1
|
Chaminade F, Darlix JL, Fossé P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses 2022; 14:606. [PMID: 35337013 PMCID: PMC8953772 DOI: 10.3390/v14030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.
Collapse
Affiliation(s)
- Françoise Chaminade
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Jean-Luc Darlix
- Laboratoire de Bioimagerie et Pathologies, UMR7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67400 Illkirch, France;
| | - Philippe Fossé
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Paul S, Saikia M, Chakraborty S. Identification of novel microRNAs in Rous sarcoma Virus (RSV) and their target sites in tumor suppressor genes of chicken. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105139. [PMID: 34798320 DOI: 10.1016/j.meegid.2021.105139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A small non-coding, evolutionarily conserved regulatory RNA molecule known as microRNA (miRNA) regulates various cellular activities and pathways. MicroRNAs remain evolutionarily conserved in different species of same taxa. They are present in all organisms including viruses. Viral miRNAs are small, less conserved and less stable and have higher negative minimal folding free energy than miRNAs of different organisms. The size of viral precursor miRNA is approximately 60-119 nucleotides in length. The structure of the mature miRNA sequences is predicted by using higher negative MFE (ΔG) value. Rous sarcoma Virus (RSV), named after its inventor Peyton Rous, has been known for causing tumors in the chicken for which it is known as an oncogenic retrovirus. Using specific criteria we have predicted 5 potential miRNAs in RSV which targeted 8 tumor suppressor genes in Gallus gallus. This study aims to predict the potential miRNAs, secondary structures and their targets for better understanding of the regulatory network of Rous sarcoma virus miRNA in forming sarcoma.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Momi Saikia
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
3
|
Chen EC, Maldonado RJK, Parent LJ. Visualizing Rous Sarcoma Virus Genomic RNA Dimerization in the Nucleus, Cytoplasm, and at the Plasma Membrane. Viruses 2021; 13:v13050903. [PMID: 34068261 PMCID: PMC8153106 DOI: 10.3390/v13050903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
Retroviruses are unique in that they package their RNA genomes as non-covalently linked dimers. Failure to dimerize their genomes results in decreased infectivity and reduced packaging of genomic RNA into virus particles. Two models of retrovirus genome dimerization have been characterized: in murine leukemia virus (MLV), genomic RNA dimerization occurs co-transcriptionally in the nucleus, resulting in the preferential formation of genome homodimers; whereas in human immunodeficiency virus (HIV-1), genomic RNA dimerization occurs in the cytoplasm and at the plasma membrane, with a random distribution of heterodimers and homodimers. Although in vitro studies have identified the genomic RNA sequences that facilitate dimerization in Rous sarcoma virus (RSV), in vivo characterization of the location and preferences of genome dimerization has not been performed. In this study, we utilized three single molecule RNA imaging approaches to visualize genome dimers of RSV in cultured quail fibroblasts. The formation of genomic RNA heterodimers within cells was dependent on the presence of the dimerization initiation site (DIS) sequence in the L3 stem. Subcellular localization analysis revealed that heterodimers were present the nucleus, cytoplasm, and at the plasma membrane, indicating that genome dimers can form in the nucleus. Furthermore, single virion analysis revealed that RSV preferentially packages genome homodimers into virus particles. Therefore, the mechanism of RSV genomic RNA dimer formation appears more similar to MLV than HIV-1.
Collapse
Affiliation(s)
- Eunice C. Chen
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Leslie J. Parent
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-7199
| |
Collapse
|
4
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
5
|
Rous Sarcoma Virus Genomic RNA Dimerization Capability In Vitro Is Not a Prerequisite for Viral Infectivity. Viruses 2020; 12:v12050568. [PMID: 32455905 PMCID: PMC7291142 DOI: 10.3390/v12050568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5′-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag–RNA interactions.
Collapse
|
6
|
Stevens L. Gene structure and organisation in the Domestic Fowl ( Gallus domesticus). WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps19860017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lewis Stevens
- Department of Biological Science, Stirling University, Stirling FK9 4LA, Scotland
| |
Collapse
|
7
|
Klimenko OV, Sidorov A. The full recovery of mice (Mus Musculus C57BL/6 strain) from virus-induced sarcoma after treatment with a complex of DDMC delivery system and sncRNAs. Noncoding RNA Res 2019; 4:69-78. [PMID: 31193489 PMCID: PMC6531865 DOI: 10.1016/j.ncrna.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virus-induced cellular genetic modifications result in the development of many human cancers. METHODS In our experiments, we used the RVP3 cell line, which produce primary mouse virus-induced sarcoma in 100% of cases. Inbreed 4-week-old female C57BL/6 mice were injected subcutaneously in the interscapular region with RVP3 cells. Three groups of mice were used. For treatment, one and/or two intravenous injections of a complex of small non-coding RNAs (sncRNAs) a-miR-155, piR-30074, and miR-125b with a 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC) delivery system were used. The first group consisted of untreated animals (control). The second group was treated with one injection of complex DDMC/sncRNAs (1st group). The third group was treated with two injections of complex DDMC/sncRNAs (2nd group). The tumors were removed aseptically, freed of necrotic material, and used with spleen and lungs for subsequent RT-PCR and immunofluorescence experiments, or stained with Leishman-Romanowski dye. RESULTS As a result, the mice fully recovered from virus-induced sarcoma after two treatments with a complex including the DDMC vector and a-miR-155, piR-30074, and miR-125b. In vitro studies showed genetic and morphological transformations of murine cancer cells after the injections. CONCLUSIONS Treatment of virus-induced sarcoma of mice with a-miR-155, piR-30074, and miR-125b as active component of anti-cancer complex and DDMC vector as delivery system due to epigenetic-regulated transformation of cancer cells into cells with non-cancerous physiology and morphology and full recovery of disease.
Collapse
Affiliation(s)
- Oxana V. Klimenko
- SID ALEX GROUP, Ltd., Kyselova 1185/2, Prague, 182 00, Czech Republic
| | | |
Collapse
|
8
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Abstract
The surface envelope protein of any virus is major determinant of the host cell that is infected and as a result a major determinant of viral pathogenesis. Retroviruses have a single surface protein named Env. It is a trimer of heterodimers and is responsible for binding to the host cell receptor and mediating fusion between the viral and host membranes. In this review we will discuss the history of the discovery of the avian leukosis virus (ALV) and human immunodeficiency virus type 1 (HIV-1) Env proteins and their receptor specificity, comparing the many differences but having some similarities. Much of the progress in these fields has relied on viral genetics and genetic polymorphisms in the host population. A special feature of HIV-1 is that its persistent infection in its human host, to the point of depleting its favorite target cells, allows the virus to evolve new entry phenotypes to expand its host range into several new cell types. This variety of entry phenotypes has led to confusion in the field leading to the major form of entry phenotype of HIV-1 being overlooked until recently. Thus an important part of this story is the description and naming of the most abundant entry form of the virus: R5 T cell-tropic HIV-1.
Collapse
|
10
|
Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 2017; 114:E5148-E5157. [PMID: 28607078 DOI: 10.1073/pnas.1704750114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Collapse
|
11
|
Pandey KK, Bera S, Shi K, Aihara H, Grandgenett DP. A C-terminal "Tail" Region in the Rous Sarcoma Virus Integrase Provides High Plasticity of Functional Integrase Oligomerization during Intasome Assembly. J Biol Chem 2017; 292:5018-5030. [PMID: 28184005 PMCID: PMC5377814 DOI: 10.1074/jbc.m116.773382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
The retrovirus integrase (IN) inserts the viral cDNA into the host DNA genome. Atomic structures of five different retrovirus INs complexed with their respective viral DNA or branched viral/target DNA substrates have indicated these intasomes are composed of IN subunits ranging from tetramers, to octamers, or to hexadecamers. IN precursors are monomers, dimers, or tetramers in solution. But how intasome assembly is controlled remains unclear. Therefore, we sought to unravel the functional mechanisms in different intasomes. We produced kinetically stabilized Rous sarcoma virus (RSV) intasomes with human immunodeficiency virus type 1 strand transfer inhibitors that interact simultaneously with IN and viral DNA within intasomes. We examined the ability of RSV IN dimers to assemble two viral DNA molecules into intasomes containing IN tetramers in contrast to one possessing IN octamers. We observed that the last 18 residues of the C terminus ("tail" region) of IN (residues 1-286) determined whether an IN tetramer or octamer assembled with viral DNA. A series of truncations of the tail region indicated that these 18 residues are critical for the assembly of an intasome containing IN octamers but not for an intasome containing IN tetramers. The C-terminally truncated IN (residues 1-269) produced an intasome that contained tetramers but failed to produce an intasome with octamers. Both intasomes have similar catalytic activities. The results suggest a high degree of plasticity for functional multimerization and reveal a critical role of the C-terminal tail region of IN in higher order oligomerization of intasomes, potentially informing future strategies to prevent retroviral integration.
Collapse
Affiliation(s)
- Krishan K Pandey
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Sibes Bera
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| |
Collapse
|
12
|
Rye-McCurdy T, Olson ED, Liu S, Binkley C, Reyes JP, Thompson BR, Flanagan JM, Parent LJ, Musier-Forsyth K. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag. Viruses 2016; 8:v8090256. [PMID: 27657107 PMCID: PMC5035970 DOI: 10.3390/v8090256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.
Collapse
Affiliation(s)
- Tiffiny Rye-McCurdy
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Erik D Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Christiana Binkley
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Joshua-Paolo Reyes
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Brian R Thompson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Departments of Medicine and Microbiology and Immunology, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Hudson SW, McNally LM, McNally MT. Evidence that a threshold of serine/arginine-rich (SR) proteins recruits CFIm to promote rous sarcoma virus mRNA 3' end formation. Virology 2016; 498:181-191. [PMID: 27596537 DOI: 10.1016/j.virol.2016.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The weak polyadenylation site (PAS) of Rous sarcoma virus (RSV) is activated by the juxtaposition of SR protein binding sites within the spatially separate negative regulator of splicing (NRS) element and the env RNA splicing enhancer (Env enhancer), which are far upstream of the PAS. Juxtaposition occurs by formation of the NRS - 3' ss splicing regulatory complex and is thought to provide a threshold of SR proteins that facilitate long-range stimulation of the PAS. We provide evidence for the threshold model by showing that greater than three synthetic SR protein binding sites are needed to substitute for the Env enhancer, that either the NRS or Env enhancer alone promotes polyadenylation when the distance to the PAS is decreased, and that SR protein binding sites promote binding of the polyadenylation factor cleavage factor I (CFIm) to the weak PAS. These observations may be relevant for cellular PASs.
Collapse
Affiliation(s)
- Stephen W Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
14
|
Guizard S, Piégu B, Arensburger P, Guillou F, Bigot Y. Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genomics 2016; 17:659. [PMID: 27542599 PMCID: PMC4992247 DOI: 10.1186/s12864-016-3015-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/12/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8-12 %) than the sequenced genomes of many vertebrate species (30-55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). RESULTS We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31-35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. CONCLUSIONS Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes.
Collapse
Affiliation(s)
- Sébastien Guizard
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Peter Arensburger
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 USA
| | - Florian Guillou
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Yves Bigot
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| |
Collapse
|
15
|
Wang Y, Li J, Li Y, Fang L, Sun X, Chang S, Zhao P, Cui Z. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene. Virus Genes 2016; 52:365-71. [PMID: 27108997 DOI: 10.1007/s11262-016-1301-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
Abstract
Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.
Collapse
Affiliation(s)
- Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Jianliang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Lichun Fang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China.
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Wang Y, Li J, Li Y, Fang L, Sun X, Chang S, Zhao P, Cui Z. Identification of avian leukosis virus subgroup J-associated acutely transforming viruses carrying the v-src oncogene in layer chickens. J Gen Virol 2016; 97:1240-1248. [PMID: 26842006 DOI: 10.1099/jgv.0.000420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the molecular basis for the rapid oncogenicity of an acutely transforming avian leukosis virus (ALV), isolated from fibrosarcomas in Hy-Line Brown commercial layer chickens infected with ALV subgroup J (ALV-J), the complete genomic structure of the provirus was determined. In addition to ALV-J replication-complete virus SDAU1102, five proviral DNA genomes, named SJ-1, SJ-2, SJ-3, SJ-4 and SJ-5, carrying different lengths of the v-src oncogene were amplified from original tumours and chicken embryo fibroblasts (CEFs) infected with viral stocks. The genomic sequences of the SJ-1-SJ-5 provirus were closely related to that of SDAU1102 but were defective. The results of Western blot analysis and immunohistochemical staining also showed overexpression of the p60v-src protein in infected CEFs and tumour tissue. To the best of our knowledge, this is the first report of the isolation and identification of acutely transforming viruses carrying the v-src oncogene with ALV-J as the helper virus. It also offers insight into the generation of acutely transforming ALVs carrying the v-src oncogene.
Collapse
Affiliation(s)
- Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Jianliang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Lichun Fang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| |
Collapse
|
17
|
Fernandes J. The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure. Front Pharmacol 2015; 6:92. [PMID: 25983693 PMCID: PMC4416442 DOI: 10.3389/fphar.2015.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Oncogenes are the primary candidates for target-directed therapy, given that they are involved directly in the progression and resistance of tumors. However, the appearance of point mutations can hinder the treatment of patients with these new molecules, raising costs and the need to development new analogs that target the novel mutations. Based on an analysis of homologies, the present study discusses the possibility of predicting the failure of a protein as a pharmacological target, due to its similarities with retrovirus sequences, which have extremely high mutation rates. This analysis was based on the molecular evidence available in the literature, and widely-used and well-established PSI-BLAST, with two iterations and maximum of 500 aligned sequences. The possibility of predicting which newly-discovered genes involved in tumor progression would likely result in the failure of targeted therapy, using free, simple and automated bioinformatics tools, could provide substantial savings in the time and financial resources needed for long-term drug development.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Federal University of Rio de Janeiro, Duque de Caxias , Rio de Janeiro, Brazil ; Institute for Translational Research on Health and Environment in the Amazon Region - INPeTAm, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
19
|
Han C, Hao R, Liu L, Zeng X. Molecular characterization of 3'UTRs of J subgroup avian leukosis virus in passerine birds in China. Arch Virol 2015; 160:845-9. [PMID: 25577165 DOI: 10.1007/s00705-014-2321-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
To assess the status of avian leukosis virus subgroup J (ALV-J) infection in passerine birds in China, 365 passerine birds collected from northeast China from 2011 to 2013 were tested, and two ALV-J strains were isolated from yellow-browed warbler and marsh tit. The 3'untranslated regions (3'UTRs) of the two strains were amplified, cloned, and sequenced, with the results showing that the 3'UTRs of the two strains contained multiple mutations and deletions, which are similar to viral strains isolated from Chinese layer chickens. These results demonstrate the presence of ALV-J in passerine birds and reveal the molecular characteristics of the 3'UTRs of ALV-J from passerine birds.
Collapse
Affiliation(s)
- Chunyan Han
- College of Wildlife Resources, Northeast Forestry University, No. 26. Hexing Street, Harbin, 150040, China
| | | | | | | |
Collapse
|
20
|
Chong AY, Kojima KK, Jurka J, Ray DA, Smit AFA, Isberg SR, Gongora J. Evolution and gene capture in ancient endogenous retroviruses - insights from the crocodilian genomes. Retrovirology 2014; 11:71. [PMID: 25499090 PMCID: PMC4299795 DOI: 10.1186/s12977-014-0071-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 08/07/2014] [Indexed: 01/12/2023] Open
Abstract
Background Crocodilians are thought to be hosts to a diverse and divergent complement of endogenous retroviruses (ERVs) but a comprehensive investigation is yet to be performed. The recent sequencing of three crocodilian genomes provides an opportunity for a more detailed and accurate representation of the ERV diversity that is present in these species. Here we investigate the diversity, distribution and evolution of ERVs from the genomes of three key crocodilian species, and outline the key processes driving crocodilian ERV proliferation and evolution. Results ERVs and ERV related sequences make up less than 2% of crocodilian genomes. We recovered and described 45 ERV groups within the three crocodilian genomes, many of which are species specific. We have also revealed a new class of ERV, ERV4, which appears to be common to crocodilians and turtles, and currently has no characterised exogenous counterpart. For the first time, we formally describe the characteristics of this ERV class and its classification relative to other recognised ERV and retroviral classes. This class shares some sequence similarity and sequence characteristics with ERV3, although it is phylogenetically distinct from the other ERV classes. We have also identified two instances of gene capture by crocodilian ERVs, one of which, the capture of a host KIT-ligand mRNA has occurred without the loss of an ERV domain. Conclusions This study indicates that crocodilian ERVs comprise a wide variety of lineages, many of which appear to reflect ancient infections. In particular, ERV4 appears to have a limited host range, with current data suggesting that it is confined to crocodilians and some lineages of turtles. Also of interest are two ERV groups that demonstrate evidence of host gene capture. This study provides a framework to facilitate further studies into non-mammalian vertebrates and highlights the need for further studies into such species. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0071-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda Y Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Kenji K Kojima
- Genetic Information Research Institute, Los Altos, CA, 94022, USA.
| | - Jerzy Jurka
- Genetic Information Research Institute, Los Altos, CA, 94022, USA.
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Plant Pathology and Entomology, Mississippi State University, Starkville, Mississippi State, 39762, USA. .,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi State, 39762, USA. .,Current Address: Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Arian F A Smit
- Institute for Systems Biology, Seattle, WA, 98109-5234, USA.
| | - Sally R Isberg
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia. .,Centre for Crocodile Research, Noonamah, NT, 0837, Australia.
| | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
21
|
Zeng X, Gao Y, Li D, Hao R, Liu W, Han C, Gao H, Qi X, Wang Y, Liu L, Wang X. Molecular characteristics of the complete genome of a J-subgroup avian leukosis virus strain isolated from Eurasian teal in China. Virus Genes 2014; 49:250-8. [PMID: 24854142 DOI: 10.1007/s11262-014-1081-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/02/2014] [Indexed: 11/28/2022]
Abstract
The J-subgroup avian leukosis virus (ALV-J) strain WB11098J was isolated from a wild Eurasian teal, and its proviral genomic sequences were determined. The complete proviral sequence of WB11098J was 7868 nt long. WB11098J was 95.3.9 % identical to the prototype strain HPRS-103, 94.2 % identical to the American strain ADOL-7501, 94.5-94.7 % identical to Chinese broiler isolates, 94.8-97.5 % identical to layer chicken isolates, and 94.4-95.0 % identical to Chinese local chicken isolates at the nucleotide level. Phylogenetic analysis showed that the WB11098J isolate shared the greatest homology with the layer strain SD09DP03 and was included in the same cluster. Interestingly, two 19-bp insertions in the U3 regions of the 5'LTR and 5'UTR that were most likely derived from other retroviruses were found in the WB11098J isolate. These insertions separately introduced one E2BP-binding site in the U3 region of the 5'LTR and a RNA polymerase II transcription factor IIB and core promoter motif of ten elements in the 5'UTR. A 5-bp deletion was identified in the U3 region of the 5'LTR. No nucleotides were deleted in the rTM or DR-1 regions in the 3'UTR. A 1-bp deletion was detected in the E element and introduced a specific and distinct binding site for c-Ets-1. Our study is the first to report the molecular characteristics of the complete genome of an ALV-J that was isolated from a wild bird and will provide necessary information for further understanding of the evolution of ALV-J.
Collapse
Affiliation(s)
- Xiangwei Zeng
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mechanistic differences between nucleic acid chaperone activities of the Gag proteins of Rous sarcoma virus and human immunodeficiency virus type 1 are attributed to the MA domain. J Virol 2014; 88:7852-61. [PMID: 24789780 DOI: 10.1128/jvi.00736-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host cell tRNAs are recruited for use as primers to initiate reverse transcription in retroviruses. Human immunodeficiency virus type 1 (HIV-1) uses tRNA(Lys3) as the replication primer, whereas Rous sarcoma virus (RSV) uses tRNA(Trp). The nucleic acid (NA) chaperone function of the nucleocapsid (NC) domain of HIV-1 Gag is responsible for annealing tRNA(Lys3) to the genomic RNA (gRNA) primer binding site (PBS). Compared to HIV-1, little is known about the chaperone activity of RSV Gag. In this work, using purified RSV Gag containing an N-terminal His tag and a deletion of the majority of the protease domain (H6.Gag.3h), gel shift assays were used to monitor the annealing of tRNA(Trp) to a PBS-containing RSV RNA. Here, we show that similar to HIV-1 Gag lacking the p6 domain (GagΔp6), RSV H6.Gag.3h is a more efficient chaperone on a molar basis than NC; however, in contrast to the HIV-1 system, both RSV H6.Gag.3h and NC have comparable annealing rates at protein saturation. The NC domain of RSV H6.Gag.3h is required for annealing, whereas deletion of the matrix (MA) domain, which stimulates the rate of HIV-1 GagΔp6 annealing, has little effect on RSV H6.Gag.3h chaperone function. Competition assays confirmed that RSV MA binds inositol phosphates (IPs), but in contrast to HIV-1 GagΔp6, IPs do not stimulate RSV H6.Gag.3h chaperone activity unless the MA domain is replaced with HIV-1 MA. We conclude that differences in the MA domains are primarily responsible for mechanistic differences in RSV and HIV-1 Gag NA chaperone function. Importance: Mounting evidence suggests that the Gag polyprotein is responsible for annealing primer tRNAs to the PBS to initiate reverse transcription in retroviruses, but only HIV-1 Gag chaperone activity has been demonstrated in vitro. Understanding RSV Gag's NA chaperone function will allow us to determine whether there is a common mechanism among retroviruses. This report shows for the first time that full-length RSV Gag lacking the protease domain is a highly efficient NA chaperone in vitro, and NC is required for this activity. In contrast to results obtained for HIV-1 Gag, due to the weak nucleic acid binding affinity of the RSV MA domain, inositol phosphates do not regulate RSV Gag-facilitated tRNA annealing despite the fact that they bind to MA. These studies provide insight into the viral regulation of tRNA primer annealing, which is a potential target for antiretroviral therapy.
Collapse
|
23
|
Detection and molecular characterization of J subgroup avian leukosis virus in wild ducks in China. PLoS One 2014; 9:e94980. [PMID: 24733260 PMCID: PMC3986388 DOI: 10.1371/journal.pone.0094980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/21/2014] [Indexed: 12/01/2022] Open
Abstract
To assess the status of avian leukosis virus subgroup J (ALV-J) in wild ducks in China, we examined samples from 528 wild ducks, representing 17 species, which were collected in China over the past 3 years. Virus isolation and PCR showed that 7 ALV-J strains were isolated from wild ducks. The env genes and the 3′UTRs from these isolates were cloned and sequenced. The env genes of all 7 wild duck isolates were significantly different from those in the prototype strain HPRS-103, American strains, broiler ALV-J isolates and Chinese local chicken isolates, but showed close homology with those found in some layer chicken ALV-J isolates and belonged to the same group. The 3′UTRs of 7 ALV-J wild ducks isolates showed close homology with the prototype strain HPRS-103 and no obvious deletion was found in the 3′UTR except for a 1 bp deletion in the E element that introduced a binding site for c-Ets-1. Our study demonstrated the presence of ALV-J in wild ducks and investigated the molecular characterization of ALV-J in wild ducks isolates.
Collapse
|
24
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
25
|
An avian retrovirus uses canonical expression and processing mechanisms to generate viral microRNA. J Virol 2013; 88:2-9. [PMID: 24155381 PMCID: PMC3911700 DOI: 10.1128/jvi.02921-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, the vast majority of known virus-encoded microRNAs (miRNAs) are derived from polymerase II transcripts encoded by DNA viruses. A recent demonstration that the bovine leukemia virus, a retrovirus, uses RNA polymerase III to directly transcribe the pre-miRNA hairpins to generate viral miRNAs further supports the common notion that the canonical pathway of miRNA biogenesis does not exist commonly among RNA viruses. Here, we show that an exogenous virus-specific region, termed the E element or XSR, of avian leukosis virus subgroup J (ALV-J), a member of avian retrovirus, encodes a novel miRNA, designated E (XSR) miRNA, using the canonical miRNA biogenesis pathway. Detection of novel microRNA species derived from the E (XSR) element, a 148-nucleotide noncoding RNA with hairpin structure, showed that the E (XSR) element has the potential to function as a microRNA primary transcript, demonstrating a hitherto unknown function with possible roles in myeloid leukosis associated with ALV-J.
Collapse
|
26
|
Krishnan H, Miller WT, Goldberg GS. SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 2012; 3:426-35. [PMID: 23226580 DOI: 10.1177/1947601912458583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.
Collapse
Affiliation(s)
- Harini Krishnan
- University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Stratford, NJ, USA
| | | | | |
Collapse
|
27
|
Ochi A, Ochiai K, Kobara A, Nakamura S, Hatai H, Handharyani E, Tiemann I, Tanaka IB, Toyoda T, Abe A, Seok SH, Sunden Y, Torralba NC, Park JH, Hafez HM, Umemura T. Epidemiological study of fowl glioma-inducing virus in chickens in Asia and Germany. Avian Pathol 2012; 41:299-309. [PMID: 22702458 DOI: 10.1080/03079457.2012.684373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fowl glioma-inducing virus (FGV), which belongs to avian leukosis virus (ALV) subgroup A, induces fowl glioma. This disease is characterized by multiple nodular gliomatous growths of astrocytes and has been previously reported in Europe, South Africa, Australia, the United States and Japan. FGV and FGV variants have spread to ornamental Japanese fowl, including Japanese bantams (Gallus gallus domesticus), in Japan. However, it is unclear how and where FGV emerged and whether FGV is related to the past fowl glioma in European countries. In this study, the prevalence of FGV in European, Asian and Japanese native chickens was examined. FGV could not be isolated from any chickens in Germany and Asian countries other than Japan. Eighty (26%) out of 307 chickens reared in Japan were positive by FGV-screening nested polymerase chain reaction and 11 FGV variants with an FGV-specific sequence in their 3' untranslated region were isolated. In addition, four other ALVs lacking the FGV-specific sequence were isolated from Japanese bantams with fowl glioma and/or cerebellar hypoplasia. These isolates were considered to be distinct recombinant viruses between FGV variants and endogenous/exogenous avian retroviruses. These results suggest that the variants as well as distinct recombinant ALVs are prevalent among Japanese native chickens in Japan and that FGV may have emerged by recombination among avian retroviruses in the chickens of this country.
Collapse
Affiliation(s)
- Akihiro Ochi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Retroviruses are the original source of oncogenes. The discovery and characterization of these genes was made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumour viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein and cellular origin. The MYC, RAS and ERBB oncogenes quickly followed SRC, and these together with PI3K are now recognized as crucial driving forces in human cancer.
Collapse
Affiliation(s)
- Peter K Vogt
- The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
29
|
Modulation of ribosomal frameshifting frequency and its effect on the replication of Rous sarcoma virus. J Virol 2012; 86:11581-94. [PMID: 22896611 DOI: 10.1128/jvi.01846-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is widely used in the expression of RNA virus replicases and represents a potential target for antiviral intervention. There is interest in determining the extent to which frameshifting efficiency can be modulated before virus replication is compromised, and we have addressed this question using the alpharetrovirus Rous sarcoma virus (RSV) as a model system. In RSV, frameshifting is essential in the production of the Gag-Pol polyprotein from the overlapping gag and pol coding sequences. The frameshift signal is composed of two elements, a heptanucleotide slippery sequence and, just downstream, a stimulatory RNA structure that has been proposed to be an RNA pseudoknot. Point mutations were introduced into the frameshift signal of an infectious RSV clone, and virus replication was monitored following transfection and subsequent infection of susceptible cells. The introduced mutations were designed to generate a range of frameshifting efficiencies, yet with minimal impact on encoded amino acids. Our results reveal that point mutations leading to a 3-fold decrease in frameshifting efficiency noticeably reduce virus replication and that further reduction is severely inhibitory. In contrast, a 3-fold stimulation of frameshifting is well tolerated. These observations suggest that small-molecule inhibitors of frameshifting are likely to have potential as agents for antiviral intervention. During the course of this work, we were able to confirm, for the first time in vivo, that the RSV stimulatory RNA is indeed an RNA pseudoknot but that the pseudoknot per se is not absolutely required for virus viability.
Collapse
|
30
|
Ochi A, Ochiai K, Nakamura S, Kobara A, Sunden Y, Umemura T. Molecular Characteristics and Pathogenicity of an Avian Leukosis Virus Isolated from Avian Neurofibrosarcoma. Avian Dis 2012; 56:35-43. [DOI: 10.1637/9830-060711-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Pan W, Gao Y, Sun F, Qin L, Liu Z, Yun B, Wang Y, Qi X, Gao H, Wang X. Novel sequences of subgroup J avian leukosis viruses associated with hemangioma in Chinese layer hens. Virol J 2011; 8:552. [PMID: 22185463 PMCID: PMC3310751 DOI: 10.1186/1743-422x-8-552] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/21/2011] [Indexed: 12/02/2022] Open
Abstract
Background Avian leukosis virus subgroup J (ALV-J) preferentially induces myeloid leukosis (ML) in meat-type birds. Since 2008, many clinical cases of hemangioma rather than ML have frequently been reported in association with ALV-J infection in Chinese layer flocks. Results Three ALV-J strains associated with hemangioma were isolated and their proviral genomic sequences were determined. The three isolates, JL093-1, SD09DP03 and HLJ09MDJ-1, were 7,670, 7,670, and 7,633 nt in length. Their gag and pol genes were well conserved, with identities of 94.5-98.6% and 97.1-99.5%, respectively, with other ALV-J strains at the amino acid level (aa), while the env genes of the three isolates shared a higher aa identity with the env genes of other hemangioma strains than with those of ML strains. Interestingly, two novel 19-bp insertions in the U3 region in the LTR and 5' UTR, most likely derived from other retroviruses, were found in all the three isolates, thereby separately introducing one E2BP binding site in the U3 region in the LTR and RNA polymerase II transcription factor IIB and core promoter motif ten elements in the 5' UTR. Meanwhile, two binding sites in the U3 LTRs of the three isolates for NFAP-1 and AIB REP1 were lost, and a 1-base deletion in the E element of the 3' UTR of JL093-1 and SD09DP03 introduced a binding site for c-Ets-1. In addition to the changes listed above, the rTM of the 3' UTR was deleted in each of the three isolates. Conclusion Our study is the first to discovery the coexistence of two novel insertions in the U3 region in the LTR and the 5' UTR of ALV-J associated with hemangioma symptoms, and the transcriptional regulatory elements introduced should be taken into consideration in the occurrence of hemangioma.
Collapse
Affiliation(s)
- Wei Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Juxtaposition of two distant, serine-arginine-rich protein-binding elements is required for optimal polyadenylation in Rous sarcoma virus. J Virol 2011; 85:11351-60. [PMID: 21849435 DOI: 10.1128/jvi.00721-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rous sarcoma virus (RSV) polyadenylation site (PAS) is very poorly used in vitro due to suboptimal upstream and downstream elements, and yet ∼85% of viral transcripts are polyadenylated in vivo. The mechanisms that orchestrate polyadenylation at the weak PAS are not completely understood. It was previously shown that serine-arginine (SR)-rich proteins stimulate RSV PAS use in vitro and in vivo. It has been proposed that viral RNA polyadenylation is stimulated through a nonproductive splice complex that forms between a pseudo 5' splice site (5'ss) within the negative regulator of splicing (NRS) and a downstream 3'ss, which repositions NRS-bound SR proteins closer to the viral PAS. This repositioning is thought to be important for long-distance poly(A) stimulation by the NRS. We report here that a 308-nucleotide deletion downstream of the env 3'ss decreased polyadenylation efficiency, suggesting the presence of an additional element required for optimal RSV polyadenylation. Mapping studies localized the poly(A) stimulating element to a region coincident with the Env splicing enhancer, which binds SR proteins, and inactivation of the enhancer and SR protein binding decreased polyadenylation efficiency. The positive effect of the Env enhancer on polyadenylation could be uncoupled from its role in splicing. As with the NRS, the Env enhancer also stimulated use of the viral PAS in vitro. These results suggest that a critical threshold of SR proteins, achieved by juxtaposition of SR protein binding sites within the NRS and Env enhancer, is required for long-range polyadenylation stimulation.
Collapse
|
33
|
Bar A, Marchand V, Khoury G, Dreumont N, Mougin A, Robas N, Stévenin J, Visvikis A, Branlant C. Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein. Nucleic Acids Res 2010; 39:3388-403. [PMID: 21183462 PMCID: PMC3082916 DOI: 10.1093/nar/gkq1114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5′-part is considered as an ESE binding SR proteins. Its 3′-part contains a decoy 5′-splice site (ss), which inhibits splicing at the bona fide 5′-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.
Collapse
Affiliation(s)
- Aileen Bar
- ARN, RNP, Structure-Fonction-maturation, Enzymologie Moléculaire et Structurale, Faculté des Sciences et Techniques, Nancy Université-UMR 7214 CNRS-UHP, BP 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Recombinant avian leukosis viruses of subgroup J isolated from field infected commercial layer chickens with hemangioma and myeloid leukosis possess an insertion in the E element. Vet Res Commun 2010; 34:619-32. [PMID: 20676760 PMCID: PMC2931761 DOI: 10.1007/s11259-010-9436-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 11/25/2022]
Abstract
Background Five isolates (JS09GY2, JS09GY3, JS09GY4, JS09GY5, and JS09GY6) of avian leukosis virus subgroup J (ALV-J) were isolated from six infected commercial layer flocks displaying both hemangioma and myeloid leukosis (ML), which shared the same parental line, in China in 2009. Results All six of the commercial layer chickens examined showed hemangiomas on their body surface or feet. Some developed hemangiomas in their internal organs, causing hepatorrhexis and blood loss. Histopathologically different stages of hemangiomas with ML in the liver, heart, and spleen, were observed. Five viral isolates were obtained from infected DF1 cells incubated with the spleen tissue or serum of the birds from the six flocks. By full genome sequences analysis, a 19-nucleotide repeat sequence was identified in the primer binding site (PBS)-leader region of isolates JS09GY3 and JS09GY6, located between sites 249 and 250 according to the sequence of reference strain HPRS103, and also present in Rous sarcoma virus strain Schmidt–Ruppin B (RSV-SRB), Rous associated virus type 1 (RAV-1), and Rous associated virus type 2 (RAV-2). The predicted Gp85 proteins of isolates JS09GY2, JS09GY3, JS09GY5, and JS09GY6 were highly variable. Interestingly, the E elements of these four examined isolates showed a key deletion at site 30, which produced a new c-Ets-1 binding site. An 11-bp insertion was also found in the E element of isolate JS09GY3 located between bp 66 and 67 according to the sequence of reference strain HPRS103, while almost all previously reported Chinese strains showed an almost identical deletion of 127 bp in the same region. Conclusions Five ALV-J isolates were obtained from six field infected commercial layer chickens. Coexistence of hemangioma and ML were observed in these infected cases both macro- and microscopically. Complete proviral genome sequences of two isolates (JS09GY3 and JS09GY6) and the partial sequences of the other two isolates (JS09GY2 and JS09GY5) were determined. The isolates were found to be recombinants of ALV-J with a PBS-leader sequence originating from other retroviruses. The Gp85 protein with an amino acid deletion, a contiguous 11-bp insertion mutation in the E element, and a novel binding site, were noted in the proviral genomes.
Collapse
|
35
|
Stepanets V, Vernerová Z, Vilhelmová M, Geryk J, Hejnar J, Svoboda J. Amyloid A amyloidosis in non-infected and avian leukosis virus-C persistently infected inbred ducks. Avian Pathol 2010; 30:33-42. [DOI: 10.1080/03079450020023177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Volodymyr Stepanets
- a Institute of Molecular Genetics , Academy of Sciences of the Czech Republic , CZ- 166 37, Flemingovo nám. 2, Prague 6 , Czech Republic
| | - Zdenka Vernerová
- b Department of Pathology, First Faculty of Medicine , Charles University , Studnickova
| | - Milena Vilhelmová
- a Institute of Molecular Genetics , Academy of Sciences of the Czech Republic , CZ- 166 37, Flemingovo nám. 2, Prague 6 , Czech Republic
| | - Josef Geryk
- a Institute of Molecular Genetics , Academy of Sciences of the Czech Republic , CZ- 166 37, Flemingovo nám. 2, Prague 6 , Czech Republic
| | - Jiri Hejnar
- a Institute of Molecular Genetics , Academy of Sciences of the Czech Republic , CZ- 166 37, Flemingovo nám. 2, Prague 6 , Czech Republic
| | - Jan Svoboda
- a Institute of Molecular Genetics , Academy of Sciences of the Czech Republic , CZ- 166 37, Flemingovo nám. 2, Prague 6 , Czech Republic
| |
Collapse
|
36
|
Pham TD, Spencer J, Traina-Dorge VL, Mullin DA, Garry RF, Johnson ES. Detection of exogenous and endogenous avian leukosis virus in commercial chicken eggs using reverse transcription and polymerase chain reaction assay. Avian Pathol 2010; 28:385-92. [DOI: 10.1080/03079459994650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Atkins JF, Gesteland RF, Pennell S. Pseudoknot-Dependent Programmed —1 Ribosomal Frameshifting: Structures, Mechanisms and Models. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7119991 DOI: 10.1007/978-0-387-89382-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Programmed —1 ribosomal frameshifting is a translational recoding strategy that takes place during the elongation phase of protein biosynthesis. Frameshifting occurs in response to specific signals in the mRNA; a slippery sequence, where the ribosome changes frame, and a stimulatory RNA secondary structure, usually a pseudoknot, located immediately downstream. During the frameshift the ribosome slips backwards by a single nucleotide (in the 5′-wards/—1 direction) and continues translation in the new, overlapping reading frame, generating a fusion protein composed of the products of both the original and the —1 frame coding regions. In eukaryotes, frameshifting is largely a phenomenon of virus gene expression and associated predominantly with the expression of viral replicases. Research on frameshifting impacts upon diverse topics, including the ribosomal elongation cycle, RNA structure and function, tRNA modification, virus replication, antiviral intervention, evolution and bioinformatics. This chapter focuses on the structure and function of frameshift-stimulatory RNA pseudoknots and mechanistic aspects of ribosomal frameshifting. A variety of models of the frameshifting process are discussed in the light of recent advances in our understanding of ribosome structure and the elongation cycle.
Collapse
Affiliation(s)
- John F. Atkins
- grid.223827.e0000000121930096Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A.
| | - Raymond F. Gesteland
- grid.223827.e0000000121930096Dept. Bioengineering, University of Utah, Salt Lake City, 84112 U.S.A.
| | | |
Collapse
|
38
|
Maciolek NL, McNally MT. Characterization of Rous sarcoma virus polyadenylation site use in vitro. Virology 2008; 374:468-76. [PMID: 18272196 PMCID: PMC2413101 DOI: 10.1016/j.virol.2008.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/13/2007] [Accepted: 01/10/2008] [Indexed: 11/22/2022]
Abstract
Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.
Collapse
Affiliation(s)
- Nicole L. Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mark T. McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
39
|
Hatai H, Ochiai K, Nagakura K, Imanishi S, Ochi A, Kozakura R, Ono M, Goryo M, Ohashi K, Umemura T. A recombinant avian leukosis virus associated with fowl glioma in layer chickens in Japan. Avian Pathol 2008; 37:127-37. [DOI: 10.1080/03079450801898815] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Hizi A, Herschhorn A. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res 2008; 134:203-20. [PMID: 18291546 DOI: 10.1016/j.virusres.2007.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
This chapter reviews most of the biochemical data on reverse transcriptases (RTs) of retroviruses, other than those of HIV-1 and murine leukemia virus (MLV) that are covered in detail in other reviews of this special edition devoted to reverse transcriptases. The various RTs mentioned are grouped according to their retroviral origins and include the RTs of the alpharetroviruses, lentiviruses (both primate, other than HIV-1, and non-primate lentiviruses), betaretroviruses, deltaretroviruses and spumaretroviruses. For each RT group, the processing, molecular organization as well as the enzymatic activities and biochemical properties are described. Several RTs function as dimers, primarily as heterodimers, while the others are active as monomeric proteins. The comparisons between the diverse properties of the various RTs show the common traits that characterize the RTs from all retroviral subfamilies. In addition, the unique features of the specific RTs groups are also discussed.
Collapse
Affiliation(s)
- Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
41
|
Zavala G, Cheng S, Jackwood MW. Molecular epidemiology of avian leukosis virus subgroup J and evolutionary history of its 3' untranslated region. Avian Dis 2008; 51:942-53. [PMID: 18251406 DOI: 10.1637/0005-2086(2007)51[942:meoalv]2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian leukosis subgroup J (ALV-J) causes a variety of tumors and mortality in meat-type chickens. Since its discovery in the late 1980s, ALV-J has spread to breeding stock produced by most primary breeding companies of North America, the European Union, and Asia. ALV-J seems to have been eradicated from elite breeding stock produced by most primary breeders, albeit ALV-J still circulates in some commercial poultry. This study was undertaken to examine the molecular epidemiology and evolution of ALV-J detected in breeding stock and broiler chickens representing eight primary breeding companies over a period of approximately 20 yr (1988-2007). The redundant transmembrane region of the envelope gene has been deleted in some isolates, suggesting that this region is dispensable for viral fitness. Within the 3' untranslated region (3' UTR), the direct repeat 1 was present in 100% of the ALV-J isolates studied. In contrast, the E element has undergone substantial deletions in >50% of the ALV-J proviruses studied. Overall, the unique region 3 was the least conserved within the 3' long terminal repeat (LTR), albeit the transcriptional regulatory elements typical of avian retroviruses (CAAT, CArG, PRE, TATA, and Y boxes) were highly conserved. The direct repeat region of the LTR was identical in all of the proviruses, and the 3' unique region 5 was relatively well conserved. Thus, the 3' UTR of ALV-J has evolved rapidly, reflecting significant instability of this region. Some of the mutations in the 3' UTR have resulted in the emergence of moderately distinct genetic lineages representing each primary breeding company from which ALV-J was isolated.
Collapse
Affiliation(s)
- G Zavala
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
42
|
Maciolek NL, McNally MT. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol 2007; 81:11208-17. [PMID: 17670832 PMCID: PMC2045511 DOI: 10.1128/jvi.00919-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.
Collapse
Affiliation(s)
- Nicole L Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
43
|
Ali MB, Chaminade F, Kanevsky I, Ennifar E, Josset L, Ficheux D, Darlix JL, Fossé P. Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA. J Mol Biol 2007; 372:1082-1096. [PMID: 17706668 DOI: 10.1016/j.jmb.2007.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA.
Collapse
Affiliation(s)
- Moez Ben Ali
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Françoise Chaminade
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Igor Kanevsky
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Eric Ennifar
- CNRS UPR9002, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg cedex, France
| | - Laurence Josset
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Damien Ficheux
- CNRS UMR5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon cedex 07, France
| | - Jean-Luc Darlix
- Laboretro Unité de Virologie Humaine INSERM #758, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Philippe Fossé
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France.
| |
Collapse
|
44
|
Berg JM. Metal-Binding Domains in Nucleic Acid-Binding and Gene-Regulatory Proteins. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166383.ch3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Spidel JL, Wilson CB, Craven RC, Wills JW. Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. J Virol 2007; 81:1288-96. [PMID: 17093186 PMCID: PMC1797520 DOI: 10.1128/jvi.01551-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/31/2006] [Indexed: 12/14/2022] Open
Abstract
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.
Collapse
Affiliation(s)
- Jared L Spidel
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
46
|
Wirblich C, Bhattacharya B, Roy P. Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101. J Virol 2007; 80:460-73. [PMID: 16352570 PMCID: PMC1317520 DOI: 10.1128/jvi.80.1.460-473.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The release of Bluetongue virus (BTV) and other members of the Orbivirus genus from infected host cells occurs predominantly by cell lysis, and in some cases, by budding from the plasma membrane. Two nonstructural proteins, NS3 and NS3A, have been implicated in this process. Here we show that both proteins bind to human Tsg101 and its ortholog from Drosophila melanogaster with similar strengths in vitro. This interaction is mediated by a conserved PSAP motif in NS3 and appears to play a role in virus release. The depletion of Tsg101 with small interfering RNA inhibits the release of BTV and African horse sickness virus, a related orbivirus, from HeLa cells up to fivefold and threefold, respectively. Like most other viral proteins which recruit Tsg101, NS3 also harbors a PPXY late-domain motif that allows NS3 to bind NEDD4-like ubiquitin ligases in vitro. However, the late-domain motifs in NS3 do not function as effectively in facilitating the release of mini Gag virus-like particles from 293T cells as the late domains from human immunodeficiency virus type 1, human T-cell leukemia virus, and Ebola virus. A mutagenesis study showed that the arginine residue in the PPRY motif is responsible for the low activity of the NS3 late-domain motifs. Our data suggest that the BTV late-domain motifs either recruit an antagonist that interferes with budding or fail to recruit an agonist which is different from NEDD4.
Collapse
Affiliation(s)
- Christoph Wirblich
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
47
|
Lupiani B, Pandiri AR, Mays J, Hunt HD, Fadly AM. Molecular and Biological Characterization of a Naturally Occurring Recombinant Subgroup B Avian Leukosis Virus with a Subgroup J–Like Long Terminal Repeat. Avian Dis 2006; 50:572-8. [PMID: 17274296 DOI: 10.1637/7656-053006r.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infection of broiler chickens with subgroup J avian leukosis virus (ALV) results in the induction of myeloid tumors. However, although egg-type chickens are susceptible to infection with ALV-J, the tumor incidence is very low, and on rare occasions the tumors observed are of the myeloid lineage. We recently described the isolation of an ALV (AF115-4) from commercial egg-type chickens suffering from myeloid leukosis. AF115-4 was initially identified as an ALV-J isolate based on PCR analysis of the long terminal repeat (LTR). However, further characterization of the viral envelope indicated that the virus is recombinant with subgroups B envelope and J LTR. Here we further characterize this recombinant virus at both the molecular and biological levels. We show that the AF115-4 isolate expresses a recombinant envelope glycoprotein encoded by a subgroup B gp85 region and a subgroup E gp37 region. The host range ofAF115-4 was analyzed using cells resistant to infection by subgroups A/B, J, or E; this shows that no ALV-J was present in the isolates obtained from the affected chickens. Additional antigenic characterization of AF115-4 using chicken sera specific for subgroups B or J indicated that no ALV-J was present in the samples examined. Inoculation of AF 115-4 into ALV-susceptible 1515 X 71 chickens resulted in the induction of lymphoid leukosis but not the expected myeloid leukosis affecting the commercial chickens. These results suggest that differences in the genetic makeup of the chickens from which AF115-4 was isolated and the line 1515 X 71 used in the present experiments may be responsible for the observed differences in pathogenicity. In addition, the results suggest that ALV-J continues to evolve by recombination, generating new viruses with different pathological properties.
Collapse
Affiliation(s)
- Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
48
|
Narayan P, Rottman FM. Methylation of mRNA. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:255-85. [PMID: 1315118 DOI: 10.1002/9780470123119.ch7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Narayan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
49
|
Hue D, Dambrine G, Denesvre C, Laurent S, Wyers M, Rasschaert D. Major rearrangements in the E element and minor variations in the U3 sequences of the avian leukosis subgroup J provirus isolated from field myelocytomatosis. Arch Virol 2006; 151:2431-46. [PMID: 16906478 DOI: 10.1007/s00705-006-0811-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
We collected paraffin-embedded myelocytomatoses induced by subgroup J avian leukosis virus (ALV-J) in French poultry from 1992 to 2000. We used nested PCR to obtain the U3 LTR and the E element sequences that encompass putative binding sites for transcription factors. We observed minor mutations in the U3 sequences that rarely affected transcription factor binding sites, thus preserving the transcriptional potential of the U3 LTR. However, we observed a large variability in the E element sequences from both field and experimental tumor samples. This variability involved genomic rearrangements and various deletions that most often occurred between two direct repeat sequences. Moreover, in seven DNA samples of the 22 field tumors analyzed, we observed two different sequences for the E element region, suggesting that proviral genomes of two different sizes may be simultaneously present in a tumor. Even though most of the E element sequences were mutated or rearranged, all myelocytomatosis samples always exhibited one E element sequence containing at least one putative C/EBP binding site that was unaffected and still potentially functional.
Collapse
Affiliation(s)
- D Hue
- UPR 1282, INRA, Centre de Recherches de Tours, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
50
|
Morellet N, Meudal H, Bouaziz S, Roques BP. Structure of the zinc finger domain encompassing residues 13-51 of the nucleocapsid protein from simian immunodeficiency virus. Biochem J 2006; 393:725-32. [PMID: 16229684 PMCID: PMC1360725 DOI: 10.1042/bj20051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/07/2005] [Accepted: 10/17/2005] [Indexed: 11/17/2022]
Abstract
The NCps (nucleocapsid proteins) of HIV-1 (HIV type 1), HIV-2 and SIV (simian immunodeficiency virus) are small highly basic proteins, characterized by the presence of two CCHC ZF (zinc finger) domains. NCps, closely associated with the dimeric RNA genome in the core of the virus particle, were shown to promote the specific encapsidation of the viral RNA and are implicated in reverse transcription. Solution structure of the HIV-1 NCp7 and complexes of NCp7 with RNA or DNA showed the critical relationships between the structure and its various functions. HIV-1 and HIV-2 have resulted respectively from transmissions of SIV from chimpanzees and sooty mangabeys. It has been shown that the SIVlhoest (SIV from l'Hoest monkeys) also has the potential to infect human populations. Since monkeys are of great interest for clinical studies of antiviral drugs, the structure of (13-51)NCp8 (zinc finger domain of NCp8, encompassing residues 13-51) from SIVlhoest was determined by NMR to appraise the influence of major differences in the sequence, since Glu21, Gly43 and Met46 in NCp7 are replaced by Pro, Glu and Phe respectively in this particular NCp8. The structure of (13-51)NCp8 is very well defined, and surprisingly the structure of each ZF is similar in NCp7 and NCp8. Moreover, contrary to NCp7, the two ZFs are strongly locked to each other in this NCp8. This first reported structure of a simian NCp8 compared with that of NCp7 shows that the main structural differences occur at the flexible linker between the two ZFs but the essential residues responsible for the interaction with oligonucleotides adopt the same orientation in the two proteins.
Collapse
Key Words
- hiv type 1
- nmr
- nucleocapsid protein
- simian immunodeficiency virus
- sivlhoest
- zinc finger domain
- blv, bovine leukaemia virus
- dqf, double-quantum-filtered
- hiv-1, hiv type 1
- htlv, human t-cell leukaemia virus
- mmlv, moloney-murine-leukaemia virus
- nc, nucleocapsid
- ncp, nc protein
- (13-51)ncp8, zinc finger domain of ncp8 encompassing residues 13–51
- noe, nuclear overhauser effect
- pbmc, peripheral blood mononuclear cells
- r.m.s.d., root mean square deviation
- rsv, rous sarcoma virus
- siv, simian immunodeficiency virus
- sivcpz, siv from chimpanzees
- sivlhoest, siv from l'hoest monkeys
- sivmnd, siv from mandrills
- sivmne, siv from pig-tailed macaques
- sivsm, siv from sooty mangabeys
- zf, zinc finger
Collapse
Affiliation(s)
- Nelly Morellet
- Unité de Pharmacologie Chimique et Génétique, INSERM U640-CNRS UMR 8151, UFR des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, 75270 Paris cedex 06, France.
| | | | | | | |
Collapse
|