1
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Dong Y, Li H, Ilie A, Gao Y, Boucher A, Zhang XC, Orlowski J, Zhao Y. Structural basis of autoinhibition of the human NHE3-CHP1 complex. SCIENCE ADVANCES 2022; 8:eabn3925. [PMID: 35613257 PMCID: PMC9132474 DOI: 10.1126/sciadv.abn3925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Sodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders. Here, we report the cryo-electron microscopy structure of the human NHE3-CHP1 complex in its inward-facing conformation. We found that a cytosolic helix-loop-helix motif in NHE3 blocks the intracellular cavity formed between the core and dimerization domains, functioning as an autoinhibitory element and hindering substrate transport. Furthermore, two phosphatidylinositol molecules are found to bind to the peripheric juxtamembrane sides of the complex, function as anchors to stabilize the complex, and may thus enhance its transport activity.
Collapse
Affiliation(s)
- Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Canada
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
4
|
O'Brien K, Ughetto S, Mahjoum S, Nair AV, Breakefield XO. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep 2022; 39:110651. [PMID: 35417683 PMCID: PMC9074118 DOI: 10.1016/j.celrep.2022.110651] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles that carry genetically active and protein/lipid cargo that can affect the function of the recipient cell. A number of studies have described the effect of these vesicles on recipient cells and demonstrated their promise as therapeutic delivery vectors. Here we demonstrate functional delivery of EV-encapsulated RNA and protein cargo through use of luminescence and fluorescence reporters by combining organelle-targeted nanoluciferase with fluorescent proteins. We highlight a mechanism by which cells retain internalized cargo in the endosomal compartment for days, usually leading to content degradation. We also identify a mode through which recipient cells re-release internalized EVs intact after uptake. Highlighting these different fates of EVs in recipient cells sheds light on critical factors in steering functional cargo delivery and will ultimately allow more efficient use of EVs for therapeutic purposes.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Stefano Ughetto
- Department of Oncology, University of Turin, 10060 Candiolo, TO, Italy
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anil V Nair
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, Del Pozo MA, Wu Y, Xia D, Shen HM. Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:311-329. [PMID: 34786475 PMCID: PMC8573103 DOI: 10.1016/j.omto.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 10/27/2022]
Abstract
Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Naidi Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, Jiangsu Province 211800, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
6
|
Jiang B, Jia X, Ji T, Zhou M, He J, Wang K, Tian J, Yan X, Fan K. Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. SCIENCE CHINA-LIFE SCIENCES 2021; 65:328-340. [PMID: 34482518 DOI: 10.1007/s11427-021-1976-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
Engineered nanocarriers have been widely developed for tumor theranostics. However, the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge. Here, by using tailor-functionalized human H-ferritin (HFn), we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues. Then, we developed an HFn-doxorubicin (Dox) drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy. The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation, and the triple-modality imaging techniques, namely, near-infrared fluorescence molecular imaging (NIR-FMI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI), ensured the accuracy of detection. Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage, followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1. Thus, the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage. IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.
Collapse
Affiliation(s)
- Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
De Leo MG, Berger P, Mayer A. WIPI1 promotes fission of endosomal transport carriers and formation of autophagosomes through distinct mechanisms. Autophagy 2021; 17:3644-3670. [PMID: 33685363 PMCID: PMC8632285 DOI: 10.1080/15548627.2021.1886830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions. Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype
Collapse
Affiliation(s)
| | - Philipp Berger
- Department of Biology and Chemistry, Laboratory of Nanoscale Biology, Paul-Scherrer-Institute, Villigen, Switzerland
| | - Andreas Mayer
- Département De Biochimie, Université De Lausanne, Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Iglesias R, Ferreras JM, Llorente A, Citores L. Ebulin l Is Internalized in Cells by Both Clathrin-Dependent and -Independent Mechanisms and Does Not Require Clathrin or Dynamin for Intoxication. Toxins (Basel) 2021; 13:toxins13020102. [PMID: 33573355 PMCID: PMC7911328 DOI: 10.3390/toxins13020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Mechanical, Electronics and Chemical Engineering Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (J.M.F.)
- Correspondence:
| |
Collapse
|
9
|
Bauer A, Frascaroli G, Walther P. Megapinosome: Morphological description of a novel organelle. J Struct Biol 2020; 210:107505. [DOI: 10.1016/j.jsb.2020.107505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
|
10
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
11
|
Deo R, Kushwah MS, Kamerkar SC, Kadam NY, Dar S, Babu K, Srivastava A, Pucadyil TJ. ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling. Nat Commun 2018; 9:5187. [PMID: 30518883 PMCID: PMC6281616 DOI: 10.1038/s41467-018-07586-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
Endocytic and recycling pathways generate cargo-laden transport carriers by membrane fission. Classical dynamins, which generate transport carriers during endocytosis, constrict and cause fission of membrane tubes in response to GTP hydrolysis. Relatively, less is known about the ATP-binding Eps15-homology domain-containing protein1 (EHD1), a dynamin family member that functions at the endocytic-recycling compartment. Here, we show using cross complementation assays in C. elegans that EHD1's membrane binding and ATP hydrolysis activities are necessary for endocytic recycling. Further, we show that ATP-bound EHD1 forms membrane-active scaffolds that bulge tubular model membranes. ATP hydrolysis promotes scaffold self-assembly, causing the bulge to extend and thin down intermediate regions on the tube. On tubes below 25 nm in radius, such thinning leads to scission. Molecular dynamics simulations corroborate this scission pathway. Deletion of N-terminal residues causes defects in stable scaffolding, scission and endocytic recycling. Thus, ATP hydrolysis-dependent membrane remodeling links EHD1 functions to endocytic recycling.
Collapse
Affiliation(s)
- Raunaq Deo
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Manish S Kushwah
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Sukrut C Kamerkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Nagesh Y Kadam
- Indian Institute of Science Education and Research, Sector 81, S.A.S Nagar, Mohali, 140306, Punjab, India
| | - Srishti Dar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Kavita Babu
- Indian Institute of Science Education and Research, Sector 81, S.A.S Nagar, Mohali, 140306, Punjab, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
12
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Ware AW, Cheung TT, Rasulov S, Burstein E, McDonald FJ. Epithelial Na + Channel: Reciprocal Control by COMMD10 and Nedd4-2. Front Physiol 2018; 9:793. [PMID: 29997525 PMCID: PMC6028986 DOI: 10.3389/fphys.2018.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Optimal function of the epithelial sodium channel (ENaC) in the distal nephron is key to the kidney’s long-term control of salt homeostasis and blood pressure. Multiple pathways alter ENaC cell surface populations, including correct processing and trafficking in the secretory pathway to the cell surface, and retrieval from the cell surface through ubiquitination by the ubiquitin ligase Nedd4-2, clathrin-mediated endocytosis, and sorting in the endosomal system. Members of the Copper Metabolism Murr1 Domain containing (COMMD) family of 10 proteins are known to interact with ENaC. COMMD1, 3 and 9 have been shown to down-regulate ENaC, most likely through Nedd4-2, however, the other COMMD family members remain uncharacterized. To investigate the effects of the COMMD10 protein on ENaC trafficking and function, the interaction of ENaC and COMMD10 was confirmed. Stable COMMD10 knockdown in Fischer rat thyroid epithelia decreased ENaC current and this decreased current was associated with increased Nedd4-2 protein, a known negative regulator of ENaC. However, inhibition of Nedd4-2’s ubiquitination of ENaC was only able to partially rescue the observed reduction in current. Stable COMMD10 knockdown results in defects both in endocytosis and recycling of transferrin suggesting COMMD10 likely interacts with multiple pathways to regulate ENaC and therefore could be involved in the long-term control of blood pressure.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
16
|
Acar H, Samaeekia R, Schnorenberg MR, Sasmal DK, Huang J, Tirrell MV, LaBelle JL. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation. Bioconjug Chem 2017; 28:2316-2326. [PMID: 28771332 DOI: 10.1021/acs.bioconjchem.7b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Ravand Samaeekia
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States.,Medical Scientist Training Program, University of Chicago , 924 East 57th Street, Suite 104, Chicago, Illinois 60637, United States
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Institute for Molecular Engineering, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60639, United States
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Tafteh R, Abraham L, Seo D, Lu HY, Gold MR, Chou KC. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens. OPTICS EXPRESS 2016; 24:22959-22970. [PMID: 27828362 DOI: 10.1364/oe.24.022959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-molecule localization microscopy (SMLM) has become an essential tool for examining a wide variety of biological structures and processes. However, the relatively long acquisition time makes SMLM prone to drift-induced artifacts. Here we report an optical design with an electrically tunable lens (ETL) that actively stabilizes a SMLM in three dimensions and nearly eliminates the mechanical drift (RMS ~0.7 nm lateral and ~2.7 nm axial). The bifocal design that employed fiducial markers on the coverslip was able to stabilize the sample regardless of the imaging depth. The effectiveness of the ETL was demonstrated by imaging endosomal transferrin receptors near the apical surface of B-lymphocytes at a depth of 8 µm. The drift-free images obtained with the stabilization system showed that the transferrin receptors were present in distinct but heterogeneous clusters with a bimodal size distribution. In contrast, the images obtained without the stabilization system showed a broader unimodal size distribution. Thus, this stabilization system enables a more accurate analysis of cluster topology. Additionally, this ETL-based stabilization system is cost-effective and can be integrated into existing microscopy systems.
Collapse
|
19
|
Hung HF, Hehnly H, Doxsey S. Methods to analyze novel liaisons between endosomes and centrosomes. Methods Cell Biol 2016; 130:47-58. [PMID: 26360027 DOI: 10.1016/bs.mcb.2015.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For some time, it has been known that recycling endosomes (REs) are organized in a nebulous "pericentrosomal" region in interphase cells. However, the collective use of previously developed methods, including centrosome isolation, live cell imaging, and electron microscopy, suggested that there is much more going on between the centrosome and the RE than previously imagined. By exploiting these approaches, we uncovered novel roles of the centrosome in RE function and, conversely, novel roles for REs in centrosome function. We first found that REs dynamically localized to the centrosome throughout the cell cycle. More specifically, we found that REs interacted with appendages of the older centriole in interphase cells to control endosome recycling, and this interaction was governed by RE-machinery including the small GTPase Rab11. We next determined that REs carry centrosome proteins to spindle poles as part of the "centrosome maturation" process. Here we discuss the methods used and materials needed to complete these types of studies.
Collapse
Affiliation(s)
- Hui-Fang Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
20
|
Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi HS, Cheng D, Yan X. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging. ACS NANO 2016; 10:4184-4191. [PMID: 26959856 DOI: 10.1021/acsnano.5b07408] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.
Collapse
Affiliation(s)
- Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Minmin Liang
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Xiao Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Yanli Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging , Shanghai 200032, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical/Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology/Beijing Translational Engineering Center of Biomacromolecular Drugs, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
21
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
22
|
Xie S, Bahl K, Reinecke JB, Hammond GRV, Naslavsky N, Caplan S. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome. Mol Biol Cell 2015; 27:108-26. [PMID: 26510502 PMCID: PMC4694750 DOI: 10.1091/mbc.e15-07-0514] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous "membrane bridges." Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Kriti Bahl
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - James B Reinecke
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| |
Collapse
|
23
|
Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP. Biosci Rep 2015; 35:BSR20150136. [PMID: 26374856 PMCID: PMC4626869 DOI: 10.1042/bsr20150136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/14/2015] [Indexed: 12/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) modulates blood pressure and fluid volume by activation of natriuretic peptide receptor-A (NPRA). Immunofluorescence (IF) studies reveal that NPRA is internalized and redistributed into subcellular compartments with concurrent production of cGMP. Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP–NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP–NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP.
Collapse
|
24
|
Jin M, Yamada M, Arai Y, Nagai T, Hirotsune S. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nat Commun 2014; 5:5295. [PMID: 25342295 DOI: 10.1038/ncomms6295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. However, the regulatory mechanism underlying release of dynactin bound cargoes from dynein motor remains largely unknown. Here we report that ADP-ribosylation factor-like 3 (Arl3) and dynein light chain LC8 induce dissociation of dynactin from dynein. Immunoprecipitation and microtubule pull-down assays revealed that Arl3(Q71L) and LC8 facilitated detachment of dynactin from dynein. We also demonstrated Arl3(Q71L) or LC8-mediated dynactin release from a dynein-dynactin complex through trace experiments using quantum dot (Qdot)-conjugated proteins. Furthermore, we disclosed interactions of Arl3 and LC8 with dynactin and dynein, respectively, by live-cell imaging. Finally, knockdown (KD) of Arl3 and LC8 by siRNA induced abnormal localizations of dynein, dynactin and related organelles. Our findings uncovered the surprising functional relevance of GTP-bound Arl3 and LC8 for the unloading regulation of dynactin-bound cargo from dynein motor.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
25
|
Haugsten EM, Brech A, Liestøl K, Norman JC, Wesche J. Photoactivation approaches reveal a role for Rab11 in FGFR4 recycling and signalling. Traffic 2014; 15:665-83. [PMID: 24589086 DOI: 10.1111/tra.12168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) plays important roles during development and in the adult to maintain tissue homeostasis. Moreover, overexpression of FGFR4 or activating mutations in FGFR4 has been identified as tumour-promoting events in several forms of cancer. Endocytosis is important for regulation of signalling receptors and we have previously shown that FGFR4 is mainly localized to transferrin-positive structures after ligand-induced endocytosis. Here, using a cell line with a defined pericentriolar endocytic recycling compartment, we show that FGFR4 accumulates in this compartment after endocytosis. Furthermore, using classical recycling assays and a new, photoactivatable FGFR4-PA-GFP fusion protein combined with live-cell imaging, we demonstrate that recycling of FGFR4 is dependent on Rab11. Upon Rab11b depletion, FGFR4 is trapped in the pericentriolar recycling compartment and the total levels of FGFR4 in cells are increased. Moreover, fibroblast growth factor 1 (FGF1)-induced autophosphorylation of FGFR4 as well as phosphorylation of phospholipase C (PLC)-γ is prolonged in cells depleted of Rab11. Interestingly, the activation of mitogen-activated protein kinase and AKT pathways were not prolonged but rather reduced in Rab11-depleted cells, indicating that recycling of FGFR4 is important for the nature of its signalling output. Thus, Rab11-dependent recycling of FGFR4 maintains proper levels of FGFR4 in cells and regulates FGF1-induced FGFR4 signalling.
Collapse
Affiliation(s)
- Ellen M Haugsten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, 0379, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, 0379, Norway
| | | | | | | | | |
Collapse
|
26
|
van Weering JRT, Cullen PJ. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 2014; 31:40-7. [PMID: 24641888 DOI: 10.1016/j.semcdb.2014.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 01/27/2023]
Abstract
The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These tubules are formed and stabilized through the scaffolding properties of cytosolic Bin/Amphiphysin/Rvs (BAR) proteins that comprise phosphoinositide-detecting moieties, recruiting these proteins to specific endosomal membrane areas. These include the protein family of sorting nexins that remodel endosome membrane into tubules by an evolutionary conserved mechanism of dimerization, local membrane curvature detection/induction and oligomerization. How the formation of such a tubular membrane carrier is coordinated with cargo capture is largely unknown. The tubular structure of the membrane carriers could sequester membrane-bound cargo through an iterative mechanism of geometric sorting. Furthermore, the recent identification of cargo adaptors for the endosome protein sorting complex retromer has expanded the sorting signals that retrieve specific sets of cargo away from lysosomal degradation through distinct membrane trafficking pathways.
Collapse
Affiliation(s)
- Jan R T van Weering
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
27
|
Chi RJ, Liu J, West M, Wang J, Odorizzi G, Burd CG. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1. ACTA ACUST UNITED AC 2014; 204:793-806. [PMID: 24567361 PMCID: PMC3941054 DOI: 10.1083/jcb.201309084] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endosomal sorting and fission machineries act together to produce retrograde transport carriers. Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR–coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | | | | | |
Collapse
|
28
|
Perez Bay AE, Schreiner R, Mazzoni F, Carvajal-Gonzalez JM, Gravotta D, Perret E, Lehmann Mantaras G, Zhu YS, Rodriguez-Boulan EJ. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J 2013; 32:2125-39. [PMID: 23749212 DOI: 10.1038/emboj.2013.130] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022] Open
Abstract
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis.
Collapse
Affiliation(s)
- Andres E Perez Bay
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Subramanian K, Du R, Tan NS, Ho B, Ding JL. CD163 and IgG Codefend against Cytotoxic Hemoglobin via Autocrine and Paracrine Mechanisms. THE JOURNAL OF IMMUNOLOGY 2013; 190:5267-78. [DOI: 10.4049/jimmunol.1202648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, Klimaschewski L. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol 2013; 139:135-48. [PMID: 22903848 DOI: 10.1007/s00418-012-1009-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase promoting tumor growth in a variety of cancers, including glioblastoma. Binding of FGFs triggers the intracellular Ras/Raf/ERK signaling pathway leading to cell proliferation. Down-regulation of FGFR1 and, consequently, inactivation of its signaling pathways represent novel treatment strategies for glioblastoma. In this study, we investigated the internalization and endocytic trafficking of FGFR1 in the human glioma cell line U373. Stimulation with FGF-2 induced cell rounding accompanied by increased BrdU and pERK labeling. The overexpression of FGFR1 (without FGF treatment) resulted in enhanced phosphorylated FGFR1 suggesting receptor autoactivation. Labeled ligand (FGF-2-Cy5.5) was endocytosed in a clathrin- and caveolin-dependent manner. About 25 % of vesicles carrying fluorescently tagged FGFR1 represented early endosomes, 15 % transferrin-positive recycling endosomes and 40 % Lamp1-positive late endosomal/lysosomal vesicles. Stimulation with FGF-2 increased the colocalization rate in each of these vesicle populations. The treatment with the lysosomal inhibitor leupeptin resulted in FGFR1 accumulation in lysosomes, but did not enhance receptor recycling as observed in neurons. Analysis of vesicle distributions revealed an accumulation of recycling endosomes in the perinuclear region. In conclusion, the shuttling of receptor tyrosine kinases can be directly visualized by overexpression of fluorescently tagged receptors which respond to ligand stimulation and follow the recycling and degradation pathways similarly to their endogenous counterparts.
Collapse
Affiliation(s)
- Regina Irschick
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Serva A, Knapp B, Tsai YT, Claas C, Lisauskas T, Matula P, Harder N, Kaderali L, Rohr K, Erfle H, Eils R, Braga V, Starkuviene V. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS One 2012; 7:e52555. [PMID: 23285084 PMCID: PMC3527550 DOI: 10.1371/journal.pone.0052555] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 01/07/2023] Open
Abstract
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease.
Collapse
Affiliation(s)
- Andrius Serva
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Bettina Knapp
- BioQuant, University of Heidelberg, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, University of Technology Dresden, Dresden, Germany
| | - Yueh-Tso Tsai
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | | | | | - Petr Matula
- Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
- Center for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Nathalie Harder
- Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Lars Kaderali
- BioQuant, University of Heidelberg, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, University of Technology Dresden, Dresden, Germany
| | - Karl Rohr
- Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Vania Braga
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
32
|
Richardson DS, Rodrigues DM, Hyndman BD, Crupi MJF, Nicolescu AC, Mulligan LM. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol Biol Cell 2012; 23:3838-50. [PMID: 22875993 PMCID: PMC3459860 DOI: 10.1091/mbc.e12-02-0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The RET gene encodes a receptor tyrosine kinase that is alternatively spliced to two protein isoforms that differ in their C-terminal peptide sequences (RET9, RET51). These unique C-terminal tails produce distinct subcellular localizations and intracellular trafficking properties, which affect downstream signaling. RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.
Collapse
Affiliation(s)
- Douglas S Richardson
- Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Longatti A, Lamb CA, Razi M, Yoshimura SI, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012; 197:659-75. [PMID: 22613832 PMCID: PMC3365497 DOI: 10.1083/jcb.201111079] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/25/2012] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain-containing Rab guanosine triphosphatase-activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)-positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.
Collapse
Affiliation(s)
- Andrea Longatti
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | | | - Minoo Razi
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, England, UK
| | - Sharon A. Tooze
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
| |
Collapse
|
34
|
Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 2012; 13:323-8. [PMID: 22498832 DOI: 10.1038/nrm3332] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocytic recycling returns proteins to the plasma membrane in many physiological contexts. Studies of these events have helped to elucidate fundamental mechanisms that underlie recycling. Recycling was for some time considered to be the exception to a general mechanism of active cargo sorting in multiple intracellular pathways. In recent years, studies have begun to reconcile this seeming disparity and also suggest explanations for why early recycling studies did not detect active sorting. Further articulation of this emerging trend has far-reaching implications for a deeper understanding of many physiological and pathological events that require recycling.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachsuetts 02115, USA.
| | | | | |
Collapse
|
35
|
Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int 2012; 2012:672705. [PMID: 22506115 PMCID: PMC3299393 DOI: 10.1155/2012/672705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Intersectin-1s (ITSN-1s), a protein containing five SH3 (A-E) domains, regulates via the SH3A the function of dynamin-2 (dyn2) at the endocytic site. ITSN-1s expression was modulated in mouse lung endothelium by liposome delivery of either a plasmid cDNA encoding myc-SH3A or a specific siRNA targeting ITSN-1 gene. The lung vasculature of SH3A-transduced and ITSN-1s- deficient mice was perfused with gold albumin (Au-BSA) to analyze by electron microscopy the morphological intermediates and pathways involved in transendothelial transport or with dinitrophenylated (DNP)-BSA to quantify by ELISA its transport. Acute modulation of ITSN-1s expression decreased the number of caveolae, impaired their transport, and opened the interendothelial junctions, while upregulating compensatory nonconventional endocytic/transcytotic structures. Chronic inhibition of ITSN-1s further increased the occurrence of nonconventional intermediates and partially restored the junctional integrity. These findings indicate that ITSN-1s expression is required for caveolae function and efficient transendothelial transport. Moreover, our results demonstrate that ECs are highly adapted to perform their transport function while maintaining lung homeostasis.
Collapse
|
36
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 2011; 13:94-107. [PMID: 21973056 DOI: 10.1111/j.1600-0854.2011.01297.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.
Collapse
Affiliation(s)
- Jan R T van Weering
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
37
|
Li X, DiFiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol 2011; 97:127-41. [PMID: 22037413 DOI: 10.1016/j.pneurobio.2011.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
The recycling endosome (RE) is an organelle in the endocytic pathway where plasma membranes (proteins and lipids) internalized by endocytosis are processed back to the cell surface for reuse. Endocytic recycling is the primary way for the cell to maintain constituents of the plasma membrane (Griffiths et al., 1989), i.e., to maintain the abundance of receptors and transporters on cell surfaces. Membrane traffic through the RE is crucial for several key cellular processes including cytokinesis and cell migration. In polarized cells, including neurons, the RE is vital for the generation and maintenance of the polarity of the plasma membrane. Many RE dependent cargo molecules are known to be important for neuronal function and there is evidence that improper function of key proteins in RE-associated pathways may contribute to the pathogenesis of neurological disorders, including Huntington's disease. The function of the RE in neurons is poorly understood. Therefore, there is need to understand how membrane dynamics in RE-associated pathways are affected or participate in the development or progression of neurological diseases. This review summarizes advances in understanding endocytic recycling associated with the RE, challenges in elucidating molecular mechanisms underlying RE function, and evidence for RE dysfunction in neurological disorders.
Collapse
Affiliation(s)
- Xueyi Li
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
38
|
Sharma M, Giridharan SSP, Rahajeng J, Caplan S, Naslavsky N. MICAL-L1: An unusual Rab effector that links EHD1 to tubular recycling endosomes. Commun Integr Biol 2011; 3:181-3. [PMID: 20585517 DOI: 10.4161/cib.3.2.10845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 01/02/2023] Open
Abstract
A key regulator of the slow recycling of receptors and lipids that occurs from the endocytic recycling compartment (ERC) back to the cell surface is EHD1. We have recently identified the Rab8a-interacting protein, MICAL-L1, as a novel binding partner for EHD1 that both recruits and interacts with EHD1 on tubular recycling endosomes. MICAL-L1 belongs to the MICALfamily of proteins that are highly expressed in neurons and involved in plexin-mediated repulsive axon guidance. Interestingly, MICAL-L1 contains a coiled coil region in its C-terminus that is both necessary and sufficient for its localization to the EHD1-containing long tubular membranes of the ERC. Furthermore, MICAL-L1-depletion also impaired recycling of both transferrin and integrin receptors from the ERC back to the plasma membrane. In conclusion, our studies implicate MICAL-L1 as a novel regulator of endocytic recycling, and raises the possibility that additional neuronal-expressed proteins may mediate endocytic events in non-neuronal cells.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology; and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Iron is universally abundant and no life can exist without it. However, iron levels should be maintained within a narrow range. Iron deficiency causes anaemia, whereas excessive iron increases cancer risk, presumably by free radical generation. Several pathological conditions such as genetic haemochromatosis, chronic viral hepatitis B and C, conditions related to asbestos fibre exposure and ovarian endometriosis have been recognized as iron overload-associated conditions that also increase human cancer risks. Iron's carcinogenicity has been documented in animal experiments. Surprisingly, these studies have revealed that the homozygous deletion of CDKN2A/2B is a major hallmark of iron-induced carcinogenesis. Recently, the hormonal regulation of iron metabolism has been elucidated. A commonly hypothesized mechanism may be the lack of any iron disposal pathway other than for bleeding and a mechanism of iron re-uptake as catechol chelate has been discovered. Iron overload in neurons via the ferroportin block may play a role in Alzheimer's disease. Furthermore, a recent epidemiological study reported that iron reduction by phlebotomy was associated with decreased cancer risks in a general population. Given that the required amounts of iron decrease during ageing, the fine control of body iron stores would be a wise strategy for chemoprevention of several diseases.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
40
|
Yamamoto H, Koga H, Katoh Y, Takahashi S, Nakayama K, Shin HW. Functional cross-talk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol Biol Cell 2010; 21:2746-55. [PMID: 20534812 PMCID: PMC2912359 DOI: 10.1091/mbc.e10-01-0074] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. We suggest that Rab14 and Rab4 act sequentially; Rab14 is required for recruitment of RUFY1 onto endosomes and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. The small GTPase Rab14 localizes to early endosomes and the trans-Golgi network, but its cellular functions on endosomes and its functional relationship with other endosomal Rab proteins are poorly understood. Here, we report that Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. Rab14 colocalizes well with Rab4 on peripheral endosomes. Depletion of Rab14, but not Rab4, causes dissociation of RUFY1 from endosomal membranes. Coexpression of RUFY1 with either Rab14 or Rab4 induces clustering and enlargement of endosomes, whereas a RUFY1 mutant lacking the Rab4-binding region does not induce a significant morphological change in the endosomal structures even when coexpressed with Rab14 or Rab4. These findings suggest that Rab14 and Rab4 act sequentially, together with RUFY1; Rab14 is required for recruitment of RUFY1 onto endosomal membranes, and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. Depletion of Rab14 or RUFY1, as well as Rab4, inhibits efficient recycling of endocytosed transferrin, suggesting that Rab14 and Rab4 regulate endosomal functions through cooperative interactions with their dual effector, RUFY1.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Brandsma ME, Diao H, Wang X, Kohalmi SE, Jevnikar AM, Ma S. Plant-derived recombinant human serum transferrin demonstrates multiple functions. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:489-505. [PMID: 20432512 DOI: 10.1111/j.1467-7652.2010.00499.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human serum transferrin (hTf) is the major iron-binding protein in human plasma, having a vital role in iron transport. Additionally, hTf has many other uses including antimicrobial functions and growth factor effects on mammalian cell proliferation and differentiation. The multitask nature of hTf makes it highly valuable for different therapeutic and commercial applications. However, the success of hTf in these applications is critically dependent on the availability of high-quality hTf in large amounts. In this study, we have developed plants as a novel platform for the production of recombinant (r)hTf. We show here that transgenic plants are an efficient system for rhTf production, with a maximum accumulation of 0.25% total soluble protein (TSP) (or up to 33.5 microg/g fresh leaf weight). Furthermore, plant-derived rhTf retains many of the biological activities synonymous with native hTf. In particular, rhTf reversibly binds iron in vitro, exhibits bacteriostatic activity, supports cell proliferation in serum-free medium and can be internalized into mammalian cells in vitro. The success of this study validates the future application of plant rhTf in a variety of fields. Of particular interest is the use of plant rhTf as a novel carrier for cell-specific or oral delivery of protein/peptide drugs for the treatment of human diseases such as diabetes.To demonstrate this hypothesis, we have additionally expressed an hTf fusion protein containing glucagon-like peptide 1 (GLP-1) or its derivative in plants. Here, we show that plant-derived hTf-GLP-1 fusion proteins retain the ability to be internalized by mammalian cells when added to culture medium in vitro.
Collapse
Affiliation(s)
- Martin E Brandsma
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Bilodeau N, Fiset A, Boulanger MC, Bhardwaj S, Winstall E, Lavoie JN, Faure RL. Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes. J Proteome Res 2010; 9:708-17. [PMID: 19947650 DOI: 10.1021/pr900481b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for Src Family Kinases (SFKs) in the dynamics of endocytic and secretory pathways has previously been reported. Identification of low-abundance compartmentalized complexes still remains challenging, highlighting the need for novel tools. Here we describe analysis of SFK-signaling complexes of hepatic Golgi/endosomes (G/E) fractions by sequential affinity enrichment of proteins. Mouse G/E permeabilized membranes were first validated in terms of electron microscopy, 1-D electrophoresis (1-DE), insulin-mediated endocytosis and protein content. With the use of quantitative N-terminal labeling of tryptic peptides (iTRAQ), 1-DE and IEF tryptic peptides separation methods, a total of 666 proteins were identified, including the SFK Lyn. Following insulin injection, a series of proteins were recognized by an anti-phosphotyrosine antibody (alpha P42-2) raised against the residue most frequently phosphorylated by SFK on the adenoviral protein E4orf4 and that cross-reacts with endosomal SFK targets. By using affinity chromatography coupled with mass spectrometry, we identified 16 proteins classified as (1) recycling receptors, (2) vesicular trafficking proteins, (3) actin network proteins, (4) metabolism proteins, or (5) signaling proteins. One of these proteins, low density lipoprotein-related protein 1 (LRP1), which is a known SFK substrate, was found to associate with the internalized insulin receptor (IR), suggesting the presence of a co-internalization process. The identification of these proteomes should, thus, contribute to a better understanding of the molecular mechanisms that regulate trafficking events and insulin clearance.
Collapse
|
43
|
Sharma M, Giridharan SSP, Rahajeng J, Naslavsky N, Caplan S. MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling. Mol Biol Cell 2010; 20:5181-94. [PMID: 19864458 DOI: 10.1091/mbc.e09-06-0535] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Endocytic recycling of receptors and lipids occurs via a complex network of tubular and vesicular membranes. EHD1 is a key regulator of endocytosis and associates with tubular membranes to facilitate recycling. Although EHD proteins tubulate membranes in vitro, EHD1 primarily associates with preexisting tubules in vivo. How EHD1 is recruited to these tubular endosomes remains unclear. We have determined that the Rab8-interacting protein, MICAL-L1, associates with EHD1, with both proteins colocalizing to long tubular membranes, in vitro and in live cells. MICAL-L1 is a largely uncharacterized member of the MICAL-family of proteins that uniquely contains two asparagine-proline-phenylalanine motifs, sequences that typically interact with EH-domains. Our data show that the MICAL-L1 C-terminal coiled-coil region is necessary and sufficient for its localization to tubular membranes. Moreover, we provide unexpected evidence that endogenous MICAL-L1 can link both EHD1 and Rab8a to these structures, as its depletion leads to loss of the EHD1-Rab8a interaction and the absence of both of these proteins from the membrane tubules. Finally, we demonstrate that MICAL-L1 is essential for efficient endocytic recycling. These data implicate MICAL-L1 as an unusual type of Rab effector that regulates endocytic recycling by recruiting and linking EHD1 and Rab8a on membrane tubules.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | |
Collapse
|
44
|
Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D, Swarup G. Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol 2010; 11:4. [PMID: 20085643 PMCID: PMC2826298 DOI: 10.1186/1471-2121-11-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 01/19/2010] [Indexed: 12/16/2022] Open
Abstract
Background Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process. Results We show that the knockdown of optineurin impairs trafficking of transferrin receptor to the juxtanuclear region. A point mutation (D474N) in the ubiquitin-binding domain abrogates localization of optineurin to the recycling endosomes and interaction with transferrin receptor. The function of ubiquitin-binding domain of optineurin is also needed for trafficking of transferrin to the juxtanuclear region. A disease causing mutation, E50K, impairs endocytic recycling of transferrin receptor as shown by enlarged recycling endosomes, slower dynamics of E50K vesicles and decreased transferrin uptake by the E50K-expressing cells. This impaired trafficking by the E50K mutant requires the function of its ubiquitin-binding domain. Compared to wild type optineurin, the E50K optineurin shows enhanced interaction and colocalization with transferrin receptor and Rab8. The velocity of Rab8 vesicles is reduced by co-expression of the E50K mutant. These results suggest that the E50K mutant affects Rab8-mediated transferrin receptor trafficking. Conclusions Our results suggest that optineurin regulates endocytic trafficking of transferrin receptor to the juxtanuclear region. The E50K mutant impairs trafficking at the recycling endosomes due to altered interactions with Rab8 and transferrin receptor. These results also have implications for the pathogenesis of glaucoma caused by the E50K mutation because endocytic recycling is vital for maintaining homeostasis.
Collapse
|
45
|
Joset A, Dodd DA, Halegoua S, Schwab ME. Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling. ACTA ACUST UNITED AC 2010; 188:271-85. [PMID: 20083601 PMCID: PMC2812518 DOI: 10.1083/jcb.200906089] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RhoA is activated from internalized Nogo-A to promote growth cone collapse and inhibit neurite outgrowth. Nogo-A is one of the most potent myelin-associated inhibitors for axonal growth, regeneration, and plasticity in the adult central nervous system. The Nogo-A–specific fragment NogoΔ20 induces growth cone collapse, and inhibits neurite outgrowth and cell spreading by activating RhoA. Here, we show that NogoΔ20 is internalized into neuronal cells by a Pincher- and rac-dependent, but clathrin- and dynamin-independent, mechanism. Pincher-mediated macroendocytosis results in the formation of NogoΔ20-containing signalosomes that direct RhoA activation and growth cone collapse. In compartmentalized chamber cultures, NogoΔ20 is endocytosed into neurites and retrogradely transported to the cell bodies of dorsal root ganglion neurons, triggering RhoA activation en route and decreasing phosphorylated cAMP response element binding levels in cell bodies. Thus, Pincher-dependent macroendocytosis leads to the formation of Nogo-A signaling endosomes, which act both within growth cones and after retrograde transport in the cell body to negatively regulate the neuronal growth program.
Collapse
Affiliation(s)
- Armela Joset
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
46
|
Francavilla C, Cattaneo P, Berezin V, Bock E, Ami D, de Marco A, Christofori G, Cavallaro U. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J Cell Biol 2009; 187:1101-16. [PMID: 20038681 PMCID: PMC2806277 DOI: 10.1083/jcb.200903030] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 11/23/2009] [Indexed: 12/16/2022] Open
Abstract
Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.
Collapse
Affiliation(s)
- Chiara Francavilla
- IFOM-FIRC Institute of Molecular Oncology, IFOM-IEO Campus, I-20139 Milano, Italy
| | - Paola Cattaneo
- IFOM-FIRC Institute of Molecular Oncology, IFOM-IEO Campus, I-20139 Milano, Italy
| | - Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Elisabeth Bock
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Diletta Ami
- IFOM-FIRC Institute of Molecular Oncology, IFOM-IEO Campus, I-20139 Milano, Italy
| | - Ario de Marco
- IFOM-FIRC Institute of Molecular Oncology, IFOM-IEO Campus, I-20139 Milano, Italy
| | - Gerhard Christofori
- Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, CH-4058 Basel, Switzerland
| | - Ugo Cavallaro
- IFOM-FIRC Institute of Molecular Oncology, IFOM-IEO Campus, I-20139 Milano, Italy
| |
Collapse
|
47
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 2009; 21:371-80. [PMID: 19914387 DOI: 10.1016/j.semcdb.2009.11.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/06/2009] [Indexed: 12/11/2022]
Abstract
The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) - has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease.
Collapse
Affiliation(s)
- Jan R T van Weering
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
48
|
Stitt AW, Gardiner TA, Bailie JR, Chakravarthy U, Archer DB. An Investigation of Receptor-Mediated Endocytosis and Endosomal Sorting of Albumin and Transferrin in Retinal Vascular Endothelial Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329609024687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Akita K, Takahashi Y, Kataoka M, Saito K, Kaneko H. Subcellular localization of a novel G protein XLGalpha(olf). Biochem Biophys Res Commun 2009; 381:582-6. [PMID: 19245791 DOI: 10.1016/j.bbrc.2009.02.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
XLGalpha(olf) was identified as a transcriptional variant of the heterotrimeric G protein, Galpha(olf). Previous work showed that XLGalpha(olf) couples with adenosine A2a receptor and dopamine D1 receptor in vitro. However, physiological functions of XLGalpha(olf) remain to be elucidated. In this study, we performed indirect immunofluorescence confocal analyses to examine the subcellular localization of XLGalpha(olf). With overexpression, surprisingly, many large endosomes resulted. We also observed that XLGalpha(olf) localizes at the Golgi apparatus. The N-terminal region of XLGalpha(olf) appears necessary for both endosome formation and the Golgi localization. The results indicate that XLGalpha(olf) and Galpha(olf) play distinctly separate roles. Moreover, XLGalpha(olf) colocalized with Rab3A and Rab8A, as well as partially with Rab11A, but not with other endocytotic endosomes. We could confirm the interaction between XLGalpha(olf) and Rab3A/Rab8A by co-immunoprecipitation experiments. Our study provides important clues toward understanding physiological functions of XLGalpha(olf).
Collapse
Affiliation(s)
- Kazumasa Akita
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan.
| | | | | | | | | |
Collapse
|
50
|
Zhu GD, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V, L'Hernault SW. SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 2009; 20:1223-40. [PMID: 19109425 PMCID: PMC2642739 DOI: 10.1091/mbc.e08-07-0728] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 01/19/2023] Open
Abstract
Yeast and animal homotypic fusion and vacuole protein sorting (HOPS) complexes contain conserved subunits, but HOPS-mediated traffic in animals might require additional proteins. Here, we demonstrate that SPE-39 homologues, which are found only in animals, are present in RAB5-, RAB7-, and RAB11-positive endosomes where they play a conserved role in lysosomal delivery and probably function via their interaction with the core HOPS complex. Although Caenorhabditis elegans spe-39 mutants were initially identified as having abnormal vesicular biogenesis during spermatogenesis, we show that these mutants also have disrupted processing of endocytosed proteins in oocytes and coelomocytes. C. elegans SPE-39 interacts in vitro with both VPS33A and VPS33B, whereas RNA interference of VPS33B causes spe-39-like spermatogenesis defects. The human SPE-39 orthologue C14orf133 also interacts with VPS33 homologues and both coimmunoprecipitates and cosediments with other HOPS subunits. SPE-39 knockdown in cultured human cells altered the morphology of syntaxin 7-, syntaxin 8-, and syntaxin 13-positive endosomes. These effects occurred concomitantly with delayed mannose 6-phosphate receptor-mediated cathepsin D delivery and degradation of internalized epidermal growth factor receptors. Our findings establish that SPE-39 proteins are a previously unrecognized regulator of lysosomal delivery and that C. elegans spermatogenesis is an experimental system useful for identifying conserved regulators of metazoan lysosomal biogenesis.
Collapse
Affiliation(s)
| | | | - Stephanie A. Zlatic
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Cell Biology, and
| | | | | | - Craig J. Heilman
- Department of Neurology
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Allan I. Levey
- Department of Neurology
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Cell Biology, and
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| | - Steven W. L'Hernault
- Graduate Program in Biochemistry, Cell, and Developmental Biology
- Departments of *Biology and
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322
| |
Collapse
|