1
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Martinez VK, Saldana-Morales F, Sun JJ, Zhu PJ, Costa-Mattioli M, Ray RS. Off-Target Effects of Clozapine-N-Oxide on the Chemosensory Reflex Are Masked by High Stress Levels. Front Physiol 2019; 10:521. [PMID: 31178741 PMCID: PMC6538678 DOI: 10.3389/fphys.2019.00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
Respiratory chemosensory circuits are implicated in several physiological and behavioral disorders ranging from sudden infant death syndrome to panic disorder. Thus, a comprehensive map of the chemosensory network would be of significant value. To delineate chemosensory neuronal populations, we have utilized pharmacogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) perturbations for acute neuronal perturbations in respiratory circuit mapping. Recent studies show that the biologically inert DREADD ligand clozapine-N-oxide (CNO) is back-metabolized into the bioactive compound clozapine in rodents, emphasizing the need for CNO-only DREADD-free controls, which have been carried out in several studies. However, we show that high CNO doses used in several chemosensory circuit mapping studies nonetheless affect the chemosensory ventilatory reflexes in control mice, which is unmasked by extensive habituation. Here, unhabituated control animals showed no differences in respiratory parameters after CNO administration, whereas habituated animals receiving the commonly used dose of 10 mg/kg of CNO show a deficit in the hypercapnic (high CO2) chemosensory reflex, which is not present in 1 mg/kg CNO treated or saline control groups. Our findings indicate that even in appropriately controlled studies, additional masked CNO off-target effects may exist and underscore the importance of using minimal doses of activating ligand in combination with high levels of habituation.
Collapse
Affiliation(s)
- Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States.,Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Fatima Saldana-Morales
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jenny J Sun
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Ping Jun Zhu
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Mauro Costa-Mattioli
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Russell S Ray
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,McNair Medical Institute, Houston, TX, United States
| |
Collapse
|
3
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
4
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
5
|
Co-activation of μ- and δ-opioid receptors elicits tolerance to morphine-induced ventilatory depression via generation of peroxynitrite. Respir Physiol Neurobiol 2013; 186:255-64. [PMID: 23473921 DOI: 10.1016/j.resp.2013.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
We determined whether pretreatment with (1) the μ-/δ-opioid receptor (μ-/δ-OR) antagonist, naloxone, (2) the δ1,2-OR antagonist, naltrindole, or (3) the peroxynitrite scavenger, d-penicillamine, affects the development of tolerance to the ventilatory depressant effects of morphine in rats. The injection of morphine in vehicle-pretreated rats decreased minute ventilation predominantly via decreases in tidal volume. Pretreatment with naloxone blunted the responses to morphine whereas pretreatment with naltrindole or d-penicillamine did not. A second injection of morphine, given one day later, elicited markedly smaller responses in vehicle rats whereas it elicited pronounced ventilatory depression in rats that were pretreated with naloxone, naltrindole or d-penicillamine (prior to morphine) the day before. Moreover, the ventilatory responses elicited by subsequent exposure to a hypoxic-hypercapnic challenge were markedly depressed in naloxone- or d-penicillamine-pretreated rats compared to vehicle-pretreated rats. These findings suggest that activation of μ- and δ-ORs causes tolerance to the ventilatory depressant effects of morphine at least partly via the generation of peroxynitrite.
Collapse
|
6
|
Abstract
Panic disorder seems to be mediated by the neuronal circuitry and neurochemical systems that have evolved to respond to external threatening stimuli. Distant threats activate prefrontal cortex (involved in complex planning of avoidance strategies), while immediate threats activate midbrain structures (involved in fast reflexive behaviors). Panic disorder may, however, also involve more specific interoceptive mechanisms. For example, the association between respiratory dysfunction and panic disorder has bolstered a false suffocation alarm hypothesis. Genetic and environmental contributors to panic disorder are beginning to be delineated. Effective pharmacotherapy and psychotherapy are able to normalize the relevant psychobiology.
Collapse
|
7
|
Datta A, Tipton M. Respiratory responses to cold water immersion: neural pathways, interactions, and clinical consequences awake and asleep. J Appl Physiol (1985) 2006; 100:2057-64. [PMID: 16714416 DOI: 10.1152/japplphysiol.01201.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventilatory responses to immersion and changes in temperature are reviewed. A fall in skin temperature elicits a powerful cardiorespiratory response, termed “cold shock,” comprising an initial gasp, hypertension, and hyperventilation despite a profound hypocapnia. The physiology and neural pathways of this are examined with data from original studies. The respiratory responses to skin cooling override both conscious and other autonomic respiratory controls and may act as a precursor to drowning. There is emerging evidence that the combination of the reestablishment of respiratory rhythm following apnea, hypoxemia, and coincident sympathetic nervous and cyclic vagal stimulation appears to be an arrhythmogenic trigger. The potential clinical implications of this during wakefulness and sleep are discussed in relation to sudden death during immersion, underwater birth, and sleep apnea. A drop in deep body temperature leads to a slowing of respiration, which is more profound than the reduced metabolic demand seen with hypothermia, leading to hypercapnia and hypoxia. The control of respiration is abnormal during hypothermia, and correction of the hypoxia by inhalation of oxygen may lead to a further depression of ventilation and even respiratory arrest. The immediate care of patients with hypothermia needs to take these factors into account to maximize the chances of a favorable outcome for the rescued casualty.
Collapse
Affiliation(s)
- Avijit Datta
- Institute of Biomedical and Biomolecular Sciences, Department of Sport and Exercise Science, St. Michael's Bldg., University of Portsmouth, White Swan Road, and Portsmouth Hospitals National Health Service Trust, UK PO1 2DT.
| | | |
Collapse
|
8
|
Battaglia M, Ogliari A. Anxiety and panic: from human studies to animal research and back. Neurosci Biobehav Rev 2004; 29:169-79. [PMID: 15652264 DOI: 10.1016/j.neubiorev.2004.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 06/01/2004] [Indexed: 01/01/2023]
Abstract
The role of learning and conditioning varies across human anxiety disorders, and distinguishing between fear and panic is important to guide investigation in panic disorder. By reminding that some psychological and psychobiological theories view panic attacks as false alarms of unconditioned biological origin, we suggest that employing endophenotypes of biological and evolutionary relevance--such as the respiratory responses to suffocative stimuli--can be fruitful for both human research and animal models of panic, and can help keeping unconditioned components of the clinical picture separate from the conditioned components in the experimental setting. We present a review of a model of panic disorder by which idiosyncratic environmental adverse events can promote unconditioned and unexpected spells of physical alarm. Along the proposed causal pathway the alternative splicing expression of polymorphic genes of the cholinergic system play an important role. The overproduction of the Acetylcholinesterase readthrough splice variant after minor stress can promote passive avoidance and learning through action at the level of the corticolimbic circuitries, as well as heightened sensitivity to suffocative stimuli by action upon the cholinergic components of chemoception. When a component of anticipatory anxiety complicates the clinical picture of recurrent panic attacks, and the HPA becomes activated, the glucocorticoid response element 17 kb upstream of the Acetylcholinesterase gene transcription initiation site may sustain sensitivity to suffocative stimuli for prolonged time. Finally, we review how animal models of human panic based on unconditioned provocation of alarm reactions by the same respiratory panicogens that are employed in man are viable and promising.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
9
|
Kinkead R, Dupenloup L, Valois N, Gulemetova R. Stress-induced attenuation of the hypercapnic ventilatory response in awake rats. J Appl Physiol (1985) 2001; 90:1729-35. [PMID: 11299262 DOI: 10.1152/jappl.2001.90.5.1729] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were no differences in minute ventilation between stressed and unstressed groups. Rats previously exposed to immobilization stress had a 45% lower ventilatory response to hypercapnia (inspiratory CO(2) fraction = 0.05) than controls. In contrast, stress exposure had no statistically significant effect on the ventilatory response to hypoxia (inspiratory O(2) fraction = 0.12). Stress-induced attenuation of the hypercapnic response was associated with reduced tidal volume and inspiratory flow increases; the frequency and timing components of the response were not different between groups. We conclude that previous exposure to a stressful condition that does not constitute a direct challenge to respiratory homeostasis can elicit persistent (> or =24 h) functional plasticity in the ventilatory control system.
Collapse
Affiliation(s)
- R Kinkead
- Department of Pediatrics, Laval University, Hôpital St-François d'Assise, Unité de Recherche de Périnatalogie, Quebec City, Quebec, Canada G1L 3L5.
| | | | | | | |
Collapse
|
10
|
Kehoe P. Opioids, Behavior, and Learning in Mammalian Development. DEVELOPMENTAL PSYCHOBIOLOGY AND BEHAVIORAL ECOLOGY 1988. [DOI: 10.1007/978-1-4684-5421-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Affiliation(s)
- Mark J Millan
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, D-8033 Planegg-MartinsriedF.R.G
| |
Collapse
|
12
|
Pilcher WH, Joseph SA. Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides 1986; 7:783-9. [PMID: 2879278 DOI: 10.1016/0196-9781(86)90096-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distribution of opiocortin- (OP-ir) and tyrosine hydroxylase-immunoreactive (TH-ir) perikarya was examined immunocytochemically in rats treated neonatally with the neurotoxin monosodium glutamate (MSG). While OP-ir and TH-ir perikarya were eliminated in the arcuate nucleus in treated animals, the OP-ir and TH-ir cell groups of the nucleus tractus solitarius and contiguous medullary regions were unaffected. This selective elimination of arcuate neurons permitted us to examine specifically the fiber projections of the medullary OP-ir perikarya in treated animals. This revealed a preferential distribution of delicate fibers originating in NTS, to discrete medullary and pontine areas. In control animals, these same terminal fields appeared to be more densely populated with an additional population of thicker OP-ir fibers, suggesting the possibility of a shared innervation of these brainstem regions by both hypothalamic and medullary OP-ir neurons.
Collapse
|
13
|
Abstract
Peromyscus maniculatus, deermice , were induced into daily torpor by restricting food to one-half daily ration. Intraperitoneal injection of naloxone (20 mg/kg) into mice habituated to daily IP injections of saline inhibited or modified the expression of daily torpor. In those individuals demonstrating long duration/deep bouts (greater than 300 min/body temperature 20 degrees C or below) naloxone administration resulted in 1) a significant decrease in the duration of torpor, 2) a significant elevation in minimum body temperatures attained during torpor and 3) a significant delay in the initiation time of torpor. In those individuals demonstrating short duration/shallow bouts (less than 300 min/body temperatures above 20 degrees C), naloxone administration resulted only in a significant delay of initiation time. Upon subsequent return to saline administration, however, these mice displayed a significant increase in the duration and depth of torpor. The results suggest that the endogenous opiates modulate the state of daily torpor.
Collapse
|
14
|
Abstract
The distribution of corticotropin-releasing factor immunoreactive (CRF-ir) perikarya and ACTH-ir fibers was examined immunocytochemically, in adjacent sections, in the forebrain and brainstem of the rat. Throughout the nervous system, a remarkable concordance of localization of these neuropeptide systems was noted. Both ACTH-ir fibers and CRF-ir perikarya were conjointly distributed within discrete hypothalamic, limbic and brainstem/autonomic regions previously demonstrated to contain opiate receptors and opiocortin (beta-endorphin, beta-LPH, ACTH) fibers. In view of the demonstrated interactions of CRF with the peripheral (pituitary) opiocortin system, these data suggest the possibility of a similar relationship of CRF and opiocortin systems in the central nervous system as well.
Collapse
|
15
|
|
16
|
Abstract
This article is the fifth installment in an annual series of reviews of successive year's research dealing with the endogenous opiate peptides. Due to the continuing massive increase in the number of studies in this field, it has become impossible to continue comprehensive reviews of all aspects of this work. As a result we have decided that beginning this year the coverage will be abbreviated to emphasize non-analgesic and behavioral work. The specific areas discussed include stress, tolerance and dependence, consummatory responses, alcohol consumption, schizophrenia and emotional disorders, learning and memory, cardiovascular responses, respiratory effects, thermoregulatory effects, neurological deficits and other disorders, activity, and other, miscellaneous behaviors. As in previous years, we have attempted a relatively comprehensive review of the subjects covered only for the previous year and have not made an attempt to evaluate their contributions relative to those of past years.
Collapse
|