1
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Elliott JE, Keil AT, Mithani S, Gill JM, O’Neil ME, Cohen AS, Lim MM. Dietary Supplementation With Branched Chain Amino Acids to Improve Sleep in Veterans With Traumatic Brain Injury: A Randomized Double-Blind Placebo-Controlled Pilot and Feasibility Trial. Front Syst Neurosci 2022; 16:854874. [PMID: 35602971 PMCID: PMC9114805 DOI: 10.3389/fnsys.2022.854874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Traumatic brain injury (TBI) is associated with chronic sleep disturbances and cognitive impairment. Our prior preclinical work demonstrated dietary supplementation with branched chain amino acids (BCAA: leucine, isoleucine, and valine), precursors to de novo glutamate production, restored impairments in glutamate, orexin/hypocretin neurons, sleep, and memory in rodent models of TBI. This pilot study assessed the feasibility and preliminary efficacy of dietary supplementation with BCAA on sleep and cognition in Veterans with TBI. Methods Thirty-two Veterans with TBI were prospectively enrolled in a randomized, double-blinded, placebo-controlled trial comparing BCAA (30 g, b.i.d. for 21-days) with one of two placebo arms (microcrystalline cellulose or rice protein, both 30 g, b.i.d. for 21-days). Pre- and post-intervention outcomes included sleep measures (questionnaires, daily sleep/study diaries, and wrist actigraphy), neuropsychological testing, and blood-based biomarkers related to BCAA consumption. Results Six subjects withdrew from the study (2/group), leaving 26 remaining subjects who were highly adherent to the protocol (BCAA, 93%; rice protein, 96%; microcrystalline, 95%; actigraphy 87%). BCAA were well-tolerated with few side effects and no adverse events. BCAA significantly improved subjective insomnia symptoms and objective sleep latency and wake after sleep onset on actigraphy. Conclusion Dietary supplementation with BCAA is a mechanism-based, promising intervention that shows feasibility, acceptability, and preliminary efficacy to treat insomnia and objective sleep disruption in Veterans with TBI. A larger scale randomized clinical trial is warranted to further evaluate the efficacy, dosing, and duration of BCAA effects on sleep and other related outcome measures in individuals with TBI. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03990909].
Collapse
Affiliation(s)
- Jonathan E. Elliott
- VA Portland Health Care System, Portland, OR, United States,Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | | | - Sara Mithani
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Jessica M. Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Maya E. O’Neil
- VA Portland Health Care System, Portland, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Akiva S. Cohen
- Perelman School of Medicine, Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, United States,Anesthesiology, Children’s Hospital of Philadelphia, Joseph Stokes Research Institute, Philadelphia, PA, United States
| | - Miranda M. Lim
- VA Portland Health Care System, Portland, OR, United States,Department of Neurology, Oregon Health & Science University, Portland, OR, United States,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States,VA Portland Health Care System, National Center for Rehabilitation and Auditory Research, Portland, OR, United States,*Correspondence: Miranda M. Lim,
| |
Collapse
|
3
|
Hsu WH, Lee CH, Chao YM, Kuo CH, Ku WC, Chen CC, Lin YL. ASIC3-dependent metabolomics profiling of serum and urine in a mouse model of fibromyalgia. Sci Rep 2019; 9:12123. [PMID: 31431652 PMCID: PMC6702159 DOI: 10.1038/s41598-019-48315-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Fibromyalgia (FM) is characterized by chronic widespread pain. The pathogenesis of FM remains unclear. No specific biomarkers are available. Animal models of FM may provide an opportunity to explore potential biomarkers in a relative homogenous disease condition. Here, we probed the metabolomics profiles of serum and urine in a mouse model of FM induced by intermittent cold stress (ICS). We focused on the role of acid-sensing ion channel 3 (ASIC3) in the metabolomics profiling because ICS treatment induced chronic widespread muscle pain lasting for 1 month in wild-type (Asic3+/+) but not Asic3-knockout (Asic3−/−) mice. Serum and urine samples were collected from both genotypes at different ICS stages, including before ICS (basal level) and post-ICS at days 10 (middle phase, P10) and 40 (recovery phase, P40). Control naïve mice and ICS-induced FM mice differed in 1H-NMR- and LC-MS-based metabolomics profiling. On pathway analysis, the leading regulated pathways in Asic3+/+ mice were taurine and hypotaurine, cysteine and methionine, glycerophospholipid, and ascorbate and aldarate metabolisms, and the major pathways in Asic3−/− mice involved amino acid-related metabolism. Finally, we developed an algorithm for the impactful metabolites in the FM model including cis-aconitate, kynurenate, taurine, pyroglutamic acid, pyrrolidonecarboxylic acid, and 4-methoxyphenylacetic acid in urine as well as carnitine, deoxycholic acid, lysoPC(16:0), lysoPC(20:3), oleoyl-L-carnitine, and trimethylamine N-oxide in serum. Asic3−/− mice were impaired in only muscle allodynia development but not other pain symptoms in the ICS model, so the ASIC3-dependent metabolomics changes could be useful for developing diagnostic biomarkers specific to chronic widespread muscle pain, the core symptom of FM. Further pharmacological validations are needed to validate these metabolomics changes as potential biomarkers for FM diagnosis and/or treatment responses.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan
| | - Ching-Hua Kuo
- Department of Pharmacy, National Taiwan University, Taipei, 100, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan. .,Taiwan Mouse Clinic - National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
4
|
Meng J, Zhang X, Wu H, Bu J, Shi C, Deng C, Mao Y. Morphine-induced conditioned place preference in mice: Metabolomic profiling of brain tissue to find “molecular switch” of drug abuse by gas chromatography/mass spectrometry. Anal Chim Acta 2012; 710:125-30. [DOI: 10.1016/j.aca.2011.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/07/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
|
5
|
Torigoe K, Potter PE, Katz DP. Branched-chain amino acid-induced hippocampal norepinephrine release is antagonized by picrotoxin: evidence for a central mode of action. Brain Res Bull 1999; 49:281-4. [PMID: 10424848 DOI: 10.1016/s0361-9230(99)00060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies indicated that administration of a 1:1:1 mixture of the branched-chain amino acids leucine, isoleucine, and valine (BCAA) decreased the response to pain. The present study investigates the effects of BCAA on release of norepinephrine (NE) from isolated hippocampal brain slices. BCAA evoked 3H-NE release in a concentration-dependent manner. This effect was antagonized by the gamma aminobutyric acid (GABA) receptor antagonist picrotoxin, again in a concentration-dependent manner, suggesting that the effect may be mediated via a GABA receptor. Given the role of NE and of GABA receptors in the central response to pain, it is possible that the BCAA may exert their antinociceptive properties through activation of GABA receptors.
Collapse
Affiliation(s)
- K Torigoe
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Kirvelä O, Jaatinen J, Scheinin H, Kanto J. The effects of branched chain amino acid infusion on pain perception and plasma concentrations of monoamines. Pharmacol Biochem Behav 1998; 60:77-82. [PMID: 9610927 DOI: 10.1016/s0091-3057(97)00466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infusions of branched chain amino acids (BCAA) have been shown to have several CNS-mediated effects including antinociceptive action. We investigated the effects of BCAA infusion on pain perception, respiratory control, and plasma monoamine concentrations. Six healthy female volunteers were given in a double-blind, random, crossover design an 8-h infusion (1.75 ml/kg/h) of either (a) Ringers lactate, (b) conventional 4% amino acid solution, or (c) 4% BCAA solution with intervals of at least 48 h. Respiratory control was evaluated with continuous capnography. Pain perception was measured using dental dolorimetry for sharp pain, and pain transmitted by afferent C-fibers was evaluated with tourniquet test. Changes in vigilance were measured using critical flicker fusion technique. Evaluations were made for baseline, and after 2.5, 5, and 8 h. Plasma samples were collected at the same time points for amino acid and monoamine analysis. BCAA infusion resulted in significant increases of plasma concentrations of all BCAAs, with a simultaneous decrease in concentrations of aromatic amino acids. Of the measured monoamines and their metabolites dihydroxyphenylacetic acid (DOPAC) decreased, showing significant treatment effect for BCAA. Despite these changes no significant effect of BCAAs on respiratory control, vigilance, or pain perception was observed. In conclusion, despite significant changes in plasma concentrations of both amino acids and DOPAC, BCAA infusion did not show any clinically relevant antinociceptive effect.
Collapse
Affiliation(s)
- O Kirvelä
- Department of Anaesthesiology, Turku University Hospital, Finland
| | | | | | | |
Collapse
|