1
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Finkel Y, Schmiedel D, Tai-Schmiedel J, Nachshon A, Winkler R, Dobesova M, Schwartz M, Mandelboim O, Stern-Ginossar N. Comprehensive annotations of human herpesvirus 6A and 6B genomes reveal novel and conserved genomic features. eLife 2020; 9:e50960. [PMID: 31944176 PMCID: PMC6964970 DOI: 10.7554/elife.50960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus-6 (HHV-6) A and B are ubiquitous betaherpesviruses, infecting the majority of the human population. They encompass large genomes and our understanding of their protein coding potential is far from complete. Here, we employ ribosome-profiling and systematic transcript-analysis to experimentally define HHV-6 translation products. We identify hundreds of new open reading frames (ORFs), including upstream ORFs (uORFs) and internal ORFs (iORFs), generating a complete unbiased atlas of HHV-6 proteome. By integrating systematic data from the prototypic betaherpesvirus, human cytomegalovirus, we uncover numerous uORFs and iORFs conserved across betaherpesviruses and we show uORFs are enriched in late viral genes. We identified three highly abundant HHV-6 encoded long non-coding RNAs, one of which generates a non-polyadenylated stable intron appearing to be a conserved feature of betaherpesviruses. Overall, our work reveals the complexity of HHV-6 genomes and highlights novel features conserved between betaherpesviruses, providing a rich resource for future functional studies.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor ImmunologyInstitute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical SchoolJerusalemIsrael
| | | | - Aharon Nachshon
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Roni Winkler
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Martina Dobesova
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Michal Schwartz
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor ImmunologyInstitute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical SchoolJerusalemIsrael
| | | |
Collapse
|
3
|
Marcinowski L, Lidschreiber M, Windhager L, Rieder M, Bosse JB, Rädle B, Bonfert T, Györy I, de Graaf M, da Costa OP, Rosenstiel P, Friedel CC, Zimmer R, Ruzsics Z, Dölken L. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 2012; 8:e1002908. [PMID: 22969428 PMCID: PMC3435240 DOI: 10.1371/journal.ppat.1002908] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023] Open
Abstract
During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-κB- and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-κB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5–6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction. Cytomegaloviruses are large DNA viruses, which establish life-long latent infections, leaving the infected individual at risk of reactivation and disease. Here, we applied 4-thiouridine-(4sU)-tagging of newly transcribed RNA to monitor the real-time kinetics of transcriptional activity of both cellular and viral genes during lytic murine CMV (MCMV) infection. We observed a cascade of MCMV-induced signaling events including a rapid inflammatory/interferon-response, a transient DNA-damage-response and a delayed ER-stress-response. All of these were heavily counter-regulated by viral gene expression. Besides dramatically increasing temporal resolution, our approach provides the unique opportunity to study viral transcriptional activity in absence of any interfering virion-associated-RNA. Virion-associated-RNA consists of transcripts that are unspecifically incorporated into the virus particles thereby resembling the cellular RNA profile of late stage infection. A clear picture of which viral genes are expressed, particularly at very early times of infection, could thus not be obtained. By overcoming this problem, we provide intriguing insights into the regulation of viral gene expression, namely 1) a peak of viral gene expression during the first two hours of infection including the expression of well-characterized late genes and 2) remarkably constant or even continuously declining expression of some viral genes despite the onset of rapid viral DNA replication.
Collapse
Affiliation(s)
- Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Lidschreiber
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Lukas Windhager
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Rieder
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Jens B. Bosse
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bernd Rädle
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Bonfert
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Ildiko Györy
- School of Biomedical and Biological Sciences, Centre for Research in Translational Biomedicine, Plymouth University, Plymouth, United Kingdom
| | - Miranda de Graaf
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Lars Dölken
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 2011; 21:274-82. [PMID: 21316217 DOI: 10.1016/j.sbi.2011.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/16/2010] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit and emerges at the solvent side where protein folding occurs. Despite the universality and conservation of dimensions of the ribosomal tunnel, a functional role for the ribosomal tunnel is only beginning to emerge: Rather than a passive conduit for the nascent chain, accumulating evidence indicates that the tunnel plays a more active role. In this article, we discuss recent structural insights into the role of the tunnel environment, and its implications for protein folding, co-translational targeting and translation regulation.
Collapse
|
5
|
Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 2010; 40:138-46. [PMID: 20932481 DOI: 10.1016/j.molcel.2010.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.
Collapse
Affiliation(s)
- Shashi Bhushan
- Gene Center and Department of Biochemistry and Center for integrated Protein Science Munich, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
cis-Acting sequences that contribute to synthesis of minus-strand DNA are not conserved between hepadnaviruses. J Virol 2010; 84:12824-31. [PMID: 20926578 DOI: 10.1128/jvi.01487-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepadnaviruses are DNA viruses that are found in several mammalian and avian species. These viruses replicate their genome through reverse transcription of an RNA intermediate termed pregenomic RNA (pgRNA). pgRNA is reverse transcribed by the viral polymerase into a minus-strand DNA, followed by synthesis of the plus-strand DNA. There are multiple cis-acting sequences that contribute to the synthesis of minus-strand DNA for human hepatitis B virus (HBV). Less is known about the cis-acting sequences of avian hepadnaviruses that contribute to synthesis of minus-strand DNA. To identify cis-acting sequences of duck hepatitis B virus (DHBV) and heron hepatitis B virus (HHBV), we analyzed variants containing 200-nucleotide (nt) deletions. Most variants of DHBV synthesized minus-strand DNA to 50 to 100% of the wild-type (WT) level, while two variants synthesized less than 50%. For HHBV, most variants synthesized minus-strand DNA to less than 50% the WT level. These results differ from those for HBV, where most of the genome can be removed with little consequence. HBV contains a sequence, φ, that contributes to the synthesis of minus-strand DNA. It has been proposed that DHBV has an analogous sequence. We determined that the proposed φ sequence of DHBV does not contribute to the synthesis of minus-strand DNA. Finally, we found that the DR2 sequence present in all hepadnaviruses is important for synthesis of minus-strand DNA in both DHBV and HHBV but not in HBV. These differences in cis-acting sequences suggest that the individual hepadnaviruses have evolved differences in their mechanisms for synthesizing minus-strand DNA, more so than for other steps in replication.
Collapse
|
7
|
The human cytomegalovirus UL112-113 locus can activate the full Kaposi's sarcoma-associated herpesvirus lytic replication cycle. J Virol 2009; 83:4695-9. [PMID: 19211735 DOI: 10.1128/jvi.02241-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of a cell containing latent Kaposi's sarcoma-associated herpesvirus (KSHV) results in the activation of KSHV lytic replication and the production of infectious virus. In this study, we examined the HCMV genes identified as having a role in the activation of HCMV early genes for their ability to activate KSHV lytic replication. It was found that the UL112-113 locus was able to activate the complete KSHV lytic cycle, while the UL122-123 locus, encoding the IE1 and IE2 proteins, known to be strong transactivators, did not.
Collapse
|
8
|
Gimeno I, Silva RF. Deletion of the Marek’s disease virus UL41 gene (vhs) has no measurable effect on latency or pathogenesis. Virus Genes 2008; 36:499-507. [DOI: 10.1007/s11262-008-0215-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/12/2008] [Indexed: 11/24/2022]
|
9
|
Mao W, Niikura M, Silva RF, Cheng HH. Quantitative evaluation of viral fitness due to a single nucleotide polymorphism in the Marek's disease virus UL41 gene via an in vitro competition assay. J Virol Methods 2008; 148:125-31. [DOI: 10.1016/j.jviromet.2007.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/18/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
10
|
Abraham TM, Loeb DD. The topology of hepatitis B virus pregenomic RNA promotes its replication. J Virol 2007; 81:11577-84. [PMID: 17699570 PMCID: PMC2168771 DOI: 10.1128/jvi.01414-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previous analysis of hepatitis B virus (HBV) indicated base pairing between two cis-acting sequences, the 5' half of the upper stem of epsilon and phi, contributes to the synthesis of minus-strand DNA. Our goal was to identify other cis-acting sequences on the pregenomic RNA (pgRNA) involved in the synthesis of minus-strand DNA. We found that large portions of the pgRNA could be deleted or substituted without an appreciable decrease in the level of minus-strand DNA synthesized, indicating that most of the pgRNA is dispensable and that a specific size of the pgRNA is not required for this process. Our results indicated that the cis-acting sequences for the synthesis of minus-strand DNA are present near the 5' and 3' ends of the pgRNA. In addition, we found that the first-strand template switch could be directed to a new location when a 72-nucleotide (nt) fragment, which contained the cis-acting sequences present near the 3' end of the pgRNA, was introduced at that location. Within this 72-nt region, we uncovered two new cis-acting sequences, which flank the acceptor site. We show that one of these sequences, named omega and located 3' of the acceptor site, base pairs with phi to contribute to the synthesis of minus-strand DNA. Thus, base pairing between three cis-acting elements (5' half of the upper stem of epsilon, phi, and omega) are necessary for the synthesis of HBV minus-strand DNA. We propose that this topology of pgRNA facilitates first-strand template switch and/or the initiation of synthesis of minus-strand DNA.
Collapse
Affiliation(s)
- Teresa M Abraham
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Zhang G, Raghavan B, Kotur M, Cheatham J, Sedmak D, Cook C, Waldman J, Trgovcich J. Antisense transcription in the human cytomegalovirus transcriptome. J Virol 2007; 81:11267-81. [PMID: 17686857 PMCID: PMC2045512 DOI: 10.1128/jvi.00007-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections are prevalent in human populations and can cause serious diseases, especially in those with compromised or immature immune systems. The HCMV genome of 230 kb is among the largest of the herpesvirus genomes. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV has been available for 18 years, the precise number of viral genes is still in question. We undertook an analysis of the HCMV transcriptome as an approach to enumerate and analyze the gene products of HCMV. Transcripts of HCMV-infected fibroblasts were isolated at different times after infection and used to generate cDNA libraries representing different temporal classes of viral genes. cDNA clones harboring viral sequences were selected and subjected to sequence analysis. Of the 604 clones analyzed, 45% were derived from genomic regions predicted to be noncoding. Additionally, at least 55% of the cDNA clones in this study were completely or partially antisense to known or predicted HCMV genes. The remarkable accumulation of antisense transcripts during infection suggests that currently available genomic maps based on open-reading-frame and other in silico analyses may drastically underestimate the true complexity of viral gene products. These findings also raise the possibility that aspects of both the HCMV life cycle and genome organization are influenced by antisense transcription. Correspondingly, virus-derived noncoding and antisense transcripts may shed light on HCMV pathogenesis and may represent a new class of targets for antiviral therapies.
Collapse
Affiliation(s)
- Guojuan Zhang
- The Ohio State University, Department of Pathology, 4162 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schleiss MR, Aronow BJ, Handwerger S. Cytomegalovirus infection of human syncytiotrophoblast cells strongly interferes with expression of genes involved in placental differentiation and tissue integrity. Pediatr Res 2007; 61:565-71. [PMID: 17413859 DOI: 10.1203/pdr.0b013e318045be6d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The principle route of acquisition of cytomegalovirus (CMV) for the fetus is believed to be via the placenta. We subjected purified cytotrophoblast cells obtained from full-term placentas to CMV infection and examined placental gene expression using microarray analyses. Cytotrophoblast cells purified from term placentas differentiated in vitro into a multinucleated syncytium that could be productively infected with CMV, with peak virus titers of approximately 10 plaque-forming units (PFU)/mL identified in supernatants at late time points postinoculation. Infected syncytiotrophoblast cells expressed CMV-specific transcripts and proteins, as demonstrated by Northern blot and immunofluorescence assays. Microarray analyses revealed that CMV infection strongly and reproducibly altered trophoblast gene expression, elevating expression of mitotic cell cycle genes, and repressing expression of genes associated with trophoblast differentiation, particularly those associated with formation and stabilization of the extracellular matrix. We conclude that purified, differentiated syncytiotrophoblasts are permissive for CMV replication. Infection of these cells induces significant perturbations in trophoblast transcription. An improved understanding of the molecular events that occur during CMV infection of trophoblasts could provide insights into interventions that might prevent or minimize congenital transmission.
Collapse
Affiliation(s)
- Mark R Schleiss
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
13
|
McSharry BP, Tomasec P, Neale ML, Wilkinson GWG. The most abundantly transcribed human cytomegalovirus gene (beta 2.7) is non-essential for growth in vitro. J Gen Virol 2003; 84:2511-2516. [PMID: 12917473 DOI: 10.1099/vir.0.19298-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most abundantly transcribed HCMV gene (beta 2.7) encodes a 2.7 kb polyadenylated RNA. Although the laboratory-adapted HCMV strains AD169 and Towne possess two copies of the beta 2.7 gene within an expanded b sequence element, the low passage strain Toledo and all clinical isolates analysed contain only a single copy located within the U(L) region. A beta 2.7 deletion mutant constructed based on a strain Toledo background was shown to replicate with kinetics comparable to those of the parental virus; the beta2.7 gene is therefore not essential for virus replication in vitro. Sequencing the beta 2.7 gene from HCMV clinical isolates and the Toledo strain reveals that although the overall gene sequence is highly conserved (>99 %), the RL4 frame originally assigned in strain AD169 was disrupted in each of these viruses. Consequently, the beta 2.7 transcript does not encode any obvious translation product and thus may not function as an mRNA.
Collapse
Affiliation(s)
- Brian P McSharry
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Peter Tomasec
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - M Lynne Neale
- Department of Medical Microbiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Gavin W G Wilkinson
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| |
Collapse
|
14
|
Ostrow KM, Loeb DD. Characterization of the cis-acting contributions to avian hepadnavirus RNA encapsidation. J Virol 2002; 76:9087-95. [PMID: 12186892 PMCID: PMC136466 DOI: 10.1128/jvi.76.18.9087-9095.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous analysis of duck hepatitis B virus (DHBV) indicated the presence of at least two cis-acting sequences required for efficient encapsidation of its pregenomic RNA (pgRNA), epsilon and region II. epsilon, an RNA stem-loop near the 5' end of the pgRNA, has been characterized in detail, while region II, located in the middle of the pgRNA, is not as well defined. Our initial aim was to identify the sequence important for the function of region II in DHBV. We scanned region II and the surrounding sequence by using a quantitative encapsidation assay. We found that the sequence between nucleotides (nt) 438 and 720 contributed to efficient pgRNA encapsidation, while the sequence between nt 538 and 610 made the largest contribution to encapsidation. Additionally, deletions between the two encapsidation sequences, epsilon and region II, had variable effects on encapsidation, while substitutions of heterologous sequence between epsilon and region II disrupted the ability of the pgRNA to be encapsidated efficiently. Overall, these data indicate that the intervening sequences between epsilon and region II play a role in encapsidation. We also analyzed heron hepatitis B virus (HHBV) for the presence of region II and found features similar to DHBV: a broad region necessary for efficient encapsidation that contained a critical region II sequence. Furthermore, we analyzed variants of DHBV that were substituted with HHBV sequence over region II and found that the chimeras were not fully functional for RNA encapsidation. These results indicate that sequences within region II may need to be compatible with other viral components in order to function in pgRNA encapsidation.
Collapse
Affiliation(s)
- Kristin M Ostrow
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Godart F, Bellanné-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanché H, Boutin P, Chèvre JC, Froguel P, Bailleul B. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1alpha (TCF1) promoter region in MODY patients. Hum Mutat 2000; 15:173-80. [PMID: 10649494 DOI: 10.1002/(sici)1098-1004(200002)15:2<173::aid-humu6>3.0.co;2-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous subtype of type II diabetes mellitus. To date, five MODY genes have been identified. Mutations in the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene are associated with MODY3. In the present work, we implemented the HNF-1alpha promoter region in the screening of MODY-suspect patients and identified seven variants not detected in control subjects. The family was available for the -119delG variant, and segregration between MODY and the variant is observed. Most of these variants are located in highly conserved regions and may alter HNF-1alpha expression through binding alteration of nuclear factors or other mechanisms. We demonstrate by functional studies that the transcriptional activity of the -283A>C and -218T>C variant promoters were 30% and 70% of the wild type activity, respectively. These data suggest that HNF-1alpha promoter variants could be diabetogenic mutations, and emphasize that the accurate HNF-1alpha expression is important for the maintenance of normal pancreatic beta cell function.
Collapse
Affiliation(s)
- F Godart
- Institut de Biologie de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hyun JJ, Park HS, Kim KH, Kim HJ. Analysis of transcripts expressed from the UL47 gene of human cytomegalovirus. Arch Pharm Res 1999; 22:542-8. [PMID: 10615857 DOI: 10.1007/bf02975323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The UL47 gene (b 60390-b 60338) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed by RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of UL48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.
Collapse
Affiliation(s)
- J J Hyun
- College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | |
Collapse
|
17
|
Alderete JP, Jarrahian S, Geballe AP. Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene. J Virol 1999; 73:8330-7. [PMID: 10482583 PMCID: PMC112850 DOI: 10.1128/jvi.73.10.8330-8337.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) gpUL4 mRNA contains a 22-codon upstream open reading frame (uORF2), the peptide product of which represses downstream translation by blocking translation termination at its own stop codon and by causing ribosomes to stall on the mRNA. A distinctive feature of this unusual mechanism is its strict dependence on the uORF2 peptide sequence. To delineate sequence elements that function in the inhibitory mechanism, deletions and missense mutations affecting the previously uncharacterized amino-terminal region of uORF2 were analyzed in transient-transfection and infection assays. These experiments identified multiple codons in this region that are necessary for inhibition of downstream translation by uORF2 and, in conjunction with previous results, demonstrated that amino acids dispersed throughout the uORF2 peptide participate in the repressive mechanism. In contrast to the highly conserved carboxy terminus, the amino-terminal portion of the uORF2 peptide is polymorphic. A survey of uORF2 sequences in HCMV clinical isolates revealed that although most have uORF2 sequences that are predicted to retain the uORF2 inhibitory activity, approximately 15% contain polymorphisms at codons that are essential for full inhibition by uORF2. Consistent with predictions based on analyses of engineered mutations, two viral isolates with uORF2 sequences that do not inhibit downstream translation in transfection assays expressed much more gpUL4 protein but similar levels of UL4 mRNA compared to the levels produced by the prototypic laboratory strain HCMV (Towne) and another clinical isolate with an inhibitory variant uORF2. These results demonstrate that uORF2 is polymorphic in sequence and repressive activity and suggest that the uORF2 regulatory mechanism, although prevalent among natural HCMV isolates, is not absolutely essential for viral replication.
Collapse
Affiliation(s)
- J P Alderete
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
18
|
Bergamini G, Reschke M, Battista MC, Boccuni MC, Campanini F, Ripalti A, Landini MP. The major open reading frame of the beta2.7 transcript of human cytomegalovirus: in vitro expression of a protein posttranscriptionally regulated by the 5' region. J Virol 1998; 72:8425-9. [PMID: 9733897 PMCID: PMC110236 DOI: 10.1128/jvi.72.10.8425-8429.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta2.7 is the major early transcript produced during human cytomegalovirus infection. This abundantly expressed RNA is polysome associated, but no protein product has ever been detected. In this study, a stable peptide of 24 kDa was produced in vitro from the major open reading frame (ORF), TRL4. Following transient transfection, the intracellular localization was nucleolar and the expression was posttranscriptionally inhibited by the 5' sequence of the transcript, which harbors two short upstream ORFs.
Collapse
Affiliation(s)
- G Bergamini
- Department of Clinical and Experimental Medicine, Division of Microbiology, University of Bologna, St. Orsola Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kienker LJ, Ghosh MR, Tucker PW. Regulatory Elements in the Promoter of a Murine TCRD V Gene Segment. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
TCRD V segments rearrange in an ordered fashion during human and murine thymic development. Recombination requires the accessibility of substrate gene segments, and transcriptional enhancers and promoters have been shown to regulate the accessible chromatin configuration. We therefore investigated the regulation of TCRD V rearrangements by characterizing the promoter of the first TCRD V segment to be rearranged, DV101S1, under the influence of its own enhancer. Sequences required for full promoter activity were identified by transient transfections of normal and mutated promoters into a human γδ lymphoma, and necessary elements fall between −86 and +66 nt, relative to the major transcription start site. They include a cAMP responsive element (CRE) at −62, an Ets site at −39, a TATA box at −26, the major transcriptional start site sequence (−8 to −5 and −2 to +11), and a downstream sequence (+12 to +33). Gel shift analyses and in vitro DNase I footprinting showed that nuclear proteins bind to the functionally relevant CRE, Ets, +1 to +10 sequence, and the +17 to +21 sequence. Nuclear proteins also bind to an E box at −52, and GATA-3 binds to a GATA motif at −5, as shown by Ab ablation-supershift experiments, but mutations that abrogated protein binding to these sites failed to affect DV101S1 promoter activity. We conclude that not all protein-binding sites within the DV101S1 minimal promoter are important for enhancer driven TCRD gene transcription. Further, the possibility remains that the GATA and E box sites function in enhancer independent DV101S1 germline transcription.
Collapse
Affiliation(s)
- Laura J. Kienker
- *Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Maya R. Ghosh
- †Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712
| | - Philip W. Tucker
- †Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712
| |
Collapse
|
20
|
Seewaldt VL, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ, Tsai S. Inhibition of retinoic acid receptor function in normal human mammary epithelial cells results in increased cellular proliferation and inhibits the formation of a polarized epithelium in vitro. Exp Cell Res 1997; 236:16-28. [PMID: 9344581 DOI: 10.1006/excr.1997.3694] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of retinoic acid receptor-beta (RAR beta) mRNA is absent or down-regulated in a majority of breast cancers, suggesting that loss of retinoic acid receptor function may be a critical event in breast cancer carcinogenesis. We developed an in vitro system to investigate whether the loss of retinoic acid receptor (RAR) function might affect the proliferation and structural differentiation of normal cultured human mammary epithelial cells (HMECs). Utilizing a truncated retinoic acid receptor (RAR)-alpha construct exhibiting dominant-negative activity against retinoic acid receptor isoforms alpha, beta, and gamma (DNRAR), we inhibited normal retinoic acid receptor function in HMECs. Suppression of RAR function in HMECs resulted in reduced growth inhibition mediated by all-trans-retinoic acid (ATRA). Moreover, the doubling time of HMECs expressing the DNRAR was significantly shortened, associated with a decrease in the percentage of cells in G1 and an increase in the percentage of cells in S-phase relative to controls. In addition, HMECs expressing the DNRAR cultured in prepared extracellular matrix exhibited a loss of extracellular matrix-induced growth arrest and formation of a polarized ductal epthelium. Our results suggest that ATRA and RARs may play an important role in regulating the proliferation of HMECs and in promoting differentiation.
Collapse
Affiliation(s)
- V L Seewaldt
- Division of Medical Oncology, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Amrolia PJ, Cunningham JM, Ney P, Nienhuis AW, Jane SM. Identification of two novel regulatory elements within the 5'-untranslated region of the human A gamma-globin gene. J Biol Chem 1995; 270:12892-8. [PMID: 7759548 DOI: 10.1074/jbc.270.21.12892] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interaction between the stage selector element (SSE) in the proximal gamma-globin promoter and hypersensitivity site 2 in the locus control region partly mediates the competitive silencing of the beta-globin promoter in the fetal developmental stage. We have now demonstrated that a second SSE-like element in the 5'-untranslated region of the gamma-gene also contributes to this competitive silencing of the beta-gene. Utilizing transient transfection assays in the fetal erythroid cell line, K562, we have shown that the core enhancer of hypersensitivity site 2 can preferentially interact with the proximal gamma-promoter in the absence of the SSE, completely silencing a linked beta-promoter. Mutation of a 20-base pair sequence of the gamma-gene 5'-untranslated region (UTR) led to derepression of beta-promoter activity. A marked activation of gamma-promoter activity was also observed with this mutation, suggesting the presence of a repressor. Fine mutagenesis dissected these activities to different regions of the 5'-UTR. The stage selector activity was localized to a region centered on nucleotides +13 to +15. Electromobility shift assays utilizing this sequence demonstrated binding of a fetal and erythroid-specific protein. The repressor activity of the 5'-UTR was localized to tandem GATA-like sites, which appear to bind a complex of two proteins, one of which is the erythroid transcription factor GATA-1. These results indicate that the 5'-UTR of the gamma-gene contains sequences that may be important for its transcriptional and developmental regulation.
Collapse
Affiliation(s)
- P J Amrolia
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| | | | | | | | | |
Collapse
|
22
|
Lagenaur LA, Manning WC, Vieira J, Martens CL, Mocarski ES. Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells. J Virol 1994; 68:7717-27. [PMID: 7966561 PMCID: PMC237233 DOI: 10.1128/jvi.68.12.7717-7727.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The salivary gland has long been recognized as an important target organ for cytomegalovirus replication in the infected host. A viral gene, denoted sgg1, plays an important role for replication in the salivary gland even though it is dispensable for growth in other organs or in cultured cells. The nucleotide sequence of this gene and of cDNA clones representing two spliced transcripts (1.5 and 1.8 kb in size) has been determined. The more abundant 1.5-kb transcript contains a 312-amino-acid (aa) open reading frame (ORF) and encodes the corresponding 37-kDa protein (Sgg1) when expressed in transfected COS-7 cells. The 1.8-kb transcript initiates upstream of the 1.5-kb transcript and contains a 108-aa ORF in addition to the 312-aa ORF. This longer cDNA also encodes the 37-kDa protein Sgg1, although at lower abundance than the 1.5-kb cDNA. Sgg1 localizes to the cytoplasm of COS-7 cells, which is consistent with the predicted structural characteristics of the 312-aa ORF: a type 1 integral membrane protein. During viral infection, expression of both sgg1 transcripts is highest at early times (8 to 12 h) after infection; only the 1.5-kb transcript is present, at low levels, late in infection. A recombinant virus, RM868, carrying a lacZ-gpt insertion within sgg1, fails to express Sgg1 protein and exhibits reduced growth in the salivary gland. RM868 retains the capacity to disseminate in the infected mouse and to enter serous acinar cells, although it fails to replicate efficiently in this cell type. These results suggest that sgg1 is critical for high levels of viral replication in the salivary gland.
Collapse
Affiliation(s)
- L A Lagenaur
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | | | | | |
Collapse
|
23
|
Stoddart CA, Cardin RD, Boname JM, Manning WC, Abenes GB, Mocarski ES. Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J Virol 1994; 68:6243-53. [PMID: 8083964 PMCID: PMC237044 DOI: 10.1128/jvi.68.10.6243-6253.1994] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytomegalovirus is transmitted with blood and organs from seropositive individuals, although the particular leukocyte population harboring latent or persistent virus remains poorly characterized. Murine cytomegalovirus, tagged with the Escherichia coli lacZ gene, was used to identify cells in which virus replicates during acute infection of immunocompetent mice. Recombinant murine cytomegaloviruses, RM461, RM460, and RM427, were constructed to express beta-galactosidase under control of the human cytomegalovirus ie1/ie2 promoter/enhancer. The lacZ gene was inserted between the ie2 and sgg1 genes in RM461 and RM460, disrupting a 0.85-kb late transcript that was found to be dispensable for replication in cultured cells as well as for infection of mice. In BALB/c mice, lacZ-tagged and wild-type viruses exhibited a similar 50% lethal dose and all had the capacity to latently infect the spleen. Peripheral blood mononuclear phagocytes were the major infected leukocyte cell type, as demonstrated by the ability of infected cells to adhere to glass and to phagocytize latex beads; however, these cells did not exhibit typical monocyte markers. Plaque assay for virus and 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining of frozen sections of organs from infected mice revealed that the major target organs included the spleen, adrenal glands, liver, and salivary glands, although tissues as diverse as brown fat and lungs were also involved. Individual blue-staining cells were readily identified in all infected tissues. These studies identified a mononuclear phagocyte, possibly a macrophage or dendritic cell precursor, as the vehicle of virus dissemination during acute infection, and demonstrate the utility of using lacZ-tagged murine cytomegalovirus for tropism, pathogenesis, and latency studies.
Collapse
Affiliation(s)
- C A Stoddart
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | | | | | | | |
Collapse
|
24
|
Hartong R, Wang N, Kurokawa R, Lazar M, Glass C, Apriletti J, Dillmann W. Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ATPase gene. Demonstration that retinoid X receptor binds 5' to thyroid hormone receptor in response element 1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99978-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Scholz E, Zhang C, Guo P. Transactivation of the early SV40 promoter by avian infectious laryngotracheitis virus in avian hepatoma cells. J Virol Methods 1993; 45:291-301. [PMID: 8106602 DOI: 10.1016/0166-0934(93)90114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An avian hepatoma cell line has been reported to be suitable for the cultivation of avian laryngotracheitis virus (ILTV) (Scholz et al. (1993) J. Virol. Methods, 273-286; Guo et al. (1993) Am. J. Vet. Res., in press). To provide information for the establishment of avian expression systems and for the construction of avian recombinant viruses, five expression plasmids were constructed to test two avian viral and two mammalian viral promotors for their suitability and strength for gene expression in this cell line. Chicken hepatoma cells were transfected with plasmids carrying the bacterial beta-galactosidase (beta-gal) gene as a reporter gene. The beta-gal gene of three plasmid constructs expressed in both E. coli and avian hepatoma cells, while the beta-gal gene of two other constructs expressed only in avian hepatoma cells. The beta-gal gene expressed independently of any viral infection when under the control of the early Rous sarcoma virus (RSV) promoter or the immediate-early cytomegalovirus (CMV) promoter. However, expression of beta-gal gene under the control of the SV40 early promoter/enhancer and the ILTV TK promoter was greatly potentiated when the transfected cells were co-infected with ILTV. This finding provides a system for the enhancement of gene expression in avian cells, especially when ILTV is used as vector.
Collapse
Affiliation(s)
- E Scholz
- Department of Veterinary Pathobiology, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
26
|
Murray MG, Hung W, Sadowski I, Das Mahapatra B. Inactivation of a yeast transactivator by the fused HIV-1 proteinase: a simple assay for inhibitors of the viral enzyme activity. Gene 1993; 134:123-8. [PMID: 8244023 DOI: 10.1016/0378-1119(93)90185-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteinase (PR) and its flanking sequences have been fused in frame between the DNA-binding domain and the transcription-activation domain of the yeast protein, GAL4. As has been shown before with the 3C proteinase of Coxsackie virus B3 (CVB3) [Das Mahapatra et al., Proc. Natl. Acad. Sci. USA 89 (1992) 4159-4162], the GAL4::PR fusion protein retains its GAL4 function, providing the PR is inactive. When PR is active, its autocatalytic activity in the hybrid protein is shown to inactivate the transactivation function of GAL4. This provides a simple assay to monitor PR activity. A dose-dependent effect of a potent PR-specific inhibitor is demonstrated in this system and illustrates the sensitivity of the assay. The assay is used for high throughput screening to identify novel inhibitors of the viral PR, and provides a method to generate and analyze mutants and revertants of the PR.
Collapse
Affiliation(s)
- M G Murray
- Schering-Plough Research Institute, Kenilworth, NJ 07033-0539
| | | | | | | |
Collapse
|
27
|
Degnin CR, Schleiss MR, Cao J, Geballe AP. Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J Virol 1993; 67:5514-21. [PMID: 8394459 PMCID: PMC237954 DOI: 10.1128/jvi.67.9.5514-5521.1993] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human cytomegalovirus (CMV) virion glycoprotein gpUL4 (gp48) gene expresses a transcript that contains three AUG codons upstream from the one used to initiate synthesis of the gp48 protein. Previously we reported that the second of these AUG codons, AUG2, was necessary but insufficient for inhibition of downstream translation (M. Schleiss, C. R. Degnin, and A. P. Geballe, J. Virol. 65:6782-6789, 1991). We now demonstrate that the coding information of the upstream open reading frame initiated by AUG2 (uORF2) is critical for the inhibitory signal. Several missense mutations, particularly those involving the carboxy-terminal codons of uORF2, inactivate the inhibitory signal, while mutations that preserve the coding content of uORF2 uniformly retain the inhibitory signal. The uORF2 termination codon is essential for inhibition, but leader sequences further downstream are not critical. Conservation of uORF2 among clinical strains of CMV suggests that uORF2 provides an important function in the CMV infectious cycle. Although these results indicate that the peptide product of uORF2 mediates the inhibitory effect, we demonstrate that the uORF2 signal acts only in cis, and we propose a model of inhibition by the gp48 uORF2 signal.
Collapse
Affiliation(s)
- C R Degnin
- Department of Molecular Medicine, Fred Hutchinson Cancer Research Center C2-023, Seattle, Washington 98104-2092
| | | | | | | |
Collapse
|
28
|
Tsai S, Collins SJ. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci U S A 1993; 90:7153-7. [PMID: 8394011 PMCID: PMC47094 DOI: 10.1073/pnas.90.15.7153] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have investigated the roles of retinoic acid receptors in the development of neutrophils by using an interleukin 3-dependent multipotent hematopoietic cell line (FDCP mix A4) as well as normal mouse bone marrow cells. Treatment of the FDCP mix A4 cells with murine granulocyte/macrophage-colony-stimulating factor (GM-CSF) induced these cells to differentiate into neutrophils and macrophages. When the endogenous retinoic acid receptor activity in FDCP mix A4 cells was suppressed by a dominant negative retinoic acid receptor construct, this GM-CSF-induced neutrophil differentiation was blocked at the promyelocyte stage. The blocked promyelocytes proliferated continuously as a GM-CSF-dependent cell line but could be induced to terminally differentiate into neutrophils with supraphysiological concentrations of all-trans-retinoic acid (1-10 microM). The ability of the dominant negative retinoic acid receptor to block neutrophil differentiation at the promyelocyte stage was also demonstrated in normal, primary mouse bone marrow cells. Our results indicate that retinoic acid receptors in conjunction with hematopoietic growth factors play a crucial role in the terminal differentiation of normal neutrophil precursors. The system described here may also serve as a model for studying the pathogenesis of human acute promyelocytic leukemia.
Collapse
Affiliation(s)
- S Tsai
- Program in Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
29
|
Abstract
Selective encapsidation of hepatitis B virus (HBV) genomic RNA within cytoplasmic core particles requires recognition of the cis-encapsidation signal, (termed epsilon) located at the 5' end of genomic RNA. By transfecting plasmids expressing chimeric RNAs bearing HBV sequences fused to lacZ, we have mapped the minimal region of epsilon to the 5' 94 nucleotides (nt) of genomic RNA. Enzymatic probing of the RNA secondary structure in this region (by using either in vitro transcripts or RNA extracted from HBV core particles) reveals a stem-loop structure containing a lower stem, a 6-nt bulge, an upper stem with a single unpaired U residue, and a 6-nt loop. The functional role of this structure in encapsidation was explored by examining the effects of mutations in epsilon on encapsidation of RNA in vivo. These studies reveal that (i) in the lower stem, base pairing but not specific primary sequence is required for function; (ii) there is no requirement for base pairing in the lower portion of the upper stem, but base pairing elsewhere in this stem contributes to packaging efficiency; (iii) the presence of the 6-nt bulge, but not its primary sequence, is important for function; and (iv) specific nucleotide sequences in the loop and in regions of the upper stem are critical for RNA encapsidation.
Collapse
Affiliation(s)
- J R Pollack
- Department of Biochemistry and Biophysics, University of California Medical Center, San Francisco 94143-0502
| | | |
Collapse
|
30
|
Stenberg RM. Immediate-Early Genes of Human Cytomegalovirus: Organization and Function. MOLECULAR ASPECTS OF HUMAN CYTOMEGALOVIRUS DISEASES 1993. [DOI: 10.1007/978-3-642-84850-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Parkin NT, Chamorro M, Varmus HE. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J Virol 1992; 66:5147-51. [PMID: 1321294 PMCID: PMC241392 DOI: 10.1128/jvi.66.8.5147-5151.1992] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion polyprotein is produced via ribosomal frameshifting. Previous studies in vitro and in Saccharomyces cerevisiae have argued against a significant role for RNA secondary structure 3' of the shift site, in contrast with other systems, in which such structure has been shown to be required. Here we show, by expressing the HIV-1 gag-pol domain in cultured vertebrate cells, that a stem-loop structure 3' of the HIV-1 shift site is indeed important for wild-type levels of frameshifting in vivo.
Collapse
Affiliation(s)
- N T Parkin
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|
32
|
Dasmahapatra B, DiDomenico B, Dwyer S, Ma J, Sadowski I, Schwartz J. A genetic system for studying the activity of a proteolytic enzyme. Proc Natl Acad Sci U S A 1992; 89:4159-62. [PMID: 1570342 PMCID: PMC525652 DOI: 10.1073/pnas.89.9.4159] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a genetic system for monitoring the activity of a specific proteolytic enzyme by taking advantage of the properties of the yeast transcriptional activator GAL4. The GAL4 protein contains two separable and functionally essential domains: the amino-terminal DNA binding domain and the carboxyl-terminal transcriptional activating domain. We constructed two hybrid proteins by inserting between the DNA binding domain and the activation domain of GAL4 either (i) a self-cleaving protease (3C protease of a picornavirus, coxsackievirus B3) or (ii) a mutant form of the protease that is unable to cleave. We show that, although the hybrid protein containing the mutant protease activates transcription of GAL1-lacZ reporter gene, the hybrid protein bearing the wild-type protease is proteolytically cleaved and fails to activate transcription. Our approach to monitor the proteolytic activity could be used to develop simple genetic systems to study other proteases.
Collapse
Affiliation(s)
- B Dasmahapatra
- Antiviral Chemotherapy, Schering-Plough Research Institute, Bloomfield, NJ 07003
| | | | | | | | | | | |
Collapse
|
33
|
Mason JO, Kitajewski J, Varmus HE. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line. Mol Biol Cell 1992; 3:521-33. [PMID: 1535241 PMCID: PMC275605 DOI: 10.1091/mbc.3.5.521] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proto-oncogene Wnt-1 encodes a cysteine-rich, secretory glycoprotein implicated in virus-induced mouse mammary cancer and intercellular signaling during vertebrate neural development. To attempt to correlate structural motifs of Wnt-1 protein with its function, 12 mutations were introduced singly and in several combinations into the coding sequence of Wnt-1 cDNA by site-directed mutagenesis. Mutant alleles in a retroviral vector were tested for their ability to transform the mouse mammary epithelial cell line C57MG in two ways: by direct infection of C57MG cells and by infection of NIH3T3 cells that serve as donors of Wnt-1 protein to adjacent C57MG cells in a secretion-dependent (paracrine) assay. In addition, the synthesis and secretion of mutant proteins were monitored in multiple cell types by immunological assays. Deletion of the signal peptide demonstrated that transformation in both direct and paracrine assays depends upon entry of Wnt-1 protein into the endoplasmic reticulum. Changes in potential proteolytic processing sites (two basic dipeptides and a probable signal peptidase cleavage site) did not adversely impair biological activity or protein processing and uncovered a second site for cleavage by signal peptidase. Replacement of each of the four asparagine-linked glycosylation sites did not affect transforming activity at normal temperatures, but one glycosylation site mutant was found to be temperature-sensitive for transformation. An allele encoding a protein that lacks all four glycosylation sites was also transformation competent. In two of four cases, substitution of serine for a cysteine residue impaired transforming activity at the usual temperature, and transformation was temperature sensitive in a third case, implying that at least some of the highly conserved cysteine residues are important for Wnt-1 function.
Collapse
Affiliation(s)
- J O Mason
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|
34
|
Hickstein DD, Baker DM, Gollahon KA, Back AL. Identification of the promoter of the myelomonocytic leukocyte integrin CD11b. Proc Natl Acad Sci U S A 1992; 89:2105-9. [PMID: 1347945 PMCID: PMC48605 DOI: 10.1073/pnas.89.6.2105] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CD11b (or macrophage-1 antigen; MAC-1) subunit of the leukocyte integrin family forms a noncovalently associated heterodimeric structure with the CD18 (beta) subunit on the surface of human granulocytes and monocyte/macrophages, where it enables these myeloid cells to participate in a variety of adherence-related activities. Expression of the CD11b subunit is restricted to cells of the myelomonocytic lineage and depends upon the stage of differentiation with the most mature myeloid cells expressing the highest levels of CD11b. To study the regulation of CD11b expression, a genomic clone corresponding to the 5' region of the CD11b gene was isolated from a human chromosome 16 library. Primer extension and RNase protection assays identified two major transcriptional start sites, located 90 base pairs and 54 base pairs upstream from the initiation methionine. DNA sequence analysis of 1.7 kilobases of the 5' flanking sequence of the CD11b gene indicated the absence of a "CAAT" or "TATA" box; however, potential binding sites for the transcription activators Sp1, PU.1, ets, and AP-2 are present, as well as retinoic acid response elements. The 1.7-kilobase CD11b promoter sequence displayed functional activity in transient transfection assays in the monocytic cell line THP-1 and the myeloid cell line HL-60. In contrast, this 1.7-kilobase promoter sequence did not display functional activity in the Jurkat T-lymphoid cell line. Detailed characterization of the CD11b promoter sequence should provide insight into the molecular events regulating the tissue-specific and developmental stage-specific expression of the CD11b molecule in myelomonocytic cells.
Collapse
Affiliation(s)
- D D Hickstein
- Medical Research Service, Seattle Veterans Affairs Medical Center, WA 98108
| | | | | | | |
Collapse
|
35
|
Abstract
The mouse Wnt-1 gene, a target for insertional activation in mouse mammary tumor virus-induced mammary tumors, encodes poorly secreted, cysteine-rich glycoproteins required for proper central nervous system development. We have been analyzing the biosynthesis of Wnt-1 proteins in several cell lines that express Wnt-1 cDNA from heterologous promoters. A protein of 78 kDa was found to be associated with the intracellular forms of Wnt-1 proteins in mammalian and avian cells by using multiple antisera against Wnt-1 proteins. We have identified p78 as the binding protein BiP with anti-BiP antisera and by its release from Wnt-1 immunoprecipitates upon incubation with MgCl2 and ATP. Experiments with a Wnt-1 mutant that lacks the sequence encoding the signal peptide indicates that Wnt-1 proteins must enter the secretory pathway in order to interact with BiP. We demonstrate that Wnt-1 proteins are associated with BiP in cells in which active Wnt-1 proteins are produced, such as a cultured mammary epithelial cell line and Wnt-1 transgenic mouse mammary tumor cells. The association of Wnt-1 proteins with BiP may be a factor in determining the efficiency of secretion of Wnt-1 gene products.
Collapse
|
36
|
Stasiak PC, Mocarski ES. Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol 1992; 66:1050-8. [PMID: 1370547 PMCID: PMC240808 DOI: 10.1128/jvi.66.2.1050-1058.1992] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the human cytomegalovirus functions that activate gamma (late) gene expression. We have investigated the regulation of the human cytomegalovirus gamma gene encoding the ICP36 major late DNA-binding protein family (UL44). Transactivation of the ICP36 gene promoter was found to be absolutely dependent on the trs1 gene product when expressed in cells in conjunction with ie1 and ie2 gene products. Transactivation occurred poorly or not at all when any one of these three transactivators was omitted. TRS1 is a member of the US22 family of proteins and is encoded by a region near the L-S junction of the viral genome within the c repeat and adjacent Us sequences. TRS1 is highly homologous to IRS1, which is encoded from the other copy of the c repeat, and plasmid constructs carrying the irs1 gene were also able to mediate transactivation of the ICP36 promoter. RNA blot analysis of steady-rate RNA throughout infection showed that the trs1 transcript was expressed with the kinetics of an alpha gene but its accumulation was delayed relative to that of ie1 and ie2 transcripts. On the basis of these experiments, TRS1 and IRS1 are proposed to be important intermediaries in the cascade of cytomegalovirus gene expression.
Collapse
Affiliation(s)
- P C Stasiak
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | |
Collapse
|
37
|
Abstract
The mouse Wnt-1 gene, a target for insertional activation in mouse mammary tumor virus-induced mammary tumors, encodes poorly secreted, cysteine-rich glycoproteins required for proper central nervous system development. We have been analyzing the biosynthesis of Wnt-1 proteins in several cell lines that express Wnt-1 cDNA from heterologous promoters. A protein of 78 kDa was found to be associated with the intracellular forms of Wnt-1 proteins in mammalian and avian cells by using multiple antisera against Wnt-1 proteins. We have identified p78 as the binding protein BiP with anti-BiP antisera and by its release from Wnt-1 immunoprecipitates upon incubation with MgCl2 and ATP. Experiments with a Wnt-1 mutant that lacks the sequence encoding the signal peptide indicates that Wnt-1 proteins must enter the secretory pathway in order to interact with BiP. We demonstrate that Wnt-1 proteins are associated with BiP in cells in which active Wnt-1 proteins are produced, such as a cultured mammary epithelial cell line and Wnt-1 transgenic mouse mammary tumor cells. The association of Wnt-1 proteins with BiP may be a factor in determining the efficiency of secretion of Wnt-1 gene products.
Collapse
Affiliation(s)
- J Kitajewski
- Department of Microbiology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|
38
|
Tenney DJ, Colberg-Poley AM. Human cytomegalovirus UL36-38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol 1991; 65:6724-34. [PMID: 1658371 PMCID: PMC250752 DOI: 10.1128/jvi.65.12.6724-6734.1991] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During permissive in vitro infection, the human cytomegalovirus (HCMV) UL36-38 and US3 immediate-early (IE) regions give rise to multiple distinct species of RNA in a temporally regulated manner. We have compared the temporally regulated expression of the UL36-38 and US3 regions with that of the well-characterized major IE (MIE) region. Northern (RNA) blot hybridizations with antisense RNA probes were used to examine RNA isolated from infected cells at IE, early, and late times after infection and from cells infected in the presence of anisomycin (used to block de novo viral protein synthesis) or in the presence of phosphonoformate (used to block HCMV DNA synthesis). Different US3 region transcripts were expressed in the cytoplasm during the IE and late phases of infection, with kinetics similar to those of the MIE region. In contrast, various cytoplasmic transcripts from the UL36-38 region were expressed during each of the IE, early, and late phases of infection, including some expressed from IE through late times. The levels of steady-state RNA from the US3 and MIE regions were increased dramatically by infection in the presence of anisomycin, predominantly because of an increase in multiply spliced transcripts. Two of the three UL36-38 IE transcripts were largely unaffected by anisomycin and were expressed abundantly throughout infection, but a third, multiply spliced UL36-38 IE transcript was abundant only during infection in the presence of anisomycin. Nuclear, cytoplasmic, and polysome-associated transcripts from the three IE regions were not significantly different qualitatively or quantitatively. These results suggest that posttranscriptional controls at the levels of nuclear retention or polysome exclusion of transcripts are not operative for the IE region genes. Overall, these results indicate common features of expression of US3, MIE, and UL36-38, in addition to distinctive expression of the UL36-38 region during all temporal phases of expression.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Blotting, Northern
- Cell Nucleus/physiology
- Cells, Cultured
- Cytomegalovirus/genetics
- Cytoplasm/physiology
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Gene Expression Regulation, Viral
- Genes, Viral
- Genome, Viral
- Humans
- Immediate-Early Proteins
- Kinetics
- Polyribosomes/metabolism
- RNA Probes
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Skin
- Time Factors
- Transcription, Genetic
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- D J Tenney
- Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0328
| | | |
Collapse
|
39
|
Abstract
Posttranscriptional controls modulate the expression of several human cytomegalovirus genes. Previous studies have shown that one cytomegalovirus gene transcript leader contains AUG codons which inhibit translation of a downstream reading frame. However, two other cytomegalovirus gene transcript leaders of similar structure do not inhibit translation. We have extended these studies to the analysis of the structural glycoprotein gp48, whose predominant transcript contains three upstream AUG codons. The 5' leader of this transcript strongly inhibits downstream translation in fibroblasts. Analyses of deletions and point mutations identify the second upstream AUG codon as an essential component of the inhibitory signal. Other leader sequences, but neither the first nor the third AUG codon, are also required. Intriguingly, the inhibitory signal appears also to depend on the amino acid coding information of the short reading frame associated with the second AUG codon. Insights derived from these studies are germane to understanding the translational regulation of other viral and cellular genes of similar structure.
Collapse
Affiliation(s)
- M R Schleiss
- Department of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
40
|
Gallie DR, Feder JN, Schimke RT, Walbot V. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:258-64. [PMID: 1886610 DOI: 10.1007/bf00282474] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have investigated whether reporter genes influence cytoplasmic regulation of gene expression in tobacco and Chinese hamster ovary (CHO) cells. Two genes, uidA encoding beta-glucuronidase (GUS) from Escherichia coli and Luc, encoding firefly luciferase (LUC), were used to analyze the ability of a cap, polyadenylated tail, and the 5'- and 3'-untranslated regions (UTR) from tobacco mosaic virus (TMV) to regulate expression. The regulation associated with the 5' cap structure and the TMV 5'-UTR, both of which enhance translational efficiency, was reporter gene-independent. The poly(A) tail and the TMV 3'-UTR, which is functionally equivalent to a poly(A) tail, increase translational efficiency as well as mRNA stability. The regulation associated with these 3' ends was highly reporter gene-dependent; their effect on GUS expression was almost an order of magnitude greater than that on LUC expression. In tobacco, the tenfold reporter gene effect on poly(A) tail or TMV 3'-UTR function could not be explained by a differential impact on mRNA stability; GUS and LUC mRNA half-life increased only twofold when either the poly(A) tail or TMV 3'-UTR was present. In CHO cells, however, GUS mRNA was stabilized to a greater extent by a poly(A) tail or the TMV 3'-UTR than was LUC mRNA.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | | | | | |
Collapse
|
41
|
Firzlaff JM, Lüscher B, Eisenman RN. Negative charge at the casein kinase II phosphorylation site is important for transformation but not for Rb protein binding by the E7 protein of human papillomavirus type 16. Proc Natl Acad Sci U S A 1991; 88:5187-91. [PMID: 2052600 PMCID: PMC51837 DOI: 10.1073/pnas.88.12.5187] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human papillomavirus E7 protein is phosphorylated at the two serines in positions 31/32, which are part of a consensus sequence for casein kinase II (CKII). In this study, we have investigated the effect of CKII phosphorylation site mutations, all of which lead to unphosphorylated E7 proteins. The replacement of the two serines by uncharged alanine residues drastically reduced the ability of E7 to cotransform primary cells with ras, whereas negatively charged aspartic acid at the same positions produced only a slight effect. This difference was not reflected in the p105Rb binding or the E2 promoter transactivation capability of these two mutants. Mutations that changed the CKII consensus without altering the serine residues also resulted in a loss of phosphorylation and transformation. This indicated that negative charge at positions 31/32 provided either by phosphorylation or by a negatively charged amino acid is necessary for efficient transformation without significantly affecting p105Rb binding or transactivation.
Collapse
Affiliation(s)
- J M Firzlaff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
42
|
Rohrer D, Hartong R, Dillmann W. Influence of thyroid hormone and retinoic acid on slow sarcoplasmic reticulum Ca2+ ATPase and myosin heavy chain alpha gene expression in cardiac myocytes. Delineation of cis-active DNA elements that confer responsiveness to thyroid hormone but not to retinoic acid. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)93022-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Jones TR, Muzithras VP. Fine mapping of transcripts expressed from the US6 gene family of human cytomegalovirus strain AD169. J Virol 1991; 65:2024-36. [PMID: 1848316 PMCID: PMC240048 DOI: 10.1128/jvi.65.4.2024-2036.1991] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
By sequence analysis (K. Weston and B. G. Barrell, J. Mol. Biol. 192:177-208, 1986), the human cytomegalovirus (HCMV) strain AD169 HindIII X DNA fragment contains six open reading frames (US6 through US11; called the US6 family) which may encode glycoproteins. Sense transcripts from the US6 family were mapped. The kinetics of appearance of steady-state cytoplasmic RNA was different for each transcription unit. The 1.5-kb US11-US10 and the 1.7-kb US9-US8 transcripts belonged to the early kinetic class. The former reached peak abundance by 8 h postinfection, while the latter peaked at 24 h postinfection. These RNAs greatly decreased in abundance by 48 to 72 h after infection, unlike transcripts from other HCMV early transcription units reported previously. US6 and US7 messages were most abundant at late times postinfection. US6 transcripts utilized different initiation sites at early or late times postinfection. There was evidence for both spliced and unspliced messages from this family. In a transient expression assay, chimeric plasmids containing the regions upstream of the mapped transcription initiation sites were active in promoting indicator gene expression in HCMV-infected, but not uninfected, human foreskin fibroblast cells.
Collapse
Affiliation(s)
- T R Jones
- Molecular Biology Section, American Cyanamid Company, Pearl River, New York 10965
| | | |
Collapse
|
44
|
Cherrington JM, Khoury EL, Mocarski ES. Human cytomegalovirus ie2 negatively regulates alpha gene expression via a short target sequence near the transcription start site. J Virol 1991; 65:887-96. [PMID: 1846203 PMCID: PMC239829 DOI: 10.1128/jvi.65.2.887-896.1991] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Repression of human cytomegalovirus alpha (immediate-early) gene expression is under the control of the viral ie2 gene. Here we show that ie2 negatively regulates gene expression directed by the strong cytomegalovirus enhancer via a specific 15-bp target sequence (which we term cis repression signal [crs]). This crs is located between -14 and +1 relative to the transcription start site and will function in an orientation-independent fashion, consistent with repression occurring at the transcriptional level. Repression is dominant over transactivation by ie1 gene products. The crs (5'-CGTTTAGTGAACCGT-3') does not contain previously recognized binding sites for cellular transcription factors, and a precise copy is not found elsewhere in the human cytomegalovirus genome. The position of the signal near the transcription start site appears to be important in function; addition of the crs near the transcription start site of a heterologous promoter, from the thymidine kinase gene of herpes simplex virus type 1, conferred cytomegalovirus ie2-dependent repression upon this promoter. Thus, we propose that an ie2 gene product or an induced cellular protein mediates repression by binding to crs. Negative regulation of alpha gene expression may be important during viral replication or latency.
Collapse
Affiliation(s)
- J M Cherrington
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | |
Collapse
|
45
|
Lahijani RS, Otteson EW, Adlish JD, St Jeor SC. Characterization of a human cytomegalovirus 1.6-kilobase late mRNA and identification of its putative protein product. J Virol 1991; 65:373-81. [PMID: 1845897 PMCID: PMC240527 DOI: 10.1128/jvi.65.1.373-381.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In a previous study (J. Martinez, R. S. Lahijani, and S. C. St. Jeor, J. Virol. 63:233-241, 1989), we identified a late, unspliced 1.6-kb mRNA that maps to the HindIII R fragment of human cytomegalovirus (HCMV) AD169. In the present study, the direction of transcription of this mRNA was determined by Northern (RNA) analysis with strand-specific probes. Primer extension was used to precisely map the 5' end of the mRNA. An open reading frame (ORF) designated ORF 2-1, located 176 nucleotides downstream from the cap site of the 1.6-kb mRNA, was identified. A synthetic peptide was made representing a hydrophilic region in the amino terminus of ORF 2-1. Immunoprecipitation and Western immunoblot analysis of infected HEL cell lysates, using affinity-purified antibody to the peptide (anti-P2-1), detected a viral protein with an apparent molecular mass of 58 kDa late in infection. Further support for the presence of this protein in infected-cell lysates was obtained by an enzyme-linked immunosorbent assay. Expression of viral antigens in intact infected HEL cells was assessed by immunofluorescence. General cytoplasmic staining was observed at 62 h postinfection, in contrast to a localized staining observed in the nuclear and perinuclear region at 96 h postinfection.
Collapse
Affiliation(s)
- R S Lahijani
- Department of Microbiology, University of Nevada, Reno 89557-0046
| | | | | | | |
Collapse
|
46
|
Wirth UV, Vogt B, Schwyzer M. The three major immediate-early transcripts of bovine herpesvirus 1 arise from two divergent and spliced transcription units. J Virol 1991; 65:195-205. [PMID: 1845884 PMCID: PMC240505 DOI: 10.1128/jvi.65.1.195-205.1991] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Among 54 transcripts expressed in a temporal cascade during lytic infection with bovine herpesvirus 1, we have previously identified three major immediate-early (IE) RNAs, IER4.2 (4.2 kb), IER2.9 (2.9 kb), and IER1.7 (1.6 to 1.8 kb depending on the virus strain) transcribed from the HindIII C genome region (U. V. Wirth, K. Gunkel, M. Engels, and M. Schwyzer, J. Virol. 63:4882-4889, 1989). Northern (RNA) blot, S1 nuclease protection, and primer extension analysis used in the present study demonstrated that all three IE transcripts were spliced and originated from two divergent transcription units with start sites located in the inverted repeat. Transcription unit 1 encoded two alternative spliced transcripts, IER4.2 and IER2.9, with a common exon 1 located at 0.797 to 0.795 map units (m.u.) and an exon 2 for IER4.2 (0.792 to 0.762 m.u.) in the inverted repeat; exon 2 for IER2.9 (0.754 to 0.738 m.u.) was located in the unique long sequence and transcribed in antisense orientation to latency-related RNA. Transcription unit 2 (0.818 to 0.836 m.u.), further characterized by cDNA cloning, encoded the spliced IER1.7 with three exons in the inverted repeat. Additional minor IE transcripts were interpreted as unspliced precursors and splicing variants. With regard to the number and layout of IE genes, bovine herpesvirus 1 occupies an intermediate position between pseudorabies virus and equine herpesvirus 1 on the one hand and varicella-zoster virus and herpes simplex virus type 1 on the other.
Collapse
Affiliation(s)
- U V Wirth
- Institut für Virologie, Universität Zürich, Switzerland
| | | | | |
Collapse
|
47
|
Mallon R, Borkowski J, Albin R, Pepitoni S, Schwartz J, Kieff E. The Epstein-Barr virus BZLF1 gene product activates the human immunodeficiency virus type 1 5' long terminal repeat. J Virol 1990; 64:6282-5. [PMID: 2173793 PMCID: PMC248806 DOI: 10.1128/jvi.64.12.6282-6285.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Epstein-Barr virus immediate-early gene product BZLF1 transactivates the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). The BZLF1 gene product caused an 18-fold increase in beta-galactosidase activity from an HIV-1 LTR lacZ expression vector, whereas the HIV-1 transactivator tat caused a 44-fold increase in beta-galactosidase activity. When cells were transfected with both BZLF1 (pEBV-Z) and tat (pTAT3) expression vectors, as well as HIV-1 LTR lacZ plasmid (pLRON), a 214-fold increase in beta-galactosidase activity was observed. This result suggests a synergistic effect of BZLF1 and tat on HIV-1 LTR-directed lacZ gene expression. Analysis of quantitative BZLF1 and tat requirements for maximal HIV-1 LTR activation indicates that BZLF1 does not reduce the amount of tat required for maximal LTR activation, as would be expected if the BZLF1 synergistic effect was due to increased tat gene expression. Thus, coordinate effects of BZLF1 and tat on the HIV-1 LTR or its transcript are probably responsible for synergistic HIV-1 LTR activation.
Collapse
Affiliation(s)
- R Mallon
- Department of Antiviral Chemotherapy, Schering-Plough Research, Bloomfield, New Jersey 07003
| | | | | | | | | | | |
Collapse
|
48
|
Tieber VL, Zalinskis LL, Silva RF, Finkelstein A, Coussens PM. Transactivation of the Rous sarcoma virus long terminal repeat promoter by Marek's disease virus. Virology 1990; 179:719-27. [PMID: 2173259 DOI: 10.1016/0042-6822(90)90139-i] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient expression of chloramphenicol acetyltransferase (CAT) was used to study Marek's diseases virus (MDV)-mediated transactivation of the Rous sarcoma virus long terminal repeat (RSV-LTR) promoter. Cotransfection experiments in primary avian cells were conducted using MDV high-molecular-weight DNA and plasmid pRSVcat. Increased CAT activity, relative to controls, was consistently observed in the presence of MDV. Enhanced CAT activity, expressed via the RSV-LTR promoter, was strictly dependent on the presence of MDV DNA or virus, suggesting that activation of the RSV-LTR promoter was due to factors expressed in MDV-infected cells. Differences in transactivation efficiency were observed between various strains and the serotypes of MDV. In particular, high- and low-passage pairs of serotype 1 MDV showed marked differences in their ability to increase CAT activity in pRSVcat-transfected cells. Attenuation of viral pathogenicity and decreased expression of some cell surface glycoproteins occur in high-passage MDV strains. Decreased transactivation ability in these same strains suggests that continuous passage in culture and attenuation may perturb a regulatory mechanism operating by transcriptional control. In addition, transactivation of the RSV-LTR promoter suggests that increased incidence of avian leukosis following vaccination by MDV may be due to MDV-mediated transactivation of endogenous ALV proviral LTR promoters. MDV-mediated transactivation was not limited to the RSV-LTR promoter. Serotype 3 MDV (HVT) efficiently transactivated the herpes simplex virus (HSV) alpha 4 (ICP4) and beta-TK promoters as well as the human cytomegalovirus (hCMV) immediate early promoter.
Collapse
Affiliation(s)
- V L Tieber
- Department of Animal Science, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Reifel-Miller AE, Lee CH. Detection of an IE responsive element(s) in the BamHI J fragment of human cytomegalovirus AD169. Virology 1990; 177:496-504. [PMID: 2164722 DOI: 10.1016/0042-6822(90)90514-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The BamHI J fragment of human cytomegalovirus (HCMV) AD169 located at 0.815 to 0.855 map units in the unique short component of the genome was demonstrated to be responsive to the HCMV IE proteins by using a transient chloramphenicol acetyltransferase (cat) gene expression system. The BamHI J fragment was cloned into a cat gene expression plasmid and then cotransfected with a plasmid that expresses the immediate early (IE) genes of HCMV AD169 into the HCMV permissive cell line MRC-5. The results indicated that the BamHI J fragment enhanced cat gene expression 10-fold when the HCMV IE proteins were present. The BamHI J fragment was demonstrated to have properties of an inducible enhancer. In the presence of the HCMV IE proteins, it enhances cat gene expression when positioned in either orientation both upstream and downstream from the cat gene; it enhances transcription from the herpes simplex virus type 1 (HSV-1) thymidine kinase gene and the simian virus 40 (SV40) early gene promoters; and it requires a cis-positioned promoter for enhancer activity.
Collapse
Affiliation(s)
- A E Reifel-Miller
- Department of Pathology, Indiana University School of Medicine, Indianapolis 46202
| | | |
Collapse
|