Our results unequivocally demonstrated that the hydrophobic domain within a GPI signal cannot act as a transmembrane domain and is fully translocated even when followed by an authentic charged cytosolic tail sequence. However, a single amino acid change within the hydrophobic domain of the GPI-signal converts it into a transmembrane domain that is fully integrated into the endoplasmic reticulum membrane. These results demonstrated that the translocation machinery can recognize and differentiate subtle changes in hydrophobic sequence allowing either full translocation or membrane integration.
Collapse
Affiliation(s)
- Jane A Dalley
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
7
|
Abstract
For characterizing how the glycosylphosphatidylinositol (GPI) transamidase complex functions, we exploited a two-step miniPLAP (placental alkaline phosphatase) in vitro translation system. With this system, rough microsomal membranes (RM) containing either [(35)S]-labeled Gaa1p or epitope-tagged Gpi8p, alternative components of the enzymatic complex, were first prepared. In a second translation, unmodified or mutant miniPLAP mRNA was used such that [(35)S]-labeled native or variant miniPLAP nascent protein was introduced. Following this, the RM were solubilized and anti-PLAP or anti-epitope immunoprecipitates were analyzed. With transamidase competent HeLa cell RM, anti-PLAP or anti-epitope antibody coprecipitated both Gaa1p and Gpi8p consistent with the assembly of the proprotein into a Gaa1p:Gpi8p-containing complex. When RM from K562 mutant K cells which lack Gpi8p were used, anti-PLAP antibody coprecipitated Gaa1p. The proprotein coprecipitation of Gaa1p increased with a nonpermissive GPI anchor addition (omega) site. In contrast, if a miniPLAP mutant devoid of its C-terminal signal was used, no coprecipitation occurred. During the transamidation reaction, a transient high Mr band forms. To definitively characterize this product, RM from K cells transfected with FLAG-tagged GPI8 were employed. Western blots of anti-FLAG bead isolates of solubilized RM from the cells showed that the high Mr band corresponded to Gpi8p covalently bound to miniPLAP. Loss of the band following hydrazinolysis demonstrated that the two components were associated in a thioester linkage. The data indicate that recognition of the proprotein involves Gaa1p, that the interaction with the complex does not depend on a permissive omega site, and that Gpi8p forms a thioester intermediate with the proprotein. The method could be useful for rapid analysis of nascent protein interactions with transamidase components, and possibly for helping to prepare a functional in vitro transamidase system.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
8
|
Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 2003; 25:367-85. [PMID: 12655644 DOI: 10.1002/bies.10254] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GPI lipid anchoring is an important post-translational modification of eukaryote proteins in the endoplasmic reticulum. In total, 19 genes have been directly implicated in the anchor synthesis and the substrate protein modification pathway. Here, the molecular functions of the respective proteins and their evolution are analyzed in the context of reported literature data and sequence analysis studies for the complete pathway (http://mendel.imp.univie.ac.at/SEQUENCES/gpi-biosynthesis/) and questions for future experimental investigation are discussed. Studies of two of these proteins have provided new mechanistic insights. The cytosolic part of PIG-A/GPI3 has a two-domain alpha/beta/alpha-layered structure; it is suggested that its C-terminal subsegment binds UDP-GlcNAc whereas the N-terminal domain interacts with the phosphatidylinositol moiety. The lumenal part of PIG-T/GPI16 apparently consists of a beta-propeller with a central hole that regulates the access of substrate protein C termini to the active site of the cysteine protease PIG-K/GPI8 (gating mechanism) as well as of a polypeptide hook that embraces PIG-K/GPI8. This structural proposal would explain the paradoxical properties of the GPI lipid anchor signal motif and of PIG-K/GPI8 orthologs without membrane insertion regions in some species.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic Austria
| | | | | | | | | |
Collapse
|
9
|
Vainauskas S, Maeda Y, Kurniawan H, Kinoshita T, Menon AK. Structural requirements for the recruitment of Gaa1 into a functional glycosylphosphatidylinositol transamidase complex. J Biol Chem 2002; 277:30535-42. [PMID: 12052837 DOI: 10.1074/jbc.m205402200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are synthesized on membrane-bound ribosomes, translocated across the endoplasmic reticulum membrane, and GPI-anchored by GPI transamidase (GPIT). GPIT is a minimally heterotetrameric membrane protein complex composed of Gaa1, Gpi8, PIG-S and PIG-T. We describe structure-function analyses of Gaa1, the most hydrophobic of the GPIT subunits, with the aim of assigning a functional role to the different sequence domains of the protein. We generated epitope-tagged Gaa1 mutants and analyzed their membrane topology, subcellular distribution, complex-forming capability, and ability to restore GPIT activity in Gaa1-deficient cells. We show that (i) detergent-extracted, Gaa1-containing GPIT complexes sediment unexpectedly rapidly at approximately 17 S, (ii) Gaa1 is an endoplasmic reticulum-localized membrane glycoprotein with a cytoplasmically oriented N terminus and a lumenally oriented C terminus, (iii) elimination of C-terminal transmembrane segments allows Gaa1 to interact with other GPIT subunits but renders the resulting GPIT complex nonfunctional, (iv) interaction between Gaa1 and other GPIT subunits occurs via the large lumenal domain of Gaa1 located between the first and second transmembrane segments, and (v) the cytoplasmic N terminus of Gaa1 is not required for formation of a functional GPIT complex but may act as a membrane-sorting determinant directing Gaa1 and associated GPIT subunits to an endoplasmic reticulum membrane domain.
Collapse
Affiliation(s)
- Saulius Vainauskas
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| | | | | | | | | |
Collapse
|
10
|
Chen R, Knez JJ, Merrick WC, Medof ME. Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proproteins in conferring GPI-anchoring. J Cell Biochem 2002; 84:68-83. [PMID: 11746517 DOI: 10.1002/jcb.1267] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Every protein fated to receive the glycophosphatidylinositol (GPI) anchor post-translational modification has a C-terminal GPI-anchor attachment signal sequence. This signal peptide varies with respect to length, content, and hydrophobicity. With the exception of predictions based on an upstream amino acid triplet termed omega-->omega + 2 which designates the site of GPI uptake, there is no information on how the efficiencies of different native signal sequences compare in the transamidation reaction that catalyzes the substitution of the GPI anchor for the C-terminal peptide. In this study we utilized the placental alkaline phosphatase (PLAP) minigene, miniPLAP, and replaced its native 3' end-sequence encoding omega-2 to the C-terminus with the corresponding C-terminal sequences of nine other human GPI-anchored proteins. The resulting chimeras then were fed into an in vitro processing microsomal system where the cleavages leading to mature product from the nascent preproprotein could be followed by resolution on an SDS-PAGE system after immunoprecipitation. The results showed that the native signal of each protein differed markedly with respect to transamidation efficiency, with the signals of three proteins out-performing the others in GPI-anchor addition and those of two proteins being poorer substrates for the GPI transamidase. The data additionally indicated that the hierarchical order of efficiency of transamidation did not depend solely on the combination of permissible residues at omega-->omega + 2.
Collapse
Affiliation(s)
- R Chen
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
11
|
Vidugiriene J, Vainauskas S, Johnson AE, Menon AK. Endoplasmic reticulum proteins involved in glycosylphosphatidylinositol-anchor attachment: photocrosslinking studies in a cell-free system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2290-300. [PMID: 11298746 DOI: 10.1046/j.1432-1327.2001.02106.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly of glycosylphosphatidylinositol (GPtdIns)-anchored proteins requires translocation of the nascent polypeptide chain across the endoplasmic reticulum (ER) membrane and replacement of the C-terminal signal sequence with a GPtdIns moiety. The anchoring reaction is carried out by an ER enzyme, GPtdIns transamidase. Genetic studies with yeast indicate that the transamidase consists of a dynamic complex of at least two subunits, Gaa1p and Gpi8p. To study the GPtdIns-anchoring reaction, we used a small reporter protein that becomes GPtdIns-anchored when the corresponding mRNA is translated in the presence of microsomes, in conjunction with site-specific photocrosslinking to identify ER membrane components that are proximal to the reporter during its conversion to a GPtdIns-anchored protein. We generated variants of the reporter protein such that upon in vitro translation in the presence of Nepsilon-(5-azido-2-nitrobenzoyl)-lysyl-tRNA, photoreactive lysine residues would be incorporated in the protein specifically near the GPtdIns-attachment site. We analyzed photoadducts resulting from UV irradiation of the samples. We show that proproteins can be crosslinked to the transamidase subunit Gpi8p, as well as to ER proteins of molecular mass approximately 60 kDa, approximately 70 kDa, and approximately 120 kDa. The identification of a photoadduct between a proprotein and Gpi8p provides the first direct evidence of an interaction between a proprotein substrate and one of the genetically identified transamidase subunits. The approximately 70-kDa protein that we identified may correspond to the other subunit Gaa1p, while the other proteins possibly represent additional, hitherto unidentified subunits of the mammalian GPtdIns transamidase complex.
Collapse
Affiliation(s)
- J Vidugiriene
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
12
|
Ferguson MA, Brimacombe JS, Brown JR, Crossman A, Dix A, Field RA, Güther ML, Milne KG, Sharma DK, Smith TK. The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:327-40. [PMID: 10571022 DOI: 10.1016/s0925-4439(99)00058-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
African sleeping sickness is a debilitating and often fatal disease caused by tsetse fly transmitted African trypanosomes. These extracellular protozoan parasites survive in the human bloodstream by virtue of a dense cell surface coat made of variant surface glycoprotein. The parasites have a repertoire of several hundred immunologically distinct variant surface glycoproteins and they evade the host immune response by antigenic variation. All variant surface glycoproteins are anchored to the plasma membrane via glycosylphosphatidylinositol membrane anchors and compounds that inhibit the assembly or transfer of these anchors could have trypanocidal potential. This article compares glycosylphosphatidylinositol biosynthesis in African trypanosomes and mammalian cells and identifies several steps that could be targets for the development of parasite-specific therapeutic agents.
Collapse
Affiliation(s)
- M A Ferguson
- Department of Biochemistry, University of Dundee, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sharma DK, Vidugiriene J, Bangs JD, Menon AK. A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism. J Biol Chem 1999; 274:16479-86. [PMID: 10347210 DOI: 10.1074/jbc.274.23.16479] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We established an in vitro assay for the addition of glycosyl-phosphatidylinositol (GPI) anchors to proteins using procyclic trypanosomes engineered to express GPI-anchored variant surface glycoprotein (VSG). The assay is based on the premise that small nucleophiles, such as hydrazine, can substitute for the GPI moiety and effect displacement of the membrane anchor of a GPI-anchored protein or pro-protein causing release of the protein into the aqueous medium. Cell membranes containing pulse-radiolabeled VSG were incubated with hydrazine, and the VSG released from the membranes was measured by carbonate extraction, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis/fluorography. Release of VSG was time- and temperature-dependent, was stimulated by hydrazine, and occurred only for VSG molecules situated in early compartments of the secretory pathway. No nucleophile-induced VSG release was seen in membranes prepared from cells expressing a VSG variant with a conventional transmembrane anchor (i.e. a nonfunctional GPI signal sequence). Pro-VSG was shown to be a substrate in the reaction by assaying membranes prepared from cells treated with mannosamine, a GPI biosynthesis inhibitor. When a biotinylated derivative of hydrazine was used instead of hydrazine, the released VSG could be precipitated with streptavidin-agarose, indicating that the biotin moiety was covalently incorporated into the protein. Hydrazine was shown to block the C terminus of the released VSG hydrazide because the released material, unlike a truncated form of VSG lacking a GPI signal sequence, was not susceptible to proteolysis by carboxypeptidases. These results firmly establish that the released material in our assay is VSG hydrazide and strengthen the proof that GPI anchoring proceeds via a transamidation reaction mechanism. The reaction could be inhibited with sulfhydryl alkylating reagents, suggesting that the transamidase enzyme contains a functionally important sulfhydryl residue.
Collapse
Affiliation(s)
- D K Sharma
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
14
|
Doering TL, Schekman R. Glycosyl-phosphatidylinositol anchor attachment in a yeast in vitro system. Biochem J 1997; 328 ( Pt 2):669-75. [PMID: 9371730 PMCID: PMC1218970 DOI: 10.1042/bj3280669] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast mating pheromone precursor prepro-alpha factor was fused to C-terminal signals for glycosyl-phosphatidylinositol (GPI) anchor attachment, based on the sequence of the Saccharomyces cerevisiae protein Gas1p. Maturation of fusion proteins expressed in vivo required the presence of both a functional GPI attachment site and the synthesis of GPI precursors. Constructs were translated in vitro for use in cell-free studies of glycolipid attachment. The radiolabelled polypeptides were post-translationally translocated into yeast microsomes, where at least one third of the molecules received a GPI anchor. This approach offers distinct advantages over anchor attachment reactions that require co-translational translocation of secretory peptide substrates.
Collapse
Affiliation(s)
- T L Doering
- Department of Molecular and Cell Biology, Barker Hall, Howard Hughes Research Institute, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
15
|
Armesto J, Hannappel E, Leopold K, Fischer W, Bublitz R, Langer L, Cumme GA, Horn A. Microheterogeneity of the hydrophobic and hydrophilic part of the glycosylphosphatidylinositol anchor of alkaline phosphatase from calf intestine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:259-69. [PMID: 8665945 DOI: 10.1111/j.1432-1033.1996.0259q.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Digestion of calf intestine alkaline phosphatase with pronase and subsequent dephosphorylation of the released peptidyl-(Etn-P)2-glycosyl-PtdIns with HF generated 8 glycosyl-Ins species the largest of which (G1 and G2) have the following proposed structures: [sequence: see text] G3 and G5 are lower homologues of G1 and G2, respectively, being one alpha 1-2 linked mannopyranosyl residue shorter. G4 is analogous to G2 lacking the N-acetylgalactosaminyl residue and G6 is the next lower homologue of G4. Most of G4 and G6 occur substituted with a palmitoyl (G4, G6) or a myristoyl residue (G6) probably attached to the inositol moiety. Thus, the basic ManxGlc-Ins species are either substituted with an N-acetylgalactosaminyl residue or a fatty acid ester. The structures were deduced from compositional analysis, molecular-mass determination by matrix-assisted laser desorption MS, sequential hydrolysis with appropriate exoglycosidases and treatment with CrO3. Purification of the glycosylinositol species was achieved by a novel reverse-phase HPLC technique using fluorescent fluoren-9-yl-methoxy-carbonyl (Fmoc) derivatives. These stable derivatives were susceptible to hydrolysis with exoglycosidases which allowed sequential cleavages to be carried out and kinetics to be followed at the picomole level. We observed recently that native alkaline phosphatase separates on octyl-Sepharose into four distinct fractions of increasing hydrophobicity (F1-F4). Here we show that all four fractions contain G1-G6. The acylated species G4 and G6 were restricted to F2 and F4 which had been shown earlier to contain, on average, 2.5 and 3 fatty acid residues/subunit, respectively. In all four fractions the diradylglycerol moiety was predominantly diacylglycerol, alkylacylglycerol being less than 10% which is in contrast to most glycosyl-PtdIns--anchored proteins of mammalian origin.
Collapse
Affiliation(s)
- J Armesto
- Institut für Biochemie, Medizinische Fakultät, Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Maxwell SE, Ramalingam S, Gerber LD, Brink L, Udenfriend S. An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase. J Biol Chem 1995; 270:19576-82. [PMID: 7642644 DOI: 10.1074/jbc.270.33.19576] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) substitution is now recognized to be a ubiquitous method of anchoring a protein to membranes in eukaryotes. The structure of GPI and its biosynthetic pathways are known and the signals in a nascent protein for GPI addition have been elucidated. The enzyme(s) responsible for GPI addition with release of a COOH-terminal signal peptide has been considered to be a transamidase but has yet to be isolated, and evidence that it is a transamidase is indirect. The experiments reported here show that hydrazine and hydroxylamine, in the presence of rough microsomal membranes, catalyze the conversion of the pro form of the engineered protein miniplacental alkaline phosphatase (prominiPLAP) to mature forms from which the COOH-terminal signal peptide has been cleaved, apparently at the same site but without the addition of GPI. The products, presumable the hydrazide or hydroxamate of miniPLAP, have yet to be characterized definitively. However, our demonstration of enzyme-catalyzed cleavage of the signal peptide in the presence of the small nucleophiles, even in the absence of an energy source, is evidence of an activated carbonyl intermediate which is the hallmark of a transamidase.
Collapse
Affiliation(s)
- S E Maxwell
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | | | | | | | |
Collapse
|