1
|
Salvarredi L, Oglio RA, Rodriguez C, Navarro D, Perona M, Dagrosa MA, Juvenal GJ, Thomasz L. 2-iodohexadecanal induces autophagy during goiter involution. Prostaglandins Other Lipid Mediat 2024; 172:106819. [PMID: 38346574 DOI: 10.1016/j.prostaglandins.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Iodine plays an important role in thyroid physiology and biochemistry. The thyroid is capable of producing different iodolipids such as 2-iodohexadecanal (2-IHDA). Data from different laboratories have shown that 2-IHDA inhibits several thyroid parameters and it has been postulated as intermediary on the action of iodide function. OBJECTIVE To explore different mechanisms involved during the involution of the hyperplastic thyroid gland of Wistar rats towards normality induced by 2-IHDA. METHODS Goiter was induced by the administration of MMI for 10 days, then the treatment was discontinued and Wistar rats were injected with 2-IHDA or KI. RESULTS During involution, 2-IHDA treatment reduced PCNA expression compared to spontaneous involution. KI treatment caused an increase of Caspase-3 activity and TUNEL-positive cells. In contrast, 2-IHDA failed to alter this value but induced an increase of LC3B expression. KI but not 2-IHDA led to an increase in peroxides levels, catalase and glutathione peroxidase activity. CONCLUSIONS We demonstrated that 2-IHDA, in contrast to iodide, did not lead to an increase in oxidative stress or apoptosis induction, indicating that the involution triggered by 2-IHDA in Wistar rats, is primarily due to the inhibition of cell proliferation and the induction of autophagy.
Collapse
Affiliation(s)
- Leonardo Salvarredi
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Instituto Balseiro, National Comission of Atomic Energy & National University of Cuyo, Mendoza, Argentina
| | - Romina A Oglio
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | - Carla Rodriguez
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - María A Dagrosa
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Guillermo J Juvenal
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Lisa Thomasz
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina.
| |
Collapse
|
2
|
Oglio R, Rodriguez C, Salvarredi L, Rossich L, Perona M, Dagrosa A, Juvenal G, Thomasz L. Selenium bioavailability modulates the sensitivity of thyroid cells to iodide excess. Chem Biol Interact 2024; 387:110810. [PMID: 38013145 DOI: 10.1016/j.cbi.2023.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-β1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-β1 mRNA and TGF-β inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-β1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.
Collapse
Affiliation(s)
- Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Carla Rodriguez
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Leonardo Salvarredi
- FUESMEN, Mendoza, Argentina; Balseiro Institute, National University of Cuyo, Mendoza, Argentina
| | - Luciano Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Marina Perona
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Alejandra Dagrosa
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Petersen M, Knudsen N, Carlé A, Andersen S, Jørgensen T, Perrild H, Ovesen L, Rasmussen LB, Thuesen BH, Pedersen IB. Increased Incidence Rate of Hypothyroidism After Iodine Fortification in Denmark: A 20-Year Prospective Population-Based Study. J Clin Endocrinol Metab 2019; 104:1833-1840. [PMID: 30551165 DOI: 10.1210/jc.2018-01993] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To monitor the impact of a cautious iodine fortification (IF) on the incidence of overt hypothyroidism in two subpopulations with different levels of preexisting iodine deficiency (ID). DESIGN A 20-year (1997 to 2016) prospective population-based study identified all new cases of diagnosed overt biochemical hypothyroidism in two open cohorts: a western cohort with moderate ID (n = 309,434; 1 January 1997) and an eastern cohort with mild ID (n = 224,535; 1 January 1997). A diagnostic algorithm was applied to all thyroid function tests performed within the study areas, and possible new cases were verified individually. Mandatory IF of salt was initiated in mid-2000 (13 ppm). The current study is a part of the DanThyr study. RESULTS At baseline, standardized incidence rates (SIRs) of hypothyroidism were 32.9 and 47.3/100.000/y in the cohorts with moderate and mild ID, respectively. The SIR of hypothyroidism increased significantly in both cohorts after implementing mandatory IF, with peak values of 150% in 2014 to 2016 for the moderate ID cohort and 130% in 2004 to 2005 for the mild ID cohort. Significant increases in SIR were seen among the young and middle-aged participants of both cohorts, whereas no changes were seen among the elderly participants (≥60 years). The follow-up period for the mildly iodine-deficient cohort was restricted up to and including 2008. CONCLUSION The cautious initiation of the IF program in Denmark caused a sustained increase in hypothyroidism incidence among subjects residing in areas of moderate and mild ID but only among the young and middle-aged participants.
Collapse
Affiliation(s)
- Mads Petersen
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Nils Knudsen
- Department of Endocrinology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Allan Carlé
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Stig Andersen
- Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Jørgensen
- Centre for Clinical Research and Prevention, Bispebjerg/Frederiksberg Hospital, Copenhagen, Denmark
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Hans Perrild
- Department of Endocrinology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ovesen
- Department of Gastroenterology, Slagelse Hospital, Slagelse, Denmark
| | - Lone Banke Rasmussen
- Department of Endocrinology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Betina Heinsbæk Thuesen
- Centre for Clinical Research and Prevention, Bispebjerg/Frederiksberg Hospital, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Thomasz L, Oglio R, Salvarredi L, Perona M, Rossich L, Copelli S, Pisarev M, Juvenal G. Regulation of NADPH oxidase NOX4 by delta iodolactone (IL-δ) in thyroid cancer cells. Mol Cell Endocrinol 2018; 470:115-126. [PMID: 28993239 DOI: 10.1016/j.mce.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Iodine is not used only by the thyroid to synthesize thyroid hormones but also directly influences a number of thyroid parameters such as thyroid proliferation and function. Several iodinated lipids, biosynthesized by the thyroid, were postulated as intermediaries in the action of iodide. Among these, iodolactone (IL-δ) and 2-iodohexadecanal (2-IHDA) have shown to inhibit several thyroid parameters. The antiproliferative effect of IL-δ is not restricted to the thyroid gland. IL-δ exhibits anti-tumor properties in breast cancer, neuroblastoma, glioblastoma, melanoma and lung carcinoma cells suggesting that IL-δ could be used as a chemotherapeutic agent. Moreover in a colon cancer cell line (HT-29), IL-δ induced cell death, and this effect was mediated by reactive oxygen species (ROS) generation. The aim of the present study was to analyze the sources of reactive oxygen species induced by IL-δ and to explore the contribution of ROS induced by IL-δ on cell proliferation and apoptosis. METHODOLOGY AND RESULTS Cancer thyroid follicular (WRO) and papilar (TPC-1) cells lines were treated with IL-δ. Proliferation and apoptosis was analyzed. IL-δ caused a significant loss of cell viability on WRO and TPC-1 cells in a concentration dependent manner and induced apoptosis after 3 h of treatment. Furthermore, IL-δ (10 μM) increased ROS production (39% WRO and 20% TPC-1). The concomitant treatment of WRO and TPC-1 cells with Trolox or NAC plus IL-δ abrogated the augment of ROS induced by IL-δ exposure. Additionally Trolox and NAC reversed the effect of IL-δ on cell proliferation and apoptosis. Only in WRO cells IL-δ upregulates NADPH oxidase NOX4 expression, and siRNA targeted knock-down of NOX4 attenuates ROS production, apoptosis (p < 0.05) and the inhibitory effect of IL-δ on cell proliferation and PCNA expression (p < 0.05). CONCLUSIONS The antiproliferative and pro-apoptotic effect of IL-δ is mediated by different mechanisms and pathway involving different sources of ROS generation depending on the cellular context.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina.
| | - Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | - Leonardo Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | - Marina Perona
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina
| | - Luciano Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | | | - Mario Pisarev
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina; CONICET, Argentina.
| |
Collapse
|
5
|
Nava-Villalba M, Aceves C. 6-iodolactone, key mediator of antitumoral properties of iodine. Prostaglandins Other Lipid Mediat 2014; 112:27-33. [PMID: 25018052 DOI: 10.1016/j.prostaglandins.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022]
Abstract
An iodinated derivative of arachidonic acid, 5-hydroxy-6-iodo-8,11,14-eicosatrienoic acid, δ-lactone (6-IL) has been implicated as a possible intermediate in the autoregulation of the thyroid gland by iodine. In addition to antiproliferative and apoptotic effects observed in thyrocytes, this iodolipid could also exert similar actions in cells derived from extrathyroidal tissues like mammary gland, prostate, colon, or the nervous system. In mammary cancer (solid tumors or tumor cell lines), 6-IL has been detected after molecular iodine (I2) supplement, and is a potent activator of peroxisome proliferator-activated receptor type gamma (PPARγ). These observations led us to propose I2 supplement as a novel coadjutant therapy which, by inducing differentiation mechanisms, decreases tumor progression and prevents chemoresistance. Some kinds of tumoral cells, in contrast to normal cells, contain high concentrations of arachidonic acid, making the I2 supplement a potential "magic bullet" that enables local, specific production of 6-IL, which then exerts antineoplastic actions with minimal deleterious effects on normal tissues.
Collapse
Affiliation(s)
- Mario Nava-Villalba
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico.
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
6
|
Thomasz L, Oglio R, Rossich L, Villamar S, Perona M, Salvarredi L, Dagrosa A, Pisarev MA, Juvenal GJ. 6 Iodo-δ-lactone: a derivative of arachidonic acid with antitumor effects in HT-29 colon cancer cells. Prostaglandins Leukot Essent Fatty Acids 2013; 88:273-80. [PMID: 23375358 DOI: 10.1016/j.plefa.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/26/2012] [Accepted: 01/04/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-δ (5-hydroxy-6 iodo-8,11,14-eicosatrienoic delta lactone) an iodinated arachidonic acid (AA) derivative, is one of the iodolipids biosynthesized by the thyroid. Although IL-δ regulates several thyroid parameters such as cell proliferation and goiter growth it was found that this iodolipid inhibits the growth of other non thyroid cell lines. OBJECTIVES To study the effect of IL-δ on cell proliferation and apoptosis in the colon cancer cell line HT-29. RESULTS Treatment with IL-δ reduced cell viability in a concentration-dependent manner: 1μM 20%, 5μM 25%, 10μM 31%, 50μM 47% and caused a significant decrease of PCNA expression (25%). IL-δ had pro-apoptotic effects, evidenced by morphological features of programmed cell death such as pyknosis, karyorrhexis, cell shrinkage and cell blebbing observed by fluorescence microscopy, and an increase in caspase-3 activity and in Bax/Bcl-2 ratio (2.5 after 3h of treatment). Furthermore, IL-δ increased ROS production (30%) and lipid peroxidation levels (19%), suggesting that apoptosis could be a result of increased oxidative stress. A maximum increase in c-fos and c-jun protein expression in response to IL-δ was observed 1h after initiation of the treatment. IL-δ also induced a tumour growth delay of 70% compared to the control group in NIH nude mice implanted with HT-29 cells. CONCLUSION Our study shows that IL-δ inhibits cell growth and induces apoptosis in the colon cancer cell line, HT-29 and opens the possibility that IL-δ could be a potential useful chemotherapy agent.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission Buenos Aires 1429, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Leoni SG, Kimura ET, Santisteban P, De la Vieja A. Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess. Mol Endocrinol 2011; 25:1924-35. [PMID: 21903721 DOI: 10.1210/me.2011-0038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The phenomenon that supraphysiological doses of iodide (I(-)) temporarily inhibit thyroid hormone synthesis is known as thyroid iodide autoregulation. Recovery of thyroid function has been attributed to sodium-iodide symporter (NIS) inhibition, but the diversity of available data makes it difficult to reach definitive conclusions. Iodide excess induces reactive oxygen species production and cell toxicity. However, the roles of the oxidative state of the cell and antioxidant selenoproteins in I(-) autoregulation have never been explored. Here we analyze the effects of high I(-) doses in rat thyroids and in PCCl3 cells in the period comprising I(-) autoregulation (i.e. 0-72 h after I(-) administration), focusing on NIS expression, redox state, and the expression and activity of selenoproteins. Our results show that NIS mRNA inhibition by I(-) does not occur at the transcriptional level, because neither NIS promoter activity nor Pax8 expression or its binding to DNA was modulated. Because I(-) uptake was inhibited much earlier than NIS protein, and no effect was observed on its subcellular localization, we suggest that I(-) is inhibiting NIS in the plasma membrane. The increased reactive oxygen species production leads to an increase in thioredoxin reductase mRNA levels and enzyme activity, which reduces the oxidative stress. Inhibition of thioredoxin reductase at either gene expression or activity levels prevented NIS recovery, thus illustrating a new role played by this selenoprotein in the regulation of cell homeostasis and consequently in I(-) autoregulation.
Collapse
Affiliation(s)
- Suzana G Leoni
- Instituto de Investigaciones Biome´ dicas “Alberto Sols” Consejo Superior de Investigaciones Científicas y Universidad Auto´ noma de Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Thomasz L, Oglio R, Dagrosa MA, Krawiec L, Pisarev MA, Juvenal GJ. 6 Iodo-delta-lactone reproduces many but not all the effects of iodide. Mol Cell Endocrinol 2010; 323:161-6. [PMID: 20302908 DOI: 10.1016/j.mce.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them 6 iodo-delta-lactone (IL-delta) has been identified and proposed to play a role in thyroid autoregulation. The aim of this study was to compare the effect of iodide and IL-delta on several thyroid parameters. METHODS Thyroid bovine follicles were incubated with the different compounds during three days. RESULTS KI and IL-delta inhibited iodide uptake, total protein and Tg synthesis but only KI had an effect on NIS and Tg mRNAs levels. Both compounds inhibited Na+/K+ ATPase and deoxy-glucose uptake. As PAX 8, FOXE 1 and TITF1 are involved in the regulation of thyroid specific genes their mRNA levels were measured. While iodide inhibited the expression of the first two, the expression of TITF1 was stimulated by iodide and IL-delta had no effect on these parameters. CONCLUSION These findings indicate that IL-delta reproduces some but not all the effects of excess iodide. These observations apply for higher micromolar concentrations of iodide while no such effects could be demonstrated at nanomolar iodide concentrations.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, CNEA, Av. Del Libertador 8250, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Dayem M, Navarro V, Marsault R, Darcourt J, Lindenthal S, Pourcher T. From the molecular characterization of iodide transporters to the prevention of radioactive iodide exposure. Biochimie 2006; 88:1793-806. [PMID: 16905238 DOI: 10.1016/j.biochi.2006.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 07/19/2006] [Indexed: 12/23/2022]
Abstract
In the event of a nuclear reactor accident, the major public health risk will likely result from the release and dispersion of volatile radio-iodines. Upon body exposure and food ingestion, these radio-iodines are concentrated in the thyroid, resulting in substantial thyroidal irradiation and accordingly causing thyroid cancers. Stable potassium iodide (KI) effectively blocks thyroid iodine uptake and is thus used in iodide prophylaxis for reactor accidents. The efficiency of KI is directly related to the physiological inhibition of the thyroid function in the presence of high plasma iodide concentrations. This regulation is called the Wolff-Chaikoff effect. However, to be fully effective, KI should be administered shortly before or immediately after radioiodine exposure. If KI is provided only several hours after exposure, it will elicit the opposite effect e.g. lead to an increase in the thyroid irradiation dose. To date, clear evaluation of the benefit and the potential toxicity of KI administration remain difficult, and additional data are needed. We outline in this review the molecular characterization of KI-induced regulation of the thyroid function. Significant advances in the knowledge of the iodide transport mechanisms and thyroid physiology have been made. Recently developed molecular tools should help clarify iodide metabolism and the Wolff-Chaikoff effect. The major goals are clarifying the factors which increase thyroid cancer risk after a reactor accident and improving the KI administration protocol. These will ultimately lead to the development of novel strategies to decrease thyroid irradiation after radio-iodine exposure.
Collapse
Affiliation(s)
- M Dayem
- Unité TIRO (Transporter in Imaging and Radiotherapy in Oncology), Commissariat à l'énergie atomique DSV-DIEP-SBTN, School of Medicine, University of Nice Sophia Antipolis, 28, avenue de Valombrose, 06107 Nice cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Pisarev MA, Krawiec L, Juvenal GJ, Bocanera LV, Pregliasco LB, Sartorio G, Chester HA. Studies on the goiter inhibiting action of iodolactones. Eur J Pharmacol 1994; 258:33-7. [PMID: 7925597 DOI: 10.1016/0014-2999(94)90054-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The thyroid gland synthesizes 6-delta-iodolactone, a compound shown to inhibit goiter growth in vivo and cell proliferation in culture. The present studies were performed to characterize this effect further with the aim of exploring the possible therapeutic action of iodolactones. Prevention assay: rats were treated simultaneously with a goitrogen, methylmercaptoimidazole, and either 6-delta-iodo-lactone or 14-iodo-omega-lactone, a synthetic derivative, given either i.p. or p. o. Both compounds caused a significant decrease in thyroid weight irrespective of the route of administration, but oral administration was less effective. A dose-response relationship was observed, the minimal effective dose (i.p.) being 3 micrograms/day. Involution assay: goiter was first induced with methylmercaptoimidazole and then the iodolactones were injected. Both compounds caused a significant involution, which was dose-related. Acute (10 days) administration of the iodolactones did not produce significant changes in several serum parameters (total T3 and T4, cholesterol, total protein, urea and acetylcholinesterase). These results give further support to the potential therapeutic application of iodolactones.
Collapse
Affiliation(s)
- M A Pisarev
- División Bioquímica Nuclear, Gerencia de Radiosótopos y Radiaciones, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Sato N, Wang XB, Greer MA. Dopamine inhibits cell swelling-induced prolactin secretion in MMQ cells by blocking Ca2+ influx. Mol Cell Endocrinol 1991; 82:99-106. [PMID: 1662167 DOI: 10.1016/0303-7207(91)90013-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To evaluate the role of Ca2+ influx on hormone secretion induced by cell swelling, we have utilized a prolactin (PRL)-secreting rat tumor cell line, MMQ, which has plasmalemma dopamine receptors. Medium hyposmolarity or osmotically equivalent isotonic urea caused prompt cell swelling and a rise in both [Ca2+]i and PRL secretion in a dose-dependent manner. Dopamine inhibited the induced increase in both [Ca2+]i and PRL secretion in a dose-dependent manner but the maximum inhibition was only 50%. This effect of dopamine was prevented by haloperidol. Depletion of medium Ca2+ or blocking Ca2+ influx with nifedipine completely abolished the osmotically induced rise in both [Ca2+]i and PRL secretion. These data indicate that Ca2+ influx through nifedipine-sensitive Ca2+ channels is an essential component of PRL secretion induced by osmotic cell swelling in MMQ cells and that a dopaminergic receptor-linked mechanism influences the opening of these channels.
Collapse
Affiliation(s)
- N Sato
- Department of Medicine, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|
12
|
Pisarev MA, Chazenbalk GD, Valsecchi RM, Burton G, Krawiec L, Monteagudo E, Juvenal GJ, Boado RJ, Chester HA. Thyroid autoregulation. Inhibition of goiter growth and of cyclic AMP formation in rat thyroid by iodinated derivatives of arachidonic acid. J Endocrinol Invest 1988; 11:669-74. [PMID: 2851622 DOI: 10.1007/bf03350212] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid autoregulation has been related to intraglandular content of an unknown putative iodocompund. Data from different laboratories have shown that the thyroid is capable of producing different iodolipids, including iodinated derivatives of arachidonic acid; such as 5-hydroxy-6-iodo-8, 11, 14-eicosatrienoic-delta-lactone (IL-delta). Previous results from our laboratory showed that a semi-purified preparation of iodinated arachidonic acid exerts an inhibitory action in vitro on calf thyroid. In the present studies three purified iodinated derivatives of arachidonic acid were synthesized: IL-delta; 14-iodo-15-hydroxy-5, 8, 11-eicosatrienoic acid (I-OH-A) and its corresponding omega-lactone (IL-omega). Their action on MMI-induced goiter was studied in rats. Administration of MMI to rats during 10 days increased thyroid weight by 124%. This effect was significantly inhibited by the simultaneous injection of 5 micrograms/day of I-OH-A (57% inhibition of MMI action), IL-W (39%), IL-delta (33%) and T3 (95%), while arachidonic acid was without action. No inhibition was found with 1.25 micrograms/day Kl, a dose equivalent to that which could be originated from total dehalogenation of the iodocompounds. These results support the idea that these iodocompounds have an intrinsic biologic activity and that there is a correlation between action and chemical structure. Serum TSH was increased around 15-20 fold after MMI administration. Chronic or acute injection of I-OH-A failed to alter TSH levels, indicating that this iodocompound exerts its action directly on the gland, without altering TSH concentration.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M A Pisarev
- Depto. Aplicaciones Biologicas, Comision Nacional de Energia Atomica, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|