1
|
Sangeeta, Mishra SK, Bhattacherjee A. Role of Shape Deformation of DNA-Binding Sites in Regulating the Efficiency and Specificity in Their Recognition by DNA-Binding Proteins. JACS AU 2024; 4:2640-2655. [PMID: 39055163 PMCID: PMC11267559 DOI: 10.1021/jacsau.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Accurate transcription of genetic information is crucial, involving precise recognition of the binding motifs by DNA-binding proteins. While some proteins rely on short-range hydrophobic and hydrogen bonding interactions at binding sites, others employ a DNA shape readout mechanism for specific recognition. In this mechanism, variations in DNA shape at the binding motif resulted from either inherent flexibility or binding of proteins at adjacent sites are sensed and capitalized by the searching proteins to locate them specifically. Through extensive computer simulations, we investigate both scenarios to uncover the underlying mechanism and origin of specificity in the DNA shape readout mechanism. Our findings reveal that deformation in shape at the binding motif creates an entropy funnel, allowing information about altered shapes to manifest as fluctuations in minor groove widths. This signal enhances the efficiency of nonspecific search of nearby proteins by directing their movement toward the binding site, primarily driven by a gain in entropy. We propose this as a generic mechanism for DNA shape readout, where specificity arises from the alignment between the molecular frustration of the searching protein and the ruggedness of the entropic funnel governed by molecular features of the protein and arrangement of the DNA bases at the binding site, respectively.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujeet Kumar Mishra
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Pérez Jorge G, Gontijo M, Silva MFE, Goes ICRDS, Jaimes-Florez YP, Coser LDO, Rocha FJS, Giorgio S, Brocchi M. Attenuated mutants of Salmonella enterica Typhimurium mediate melanoma regression via an immune response. Exp Biol Med (Maywood) 2024; 249:10081. [PMID: 38974834 PMCID: PMC11224151 DOI: 10.3389/ebm.2024.10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
The lack of effective treatment options for an increasing number of cancer cases highlights the need for new anticancer therapeutic strategies. Immunotherapy mediated by Salmonella enterica Typhimurium is a promising anticancer treatment. Candidate strains for anticancer therapy must be attenuated while retaining their antitumor activity. Here, we investigated the attenuation and antitumor efficacy of two S. enterica Typhimurium mutants, ΔtolRA and ΔihfABpmi, in a murine melanoma model. Results showed high attenuation of ΔtolRA in the Galleria mellonella model, and invasion and survival in tumor cells. However, it showed weak antitumor effects in vitro and in vivo. Contrastingly, lower attenuation of the attenuated ΔihfABpmi strain resulted in regression of tumor mass in all mice, approximately 6 days after the first treatment. The therapeutic response induced by ΔihfABpmi was accompanied with macrophage accumulation of antitumor phenotype (M1) and significant increase in the mRNAs of proinflammatory mediators (TNF-α, IL-6, and iNOS) and an apoptosis inducer (Bax). Our findings indicate that the attenuated ΔihfABpmi exerts its antitumor activity by inducing macrophage infiltration or reprogramming the immunosuppressed tumor microenvironment to an activated state, suggesting that attenuated S. enterica Typhimurium strains based on nucleoid-associated protein genes deletion could be immunotherapeutic against cancer.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Research Group: Statistics and Mathematical Modeling Applied to Educational Quality, University of Sucre, Sincelejo, Sucre, Colombia
| | - Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke Medicine Cir, Durham, NC, United States
| | - Marina Flóro e Silva
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Yessica Paola Jaimes-Florez
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- GIMBIO Group, Department of Microbiology, Faculty of Basic Sciences, Universidad de Pamplona, Pamplona, Colombia
| | - Lilian de Oliveira Coser
- Departamento de Biologia Estrutural e Funcional, Laboratório de Regeneração Nervosa, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
| | - Francisca Janaína Soares Rocha
- Área Acadêmica de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas—UNICAMP, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
3
|
Pozdeev G, Beckett MC, Mogre A, Thomson NR, Dorman CJ. Reciprocally rewiring and repositioning the Integration Host Factor (IHF) subunit genes in Salmonella enterica serovar Typhimurium: impacts on physiology and virulence. Microb Genom 2022; 8. [PMID: 35166652 PMCID: PMC8942017 DOI: 10.1099/mgen.0.000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Integration Host Factor (IHF) is a heterodimeric nucleoid-associated protein that plays roles in bacterial nucleoid architecture and genome-wide gene regulation. The ihfA and ihfB genes encode the subunits and are located 350 kbp apart, in the Right replichore of the Salmonella chromosome. IHF is composed of one IhfA and one IhfB subunit. Despite this 1 : 1 stoichiometry, MS revealed that IhfB is produced in 2-fold excess over IhfA. We re-engineered Salmonella to exchange reciprocally the protein-coding regions of ihfA and ihfB, such that each relocated protein-encoding region was driven by the expression signals of the other's gene. MS showed that in this 'rewired' strain, IhfA is produced in excess over IhfB, correlating with enhanced stability of the hybrid ihfB-ihfA mRNA that was expressed from the ihfB promoter. Nevertheless, the rewired strain grew at a similar rate to the wild-type and was similar in competitive fitness. However, compared to the wild-type, it was less motile, had growth-phase-specific reductions in SPI-1 and SPI-2 gene expression, and was engulfed at a higher rate by RAW macrophage. Our data show that while exchanging the physical locations of its ihf genes and the rewiring of their regulatory circuitry are well tolerated in Salmonella, genes involved in the production of type 3 secretion systems exhibit dysregulation accompanied by altered phenotypes.
Collapse
Affiliation(s)
- German Pozdeev
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aalap Mogre
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Dorman CJ, Schumacher MA, Bush MJ, Brennan RG, Buttner MJ. When is a transcription factor a NAP? Curr Opin Microbiol 2020; 55:26-33. [PMID: 32120333 DOI: 10.1016/j.mib.2020.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/03/2023]
Abstract
Proteins that regulate transcription often also play an architectural role in the genome. Thus, it has been difficult to define with precision the distinctions between transcription factors and nucleoid-associated proteins (NAPs). Anachronistic descriptions of NAPs as 'histone-like' implied an organizational function in a bacterial chromatin-like complex. Definitions based on protein abundance, regulatory mechanisms, target gene number, or the features of their DNA-binding sites are insufficient as marks of distinction, and trying to distinguish transcription factors and NAPs based on their ranking within regulatory hierarchies or positions in gene-control networks is also unsatisfactory. The terms 'transcription factor' and 'NAP' are ad hoc operational definitions with each protein lying along a spectrum of structural and functional features extending from highly specific actors with few gene targets to those with a pervasive influence on the transcriptome. The Streptomyces BldC protein is used to illustrate these issues.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
5
|
Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874-8887. [PMID: 31616952 PMCID: PMC7145599 DOI: 10.1093/nar/gkz642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis β-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.
Collapse
MESH Headings
- Allosteric Site
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- Crystallography, X-Ray
- DNA Nucleotidyltransferases/chemistry
- DNA Nucleotidyltransferases/genetics
- DNA Nucleotidyltransferases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Factor For Inversion Stimulation Protein/chemistry
- Factor For Inversion Stimulation Protein/genetics
- Factor For Inversion Stimulation Protein/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinational DNA Repair
- Sequence Alignment
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Department of Chemistry, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Duilio Cascio
- University of California at Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
7
|
Abstract
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
Collapse
|
8
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Rutherford K, Van Duyne GD. The ins and outs of serine integrase site-specific recombination. Curr Opin Struct Biol 2014; 24:125-31. [PMID: 24509164 DOI: 10.1016/j.sbi.2014.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
Serine integrases catalyze the integration and excision of phage genomes into and out of bacterial chromosomes in a highly specific and directional manner, making these proteins powerful tools for genome engineering. In 2013, the first structure of a serine integrase-DNA complex was reported. This work revealed how the phage attP sequence is recognized by the integrase and provided important clues about how serine integrases bind to other attachment site sequences. The resulting structural models indicate that distinct spatial arrangements of integrase domains are present for each attachment site complex. Here we describe how serine integrases may exploit this site-dependent domain arrangement to regulate the direction of recombination. We also discuss how phage-encoded recombination directionality factors could change this directionality by altering the nature of inter-subunit interactions.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
10
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Abstract
NBU1 is a mobilizable transposon found in Bacteroides spp. Mobilizable transposons require gene products from coresident conjugative transposons for excision and transfer to recipient cells. The integration of NBU1 requires IntN1, which has been identified as a tyrosine recombinase, as well as Bacteroides host factor BHFa. Excision of NBU1 is a more complicated process, involving five element-encoded proteins (IntN1, Orf2, Orf2x, Orf3, and PrmN1) as well as a Bacteroides host factor and a cis-acting DNA sequence. Little has been known about what role the proteins play in excision, although IntN1 and Orf2x have been shown to be the only proteins absolutely required for detectable excision. To determine where IntN1 and Orf2x bind during the excision of NBU1, both proteins were partially purified and tested in DNase I footprinting experiments with the excisive attachment sites attL and attR. The results demonstrate that IntN1 binds to four core-type sites that flank the region of cleavage and strand exchange, as well as six arm-type sites. A unique feature of the system is the location of DR2a and DR2b arm-type sites immediately downstream of the attL core. The DR1a, DR1b, DR3a, and DR3b arm-type sites were shown to be required for in vitro integration of NBU1. In addition, we have identified one Orf2x binding site (O1) on attL as well as a dA+dT-rich upstream element that is required for Orf2x interactions with O1.
Collapse
|
12
|
Panis G, Franche N, Méjean V, Ansaldi M. Insights into the functions of a prophage recombination directionality factor. Viruses 2012. [PMID: 23202488 PMCID: PMC3509656 DOI: 10.3390/v4112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recombination directionality factors (RDFs), or excisionases, are essential players of prophage excisive recombination. Despite the essentially catalytic role of the integrase in both integrative and excisive recombination, RDFs are required to direct the reaction towards excision and to prevent re-integration of the prophage genome when entering a lytic cycle. KplE1, HK620 and numerous (pro)phages that integrate at the same site in enterobacteria genomes (such as the argW tRNA gene) all share a highly conserved recombination module. This module comprises the attL and attR recombination sites and the RDF and integrase genes. The KplE1 RDF was named TorI after its initial identification as a negative regulator of the tor operon. However, it was characterized as an essential factor of excisive recombination. In this study, we designed an extensive random mutagenesis protocol of the torI gene and identified key residues involved in both functions of the TorI protein. We show that, in addition to TorI-TorR protein-protein interaction, TorI interacts in solution with the IntS integrase. Moreover, in vitro, TorR and IntS appear to compete for TorI binding. Finally, our mutagenesis results suggest that the C-terminal part of the TorI protein is dedicated to protein-protein interactions with both proteins TorR and IntS.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | |
Collapse
|
13
|
CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol 2010; 192:3934-43. [PMID: 20511494 DOI: 10.1128/jb.00351-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2' arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1' site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.
Collapse
|
14
|
Two regions of Bacillus subtilis transcription factor SpoIIID allow a monomer to bind DNA. J Bacteriol 2010; 192:1596-606. [PMID: 20061473 DOI: 10.1128/jb.01506-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient limitation causes Bacillus subtilis to develop into two different cell types, a mother cell and a spore. SpoIIID is a key regulator of transcription in the mother cell and positively or negatively regulates more than 100 genes, in many cases by binding to the promoter region. SpoIIID was predicted to have a helix-turn-helix motif for sequence-specific DNA binding, and a 10-bp consensus sequence was recognized in binding sites, but some strong binding sites were observed to contain more than one match to the consensus sequence, suggesting that SpoIIID might bind as a dimer or cooperatively as monomers. Here we show that SpoIIID binds with high affinity as a monomer to a single copy of its recognition sequence. Using charge reversal substitutions of residues likely to be exposed on the surface of SpoIIID and assays for transcriptional activation in vivo and for DNA binding in vitro, we identify two regions essential for DNA binding, the putative recognition helix of the predicted helix-turn-helix motif and a basic region near the C terminus. SpoIIID is unusual among prokaryotic DNA-binding proteins with a single helix-turn-helix motif in its ability to bind DNA monomerically with high affinity. We propose that the C-terminal basic region of SpoIIID makes additional contacts with DNA, analogous to the N-terminal arm of eukaryotic homeodomain proteins and the "wings" of winged-helix proteins, but structurally distinct. SpoIIID is highly conserved only among bacteria that form endospores, including several important human pathogens. The need to conserve biosynthetic capacity during endospore formation might have favored the evolution of a small transcription factor capable of high-affinity binding to DNA as a monomer, and this unusual mode of DNA binding could provide a target for drug design.
Collapse
|
15
|
Control of directionality in bacteriophage mv4 site-specific recombination: functional analysis of the Xis factor. J Bacteriol 2009; 192:624-35. [PMID: 19948798 DOI: 10.1128/jb.00986-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, (mv4)Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that (mv4)Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that (mv4)Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of (mv4)Xis.
Collapse
|
16
|
Abstract
The temperate bacteriophages lambda and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. lambda and P22 Xis proteins are both small proteins (lambda Xis, 72 amino acids; P22 Xis, 116 amino acids) and have basic isoelectric points (for P22 Xis, 9.42; for lambda Xis, 11.16). However, the P22 Xis and lambda Xis primary sequences lack significant similarity at the amino acid level, and the linear organizations of the P22 phage attachment site DNA-binding sites have differences that could be important in quaternary intasome structure. We purified P22 Xis and studied the protein in vitro by means of electrophoretic mobility shift assays and footprinting, cross-linking, gel filtration stoichiometry, and DNA bending assays. We identified one protected site that is bent approximately 137 degrees when bound by P22 Xis. The protein binds cooperatively and at high protein concentrations protects secondary sites that may be important for function. Finally, we aligned the attP arms containing the major Xis binding sites from bacteriophages lambda, P22, L5, HP1, and P2 and the conjugative transposon Tn916. The similarity in alignments among the sites suggests that Xis-containing bacteriophage arms may form similar structures.
Collapse
|
17
|
Hazelbaker D, Azaro MA, Landy A. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination. J Biol Chem 2008; 283:12402-14. [PMID: 18319248 DOI: 10.1074/jbc.m800544200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site-specific recombinase integrase encoded by bacteriophage lambda promotes integration and excision of the viral chromosome into and out of its Escherichia coli host chromosome through a Holliday junction recombination intermediate. This intermediate contains an integrase tetramer bound via its catalytic carboxyl-terminal domains to the four "core-type" sites of the Holliday junction DNA and via its amino-terminal domains to distal "arm-type" sites. The two classes of integrase binding sites are brought into close proximity by an ensemble of accessory proteins that bind and bend the intervening DNA. We have used a biotin interference assay that probes the requirement for major groove protein binding at specified DNA loci in conjunction with DNA protection, gel mobility shift, and genetic experiments to test several predictions of the models derived from the x-ray crystal structures of minimized and symmetrized surrogates of recombination intermediates lacking the accessory proteins and their cognate DNA targets. Our data do not support the predictions of "non-canonical" DNA targets for the N-domain of integrase, and they indicate that the complexes used for x-ray crystallography are more appropriate for modeling excisive rather than integrative recombination intermediates. We suggest that the difference in the asymmetric interaction profiles of the N-domains and arm-type sites in integrative versus excisive recombinogenic complexes reflects the regulation of recombination, whereas the asymmetry of these patterns within each reaction contributes to directionality.
Collapse
Affiliation(s)
- Dane Hazelbaker
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
18
|
Abbani MA, Papagiannis CV, Sam MD, Cascio D, Johnson RC, Clubb RT. Structure of the cooperative Xis-DNA complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly. Proc Natl Acad Sci U S A 2007; 104:2109-14. [PMID: 17287355 PMCID: PMC1893000 DOI: 10.1073/pnas.0607820104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA architectural protein Xis regulates the construction of higher-order nucleoprotein intasomes that integrate and excise the genome of phage lambda from the Escherichia coli chromosome. Xis modulates the directionality of site-specific recombination by stimulating phage excision 10(6)-fold, while simultaneously inhibiting phage reintegration. Control is exerted by cooperatively assembling onto a approximately 35-bp DNA regulatory element, which it distorts to preferentially stabilize an excisive intasome. Here, we report the 2.6-A crystal structure of the complex between three cooperatively bound Xis proteins and a 33-bp DNA containing the regulatory element. Xis binds DNA in a head-to-tail orientation to generate a micronucleoprotein filament. Although each protomer is anchored to the duplex by a similar set of nonbase specific contacts, malleable protein-DNA interactions enable binding to sites that differ in nucleotide sequence. Proteins at the ends of the duplex sequence specifically recognize similar binding sites and participate in cooperative binding via protein-protein interactions with a bridging Xis protomer that is bound in a less specific manner. Formation of this polymer introduces approximately 72 degrees of curvature into the DNA with slight positive writhe, which functions to connect disparate segments of DNA bridged by integrase within the excisive intasome.
Collapse
Affiliation(s)
- Mohamad A. Abbani
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
| | - My D. Sam
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Duilio Cascio
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Reid C. Johnson
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
- To whom correspondence may be addressed. E-mail:
or
| | - Robert T. Clubb
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
19
|
Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Mol Cell 2007; 24:569-80. [PMID: 17114059 PMCID: PMC1866956 DOI: 10.1016/j.molcel.2006.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/13/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Dale F. Mierke
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, Massachusetts 02115
| | - Sang Yeol Lee
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Arthur Landy
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| | - Marta Radman-Livaja
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| |
Collapse
|
20
|
Papagiannis CV, Sam MD, Abbani MA, Yoo D, Cascio D, Clubb RT, Johnson RC. Fis targets assembly of the Xis nucleoprotein filament to promote excisive recombination by phage lambda. J Mol Biol 2007; 367:328-43. [PMID: 17275024 PMCID: PMC1852488 DOI: 10.1016/j.jmb.2006.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.
Collapse
Affiliation(s)
- Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - My D. Sam
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Mohamad A. Abbani
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Daniel Yoo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - Duilio Cascio
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
- Corresponding author: Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737. Tel# 310-825-7800; Fax# 310-206-5272; email
| |
Collapse
|
21
|
Abbani M, Iwahara M, Clubb RT. The Structure of the Excisionase (Xis) Protein from Conjugative Transposon Tn916 Provides Insights into the Regulation of Heterobivalent Tyrosine Recombinases. J Mol Biol 2005; 347:11-25. [PMID: 15733914 DOI: 10.1016/j.jmb.2005.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/21/2004] [Accepted: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Heterobivalent tyrosine recombinases play a prominent role in numerous bacteriophage and transposon recombination systems. Their enzymatic activities are frequently regulated at a structural level by excisionase factors, which alter the ability of the recombinase to assemble into higher-order recombinogenic nucleoprotein structures. The Tn916 conjugative transposon spreads antibiotic resistance in pathogenic bacteria and is mobilized by a heterobivalent recombinase (Tn916Int), whose activity is regulated by an excisionase factor (Tn916Xis). Unlike the well-characterized (lambda)Xis excisionase from bacteriophage lambda, Tn916Xis stimulates excision in vitro and in Escherichia coli only modestly. To gain insights into this functional difference, we have performed in vitro DNA-binding studies of Tn916Xis and Tn916Int, and we have solved the solution structure of Tn916Xis. We show that the heterobivalent Tn916Int protein is capable of bridging the DR2-type and core-type sites on the left arm of the tranpsoson. Consistent with the notion that Tn916Int is regulated only loosely, we find that Tn916Xis binding does not alter the stability of DR2-Tn916Int-core bridges or the ability of Tn916Int to recognize the arms of the transposon in vitro. Despite a high degree of divergence at the primary sequence level, we show that Tn916Xis and (lambda)Xis adopt related prokaryotic winged-helix structures. However, they differ at their C termini, with Tn916Xis replacing the flexible integrase contacting tail found in (lambda)Xis with a positively charged alpha-helix. This difference provides a structural explanation for why Tn916Xis does not interact cooperatively with its cognate integrase in vitro, and reveals how subtle changes in the winged-helix fold can modulate the functional properties of excisionase factors.
Collapse
Affiliation(s)
- Mohamad Abbani
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, and the Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
22
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Gottfried P, Kolot M, Silberstein N, Yagil E. Protein-protein interaction between monomers of coliphage HK022 excisionase. FEBS Lett 2004; 577:17-20. [PMID: 15527755 DOI: 10.1016/j.febslet.2004.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/06/2004] [Accepted: 09/16/2004] [Indexed: 11/30/2022]
Abstract
Excisionase (Xis) is an accessory protein that is required for the site-specific excision reaction of the coliphages HK022 and lambda. Xis binds in a strong cooperative manner to two tandem binding sites (X1 and X2) located on the P arm of the attachment (att) sites on the phage genome. As a result of crosslinking experiments in vivo and in vitro of Xis-overexpressing cells, by gel filtration of purified Xis and by FRET analyses we show that Xis monomers of HK022 interact and form dimers that are not dependent on the single Cys residue of the protein and on the presence of DNA. The formation of the dimers may explain the strong binding cooperativity of Xis to its sites on DNA.
Collapse
Affiliation(s)
- Pnina Gottfried
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
24
|
Sam MD, Cascio D, Johnson RC, Clubb RT. Crystal structure of the excisionase-DNA complex from bacteriophage lambda. J Mol Biol 2004; 338:229-40. [PMID: 15066428 DOI: 10.1016/j.jmb.2004.02.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The excisionase (Xis) protein from bacteriophage lambda is the best characterized member of a large family of recombination directionality factors that control integrase-mediated DNA rearrangements. It triggers phage excision by cooperatively binding to sites X1 and X2 within the phage, bending DNA significantly and recruiting the phage-encoded integrase (Int) protein to site P2. We have determined the co-crystal structure of Xis with its X2 DNA-binding site at 1.7A resolution. Xis forms a unique winged-helix motif that interacts with the major and minor grooves of its binding site using an alpha-helix and an ordered beta-hairpin (wing), respectively. Recognition is achieved through an elaborate water-mediated hydrogen-bonding network at the major groove interface, while the preformed hairpin forms largely non-specific interactions with the minor groove. The structure of the complex provides insights into how Xis recruits Int cooperatively, and suggests a plausible mechanism by which it may distort longer DNA fragments significantly. It reveals a surface on the protein that is likely to mediate Xis-Xis interactions required for its cooperative binding to DNA.
Collapse
Affiliation(s)
- My D Sam
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
25
|
Rogov VV, Lücke C, Muresanu L, Wienk H, Kleinhaus I, Werner K, Löhr F, Pristovsek P, Rüterjans H. Solution structure and stability of the full-length excisionase from bacteriophage HK022. ACTA ACUST UNITED AC 2004; 270:4846-58. [PMID: 14653811 DOI: 10.1111/j.1432-1033.2003.03884.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the excisionase protein (Xis) from the lambda-like bacteriophage HK022 and to study its sequence-specific DNA interaction. As wild-type Xis was previously characterized as a generally unstable protein, a biologically active HK022 Xis mutant with a single amino acid substitution Cys28-->Ser was used in this work. This substitution has been shown to diminish the irreversibility of Xis denaturation and subsequent degradation, but does not affect the structural or thermodynamic properties of the protein, as evidenced by NMR and differential scanning calorimetry. The solution structure of HK022 Xis forms a compact, highly ordered protein core with two well-defined alpha-helices (residues 5-11 and 18-27) and five beta-strands (residues 2-4, 30-31, 35-36, 41-44 and 48-49). These data correlate well with 1H2O-2H2O exchange experiments and imply a different organization of the HK022 Xis secondary structure elements in comparison with the previously determined structure of the bacteriophage lambda excisionase. Superposition of both Xis structures indicates a better correspondence of the full-length HK022 Xis to the typical 'winged-helix' DNA-binding motif, as found, for example, in the DNA-binding domain of the Mu-phage repressor. Residues 51-72, which were not resolved in the lambda Xis, do not show any regular structure in HK022 Xis and thus appear to be completely disordered in solution. The resonance assignments have shown, however, that an unusual connectivity exists between residues Asn66 and Gly67 owing to asparagine-isoaspartyl isomerization. Such an isomerization has been previously observed and characterized only in eukaryotic proteins.
Collapse
Affiliation(s)
- Vladimir V Rogov
- Institute of Biophysical Chemistry, J.W. Goethe-University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Swalla BM, Cho EH, Gumport RI, Gardner JF. The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 2003; 50:89-99. [PMID: 14507366 DOI: 10.1046/j.1365-2958.2003.03687.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Higher-order nucleoprotein complexes often stabilize catalytic proteins in appropriate conformations for optimal activity and contribute to regulation during reactions requiring association of proteins and DNA. Formation of such complexes, known as intasomes, is required for site-specific recombination catalysed by bacteriophage Lambda Integrase protein (Int). Int-catalysed recombination is regulated by a second bacteriophage-encoded protein, Excisionase (Xis), which both stimulates excision and inhibits integration. To exert its effect, Xis binds co-operatively with Int, thereby inducing and stabilizing a DNA bend that alters the intasome structures formed during recombination. A rare int mutant, int 2268 ts, was reported (Enquist, L.W. and Weisberg, R.A. (1984) Mol Gen Genet 195: 62-69) to be more defective for excision than integration. Here, we have determined that this mutant Int protein contains an E47K substitution, and that the resultant excision-specific defect is due, at least in part, to destabilized interactions between Int and Xis. Analysis of several engineered substitutions at Int position 47 showed that a negatively charged residue is required for co-operative DNA binding between Int and Xis, and suggest that the Int-E47 residue may contact Xis directly. Substitutions at Int position 47 also affect co-operative binding among Int proteins at arm-type DNA sites, and thereby reduce the efficiency of both integration and excision. Collectively, these results suggest that a single surface of the Int amino-terminal domain mediates two alternate types of co-operative binding interactions.
Collapse
|
27
|
Aihara H, Kwon HJ, Nunes-Düby SE, Landy A, Ellenberger T. A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell 2003; 12:187-98. [PMID: 12887904 DOI: 10.1016/s1097-2765(03)00268-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteriophage lambda integrase protein (lambda Int) belongs to a family of tyrosine recombinases that catalyze DNA rearrangements. We have determined a crystal structure of lambda Int complexed with a cleaved DNA substrate through a covalent phosphotyrosine bond. In comparison to an earlier unliganded structure, we observe a drastic conformational change in DNA-bound lambda Int that brings Tyr342 into the active site for cleavage of the DNA in cis. A flexible linker connects the central and the catalytic domains, allowing the protein to encircle the DNA. Binding specificity is achieved through direct interactions with the DNA and indirect readout of the flexibility of the att site. The conformational switch that activates lambda Int for DNA cleavage exposes the C-terminal 8 residues for interactions with a neighboring Int molecule. The protein interactions mediated by lambda Int's C-terminal tail offer a mechanism for the allosteric control of cleavage activity in higher order lambda Int complexes.
Collapse
Affiliation(s)
- Hideki Aihara
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
28
|
Gottfried P, Silberstein N, Yagil E, Kolot M. Activity of coliphage HK022 excisionase (Xis) in the absence of DNA binding. FEBS Lett 2003; 545:133-8. [PMID: 12804763 DOI: 10.1016/s0014-5793(03)00512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutated excisionase (Xis) protein of coliphage HK022 whose single Cys residue was replaced by Ser does not bind to its two tandem binding sites (X1, X2) on the P arm of attR. Despite its DNA-binding inability the protein showed 30% excision activity of the wild type Xis both in vitro and in vivo. This partial activity is attributed to the interaction of Xis with integrase that is retained in the mutant protein. This protein-protein interaction occurs in the absence of DNA binding.
Collapse
Affiliation(s)
- Pnina Gottfried
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
29
|
Abstract
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.
Collapse
Affiliation(s)
- John A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
30
|
De Greve H, Qizhi C, Deboeck F, Hernalsteens JP. The Shiga-toxin VT2-encoding bacteriophage varphi297 integrates at a distinct position in the Escherichia coli genome. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:196-202. [PMID: 12427556 DOI: 10.1016/s0167-4781(02)00539-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The plaque-forming VT2-encoding lambdoid bacteriophage varphi297 was isolated from a Belgian clinical Escherichia coli O157:H7 isolate. PCR walking, starting from the int gene of phage varphi297, demonstrated that the varphi297 prophage integrated in the yecE gene of a lysogenic E. coli K12 strain. This integration site, in E. coli K12 and in the original clinical O157:H7 isolate, was confirmed by PCR using primers flanking this site. The excisionase protein of phage varphi297 is identical to the excisionase of VT1-encoding phage VT1-Sakai, while the integrases, which are 82% identical, show significant sequence divergence in the central and C-terminal region. This can explain the different integration sites of both prophages. The activity of the integrase was proven by its ability to mediate the integration of a suicide plasmid, carrying the attachment site of varphi297, at the appropriate position in the E. coli chromosome.
Collapse
Affiliation(s)
- Henri De Greve
- Laboratorium Genetische Virologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium.
| | | | | | | |
Collapse
|
31
|
Sam MD, Papagiannis CV, Connolly KM, Corselli L, Iwahara J, Lee J, Phillips M, Wojciak JM, Johnson RC, Clubb RT. Regulation of directionality in bacteriophage lambda site-specific recombination: structure of the Xis protein. J Mol Biol 2002; 324:791-805. [PMID: 12460578 DOI: 10.1016/s0022-2836(02)01150-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Upon induction of a bacteriophage lambda lysogen, a site-specific recombination reaction excises the phage genome from the chromosome of its bacterial host. A critical regulator of this process is the phage-encoded excisionase (Xis) protein, which functions both as a DNA architectural factor and by cooperatively recruiting integrase to an adjacent binding site specifically required for excision. Here we present the three-dimensional structure of Xis and the results of a structure-based mutagenesis study to define the molecular basis of its function. Xis adopts an unusual "winged"-helix motif that is modeled to interact with the major- and minor-grooves of its binding site through a single alpha-helix and loop structure ("wing"), respectively. The C-terminal tail of Xis, which is required for cooperative binding with integrase, is unstructured in the absence of DNA. We propose that asymmetric bending of DNA by Xis positions its unstructured C-terminal tail for direct contacts with the N-terminal DNA-binding domain of integrase and that an ensuing disordered to ordered transition of the tail may act to stabilize the formation of the tripartite integrase-Xis-DNA complex required for phage excision.
Collapse
Affiliation(s)
- My D Sam
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sarkar D, Azaro MA, Aihara H, Papagiannis CV, Tirumalai R, Nunes-Düby SE, Johnson RC, Ellenberger T, Landy A. Differential affinity and cooperativity functions of the amino-terminal 70 residues of lambda integrase. J Mol Biol 2002; 324:775-89. [PMID: 12460577 DOI: 10.1016/s0022-2836(02)01199-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.
Collapse
Affiliation(s)
- Dibyendu Sarkar
- Division of Biology and Medicine, Brown University, Box G-J 360, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho EH, Gumport RI, Gardner JF. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. J Bacteriol 2002; 184:5200-3. [PMID: 12193639 PMCID: PMC135313 DOI: 10.1128/jb.184.18.5200-5203.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal alpha-helix of Xis is thought to interact with Int through direct protein-protein interactions. In this study, we used gel mobility shift assays to show that the amino-terminal domain of Int maintained cooperative interactions with Xis. This finding indicates that the amino-terminal arm-type DNA binding domain of Int interacts with Xis.
Collapse
Affiliation(s)
- Eun Hee Cho
- Department of Science Education, Chosun University, Kwangju, Korea
| | | | | |
Collapse
|
34
|
Connolly KM, Iwahara M, Clubb RT. Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol 2002; 184:2088-99. [PMID: 11914339 PMCID: PMC134961 DOI: 10.1128/jb.184.8.2088-2099.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn916 and related conjugative transposons are clinically significant vectors for the transfer of antibiotic resistance among human pathogens, and they excise from their donor organisms using the transposon-encoded integrase ((Tn916)Int) and excisionase ((Tn916)Xis) proteins. In this study, we have investigated the role of the (Tn916)Xis protein in stimulating excisive recombination. The functional relevance of (Tn916)Xis binding sites on the arms of the transposon has been assessed in vivo using a transposon excision assay. Our results indicate that in Escherichia coli the stimulatory effect of the (Tn916)Xis protein is mediated by sequence-specific binding to either of its two binding sites on the left arm of the transposon. These sites lie in between the core and arm sites recognized by (Tn916)Int, suggesting that the (Tn916)Xis protein enhances excision in a manner similar to the excisionase protein of bacteriophage lambda, serving an architectural role in the stabilization of protein-nucleic acid structures required for strand synapsis. However, our finding that excision in E. coli is significantly enhanced by the host factor HU, but does not depend on the integration host factor or the factor for inversion stimulation, defines clear mechanistic differences between Tn916 and bacteriophage lambda recombination.
Collapse
Affiliation(s)
- Kevin M Connolly
- Department of Chemistry and Biochemistry, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|
35
|
Esposito D, Thrower JS, Scocca JJ. Protein and DNA requirements of the bacteriophage HP1 recombination system: a model for intasome formation. Nucleic Acids Res 2001; 29:3955-64. [PMID: 11574677 PMCID: PMC60247 DOI: 10.1093/nar/29.19.3955] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental step in site-specific recombination reactions involves the formation of properly arranged protein-DNA structures termed intasomes. The contributions of various proteins and DNA binding sites in the intasome determine not only whether recombination can occur, but also in which direction the reaction is likely to proceed and how fast the reaction will go. By mutating individual DNA binding sites and observing the effects of various mixtures of recombination proteins on the mutated substrates, we have begun to categorize the requirements for intasome formation in the site-specific recombination system of bacteriophage HP1. These experiments define the binding site occupancies in both integrative and excessive recombination for the three recombination proteins: HP1 integrase, HP1 Cox and IHF. This data has allowed us to create a model which explains many of the biochemical features of HP1 recombination, demonstrates the importance of intasome components on the directionality of the reaction and predicts further ways in which the role of the intasome can be explored.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
36
|
Hinerfeld D, Churchward G. Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol Microbiol 2001; 41:1459-67. [PMID: 11580848 DOI: 10.1046/j.1365-2958.2001.02626.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process.
Collapse
Affiliation(s)
- D Hinerfeld
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Cho EH, Alcaraz R, Gumport RI, Gardner JF. Characterization of bacteriophage lambda excisionase mutants defective in DNA binding. J Bacteriol 2000; 182:5807-12. [PMID: 11004181 PMCID: PMC94704 DOI: 10.1128/jb.182.20.5807-5812.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteriophage lambda excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797-3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the alpha-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.
Collapse
Affiliation(s)
- E H Cho
- Department of Science Education, Chosun University, Kwangju, Korea
| | | | | | | |
Collapse
|
38
|
Jia Y, Churchward G. Interactions of the integrase protein of the conjugative transposon Tn916 with its specific DNA binding sites. J Bacteriol 1999; 181:6114-23. [PMID: 10498726 PMCID: PMC103641 DOI: 10.1128/jb.181.19.6114-6123.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of two chimeric proteins, consisting of the N-terminal or C-terminal DNA binding domain of Tn916 Int fused to maltose binding protein, to specific oligonucleotide substrates was analyzed by gel mobility shift assay. The chimeric protein with the N-terminal domain formed two complexes of different electrophoretic mobilities. The faster-moving complex, whose formation displayed no cooperativity, contained two protein monomers bound to a single DNA molecule. The slower-moving complex, whose formation involved cooperative binding (Hill coefficient > 1.0), contained four protein monomers bound to a single DNA molecule. Methylation interference experiments coupled with the analysis of protein binding to mutant oligonucleotide substrates showed that formation of the faster-moving complex containing two protein monomers required the presence of two 11-bp direct repeats (called DR2) in direct orientation. Formation of the slower-moving complex required only a single DR2 repeat. Binding of the N-terminal domains in vivo could serve to position two Int monomers on the DNA near each end of the transposon and assist in bringing together the ends of the transposon so that excision can occur. The chimeric protein with the C-terminal domain of Int also formed two complexes of different electrophoretic mobilities. The major, slower-moving complex, whose formation involved cooperative binding, contained two protein molecules bound to one DNA molecule. This finding suggested that while the C-terminal domain of Int can bind DNA as a monomer, a cooperative interaction between two monomers of the C-terminal domain may help to bring the ends of the transposon together during excision.
Collapse
Affiliation(s)
- Y Jia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
39
|
Abstract
Excision from the donor DNA molecule is the first step in conjugative transposition of Tn916 and is followed by circularization of the transposon and its transfer to a new host. We have demonstrated that, in Gram-positive hosts, the Xis protein, as well as the site-specific recombinase Int, is required for the excision of Tn916. Using assays for closure of the excised covalently closed transposon and for repair of the donor DNA molecule, we found that neither protein alone is rate limiting for excision, but overexpression of Int and Xis together results in increased excision. After excision, the frequency of Tn916 circle formation was found to be the same as the frequency of repair of the donor DNA molecule. This suggests that a single reaction results in the closure of both molecules. We have also identified two transcripts that encode Int, one of which also encodes Xis and one of which does not, suggesting that there are steps in conjugative transposition of Tn916 that require Int without Xis.
Collapse
Affiliation(s)
- D Marra
- Department of Microbiology and Immunology, Emory University Health Sciences Center, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Wu Z, Gumport RI, Gardner JF. Defining the structural and functional roles of the carboxyl region of the bacteriophage lambda excisionase (Xis) protein. J Mol Biol 1998; 281:651-61. [PMID: 9710537 DOI: 10.1006/jmbi.1998.1963] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteriophage lambda excisionase (Xis) protein is required for excisive site-specific recombination. Xis is composed of 72 amino acids and binds cooperatively to two DNA sites (X1 and X2) that are arranged as direct repeats. Alternatively, Xis binds cooperatively with the host-encoded factor for inversion stimulation (FIS) protein at the X1 and F sites, respectively. Here we analyzed the effects of missense substitutions from codon 57 to the carboxyl end of the protein and nonsense mutations that truncate the protein at various positions from residues 60 to 69. We find that all of the mutant proteins promote excision to some extent and interact cooperatively with FIS. Some mutants have no detectible phenotype while others are altered in their abilities to promote excision or to interact cooperatively with integrase (Int). Computer modeling predicts that amino acids from residues 59 to 65 are in an alpha-helix conformation. Mutants with substitutions on one side of the helix at residues 57, 60, 63 and 64 as well as truncated mutants containing 60, 61 or 63 amino acids, fail to interact cooperatively with Int suggesting that this region of the protein forms the interface with Int. Mutants with substitutions at other positions in the putative helix have no detectible phenotype. Residues 66 to 68 may form a reverse turn and the last four amino acids (69 to 72) may not be crucial for the structure or function of the protein.
Collapse
Affiliation(s)
- Z Wu
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
41
|
Abstract
We purified the Xis protein of the conjugative transposon Tn916 and showed by nuclease protection experiments that Xis bound specifically to sites close to each end of Tn916. These specific binding sites are close to, and in the same relative orientation to, binding sites for the N-terminal domain of Tn916 integrase protein. These results suggest that Xis is involved in the formation of nucleoprotein structures at the ends of Tn916 that help to correctly align the ends so that excision can occur.
Collapse
Affiliation(s)
- C K Rudy
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
42
|
Esposito D, Scocca JJ. Purification and characterization of HP1 Cox and definition of its role in controlling the direction of site-specific recombination. J Biol Chem 1997; 272:8660-70. [PMID: 9079698 DOI: 10.1074/jbc.272.13.8660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The protein that activates site-specific excision of the HP1 genome from the Hemophilus influenzae chromosome, HP1 Cox, was purified. Native Cox consists of four 8.9-kDa protomers. Tetrameric Cox self-associates to octamers; the apparent dissociation constant was 8 microM protomer, suggesting that under reaction conditions Cox is largely tetrameric. Cox binding sites consist of two direct repeats of the consensus motif 5'-GGTMAWWWWA; one Cox tetramer binds to each motif. Cox binding interfered with the interaction of HP1 integrase with one of its binding sites, IBS5. This competition is central to directional control, as shown by studies on mutated sites. Both Cox binding sites were necessary for Cox to fully inhibit integration and activate excision, although Cox continued to affect recombination when the single binding site proximal to IBS5 remained intact. Eliminating the IBS5 site completely prevented integration but greatly enhanced excision. Excisive recombination continued to require Cox even when IBS5 was inactivated. Cox must therefore play a positive role in assembling the nucleoprotein complexes producing excisive recombination, by inducing the formation of a critical conformation in those complexes.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
43
|
Abstract
The crystal structure of integration host factor (IHF) complexed with DNA shows how a small heterodimeric protein can induce a big bend in DNA. IHF exerts leverage in the minor groove and wraps DNA around the body of the protein, providing another example of sequence-specific recognition of the minor groove.
Collapse
Affiliation(s)
- T Ellenberger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
44
|
Numrych TE, Gardner JF. Characterizing protein-nucleic acid interactions with challenge phages. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5773(05)80004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Abstract
Transposon insertion mutagenesis and transformation were used to locate genes responsible for excision in the temperature phage HP1 of Haemophilus influenzae. A 6.5 kb segment of DNA near the left end of the phage genome was sequenced, and 11 new open reading frames were identified. Two face-to-face overlapping promoter sequences organized these open reading frames into two operons transcribed in opposite directions. Interruption of the first open reading frame in the rightward operon created lysogens unable to produce phages. Provision of the uninterrupted open reading frame in trans restored phage production. The gene identified by this procedure, cox, was cloned and the protein product was expressed at high levels in Escherichia coli. The Cox protein is a 79-residue basic protein with a predicted strong helix-turn-helix DNA-binding motif. Extracts induced to express high levels of Cox contained a 9 kDa protein. These extracts inhibited integrative recombination and were required for excisive recombination mediated by HP1 integrase. The HP1 cox gene location is similar to that of the homologous excisive and regulatory genes from coliphages P2 and 186. These phages appear to share a distinctive organization of recombination proteins and transcriptional domains differing markedly from phage lambda and its relatives.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|
46
|
Landy A. Mechanistic and structural complexity in the site-specific recombination pathways of Int and FLP. Curr Opin Genet Dev 1993; 3:699-707. [PMID: 8274851 DOI: 10.1016/s0959-437x(05)80086-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review focuses on two of the approximately 30 members of the diverse Int family of site-specific recombinases. The lambda recombination system represents those reactions involving accessory proteins and a complex higher-order structure. The FLP system represents the most streamlined reactions and has been the subject of detailed and informative studies on the mechanisms of DNA cleavage and ligation.
Collapse
Affiliation(s)
- A Landy
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
47
|
Abstract
Bacteriophage lambda relies to a large extent on processes requiring interactions between viral- and host-encoded proteins for its lytic growth, establishment of lysogeny, and release from the prophage state. Both biochemical and genetic studies of these interactions have yielded new information about important host and lambda functions. In particular, mutations in Escherichia coli that compromise lambda DNA replication, genome packaging, transcription elongation, and site-specific recombination have led to the identification of bacterial genes whose products are chaperones, transcription factors, or DNA-binding proteins.
Collapse
|
48
|
Numrych TE, Gumport RI, Gardner JF. A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J Bacteriol 1991; 173:5954-63. [PMID: 1833380 PMCID: PMC208339 DOI: 10.1128/jb.173.19.5954-5963.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bacteriophage P22-based challenge-phage system was used to study the binding of Xis and FIS to their sites in attP of bacteriophage lambda. Challenge phages were constructed that contained the X1, X2, and F sites within the P22 Pant promoter, which is required for expression of antirepressor. If Xis and FIS bind to these sites in vivo, they repress transcription from Pant, allowing lysogenization to occur. Challenge phages carrying the XIX2F region in either orientation exhibited lysogenization dependent on both Xis and FIS. Neither Xis nor FIS was capable of functioning by itself as an efficient repressor in this system. This was the first time challenge phages have been constructed that require two different proteins bound simultaneously to act as a repressor. Mutations in the X1, X2, and F sites that inhibit Xis and FIS from binding were isolated by selecting mutant phages that still expressed antirepressor synthesis in the presence of Xis and FIS. DNA sequence analysis of the mutants revealed 38 unique mutations, including single-base-pair substitutions, multiple-base-pair changes, deletions, and insertions throughout the entire X1, X2, and F regions. Some of the mutations verified the importance of certain bases within the proposed consensus sequences for Xis and FIS, while others provided evidence that the DNA sequence outside of the proposed binding sites may affect the binding of the individual proteins or the cooperativity between them.
Collapse
Affiliation(s)
- T E Numrych
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
49
|
Numrych TE, Gumport RI, Gardner JF. A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res 1990; 18:3953-9. [PMID: 2142765 PMCID: PMC331098 DOI: 10.1093/nar/18.13.3953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Triple-base changes were made in each of the five Integrase (Int) arm-type binding sites of bacteriophage lambda. These triple changes, called ten mutants, were compared with single-base changes (hen mutants) for their effects on integrative and excisive recombination. The presence of ten or hen mutations in the P1, P'2, or P'3 sites inhibited integration, but the ten P'3 mutant was 10-fold more defective than the analogous hen mutant. The results with these mutants suggest that the P1, P'2, P'3, and possibly the P'1 sites are required for integration. In wild-type E. coli, the ten P'1 mutant reduced the frequency of excision 5-fold, whereas the hen P'1 mutant had no effect. The presence of ten mutations in the P2, P'1, or P'2 sites inhibited lambda excision in an E. coli strain deficient in the production of FIS, while hen mutations in the P2 and P'2 sites had little or no effect. The results with the ten mutants suggest that the P2, P'1, and P'2 sites are required for excision. The differences in the severity of the effects between the ten and hen mutations may be due to the inability of cooperative interactions among Int, IHF, Xis, and FIS to overcome the disruption of Int binding to sites with triple-base changes compared to sites with single-base changes.
Collapse
Affiliation(s)
- T E Numrych
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
50
|
Nunes-Düby SE, Matsumoto L, Landy A. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination. Cell 1989; 59:197-206. [PMID: 2529039 DOI: 10.1016/0092-8674(89)90881-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The early events in site-specific excisive recombination were studied with phage lambda half-att sites that have no DNA to one side of the strand exchange region; they carry a single core-type integrase binding site and either P or P' arm flanking DNA. These half-attR and half-attL sites exhibit normal properties for the initial (covalent) top-strand transfer and form stable intermediates independent of later steps in the reaction. With these novel substrates we show that Xis specifically promotes the first strand exchange and that attL enhances Int cleavage at the top-strand site of attR. It is also shown that synapsis and initial strand transfers do not require DNA-DNA pairing but are mediated by protein-protein and protein-DNA interactions. These involve the two top-strand Int binding sites (required for the first strand exchange) and, in addition, one of the two bottom-strand sites (C') responsible for the second strand exchange.
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | | | |
Collapse
|