1
|
Barreiro EJ, Kümmerle AE, Fraga CAM. The Methylation Effect in Medicinal Chemistry. Chem Rev 2011; 111:5215-46. [DOI: 10.1021/cr200060g] [Citation(s) in RCA: 518] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Arthur E. Kümmerle
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Goerig M, Habenicht AJ, Schettler G. [Eicosanoids and phospholipases]. KLINISCHE WOCHENSCHRIFT 1985; 63:293-311. [PMID: 3923251 DOI: 10.1007/bf01731973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins, thromboxanes, and leukotrienes have been implicated to play an important role in physiology as well as in a growing list of pathophysiologic conditions. These oxidation products of 8.11.14-eicosatrienoic-, 5.8.11.14.-eicosatetraenoic-, and 5.8.11.14.17.-pentaenoic acids have been collectively designated eicosanoids. Many clinically important diseases are associated with altered eicosanoid biosynthesis. Furthermore, a series of hormones are known to induce acutely formation of eicosanoids, suggesting a crucial role in a multitude of tissue responses including phenomena such as secretion, platelet aggregation, chemotaxis, and smooth muscle contraction. The major precursor for the eicosanoids seems to be 5.8.11.14.-eicosatetraenoic acid or arachidonic acid. Virtually all of arachidonic acid however is present in esterified form in complex glycerolipids. Since cyclooxygenase and the lipoxygenases utilize arachidonic acid in its free form, a set of acylhydrolases is required to liberate arachidonic acid from membrane lipids before eicosanoid formation can occur. It became only recently apparent that a minor acidic phospholipid, phosphatidylinositol, comprising only 5%-10% of the phospholipid mass in mammalian cells, plays an important role in arachidonic acid metabolism. Phosphatidylinositol--after phosphorylation to phosphatidylinositolphosphate and phosphatidylinositolbisphosphate--appears to be hydrolyzed by specific phospholipases C generating 1-stearoyl-2-arachidonoyl-diglyceride. Diglyceride serves as substrate for diglyceride lipase to form monoglyceride and free fatty acid. Alternatively diglyceride is phosphorylated by diglyceride kinase yielding phosphatidic acid, which is believed to be reincorporated into phosphatidylinositol. In addition to phosphatidylinositol phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid may contribute to arachidonic acid release. These phospholipids are substrates for phospholipases A2 generating free arachidonic acid and the respective lysophospholipid. Understanding of the biochemistry of arachidonic acid liberation may be critical in developing strategies of pharmacological intervention in a variety of pathological conditions.
Collapse
|
3
|
Bregman MD, Meyskens FL. In vitro modulation of human and murine melanoma growth by prostanoid analogues. PROSTAGLANDINS 1983; 26:449-56. [PMID: 6581509 DOI: 10.1016/0090-6980(83)90179-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inhibitory effect of various prostaglandin analogues on the anchorage independent growth of murine and human melanoma cells was measured. PGA analogues (which were modified at C-16 and C-18) did not demonstrate any major improvement in activity over PGA alone. These included 16,16-dimethyl PGA1, 16,16-dimethyl-PGA2, 16,16-dimethyl-18-oxa-PGA2 and trans-delta-2-15-alpha acetoxy-16,16-dimethyl-18-oxa-11-deoxy-PGE1-methylester. The thromboxane synthetase inhibitor, U51605, demonstrated weak anti-proliferative activity. PGD2 (with a ketone at C-11 versus C-9 for PGA and PGE) was the most potent prostaglandin tested. Cells from melanoma lines displayed species differences in their sensitivities. PGA1 and PGE1 were the most potent inhibitors of the anchorage independent growth of murine melanoma cells. On human melanoma cells PGD2 was the most active prostaglandin, 2-3 times more potent than PGA1; PGE1 was a very weak inhibitor.
Collapse
|