1
|
Sedhom J, Solomon LA. Lambda CI Binding to Related Phage Operator Sequences Validates Alignment Algorithm and Highlights the Importance of Overlooked Bonds. Genes (Basel) 2023; 14:2221. [PMID: 38137043 PMCID: PMC10742460 DOI: 10.3390/genes14122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteriophage λ's CI repressor protein controls a genetic switch between the virus's lysogenic and lytic lifecycles, in part, by selectively binding to six different DNA sequences within the phage genome-collectively referred to as operator sites. However, the minimal level of information needed for CI to recognize and specifically bind these six unique-but-related sequences is unclear. In a previous study, we introduced an algorithm that extracts the minimal direct readout information needed for λ-CI to recognize and bind its six binding sites. We further revealed direct readout information shared among three evolutionarily related lambdoid phages: λ-phage, Enterobacteria phage VT2-Sakai, and Stx2 converting phage I, suggesting that the λ-CI protein could bind to the operator sites of these other phages. In this study, we show that λ-CI can indeed bind the other two phages' cognate binding sites as predicted using our algorithm, validating the hypotheses from that paper. We go on to demonstrate the importance of specific hydrogen bond donors and acceptors that are maintained despite changes to the nucleobase itself, and another that has an important role in recognition and binding. This in vitro validation of our algorithm supports its use as a tool to predict alternative binding sites for DNA-binding proteins.
Collapse
Affiliation(s)
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
2
|
Sedhom J, Kinser J, Solomon LA. Alignment of major-groove hydrogen bond arrays uncovers shared information between different DNA sequences that bind the same protein. NAR Genom Bioinform 2022; 4:lqac101. [PMID: 36601576 PMCID: PMC9803871 DOI: 10.1093/nargab/lqac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-DNA binding is of a great interest due to its importance in many biological processes. Previous studies have presented many factors responsible for the recognition and specificity, but understanding the minimal informational requirements for proteins that bind to multiple DNA-sites is still an understudied area of bioinformatics. Here we focus on the hydrogen bonds displayed by the target DNA in the major groove that take part in protein-binding. We show that analyses focused on the base pair identity may overlook key hydrogen bonds. We have developed an algorithm that converts a nucleotide sequence into an array of hydrogen bond donors and acceptors and methyl groups. It then aligns these non-covalent interaction arrays to identify what information is being maintained among multiple DNA sequences. For three different DNA-binding proteins, Lactose repressor, controller protein and λ-CI repressor, we uncovered the minimal pattern of hydrogen bonds that are common amongst all the binding sequences. Notably in the three proteins, key interacting hydrogen bonds are maintained despite nucleobase mutations in the corresponding binding sites. We believe this work will be useful for developing new DNA binding proteins and shed new light on evolutionary relationships.
Collapse
Affiliation(s)
- Jacklin Sedhom
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA
| | - Jason Kinser
- Department of Computational and Data Sciences, George Mason University, Fairfax, VA 22030, USA
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Howell AA, Versoza CJ, Cerna G, Johnston T, Kakde S, Karuku K, Kowal M, Monahan J, Murray J, Nguyen T, Sanchez Carreon A, Streiff A, Su B, Youkhana F, Munig S, Patel Z, So M, Sy M, Weiss S, Pfeifer SP. Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 (BETHESDA, MD.) 2022; 12:jkac244. [PMID: 36094333 PMCID: PMC9635641 DOI: 10.1093/g3journal/jkac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages, infecting bacterial hosts in every environment on our planet, are a driver of adaptive evolution in bacterial communities. At the same time, the host range of many bacteriophages-and thus one of the selective pressures acting on complex microbial systems in nature-remains poorly characterized. Here, we computationally inferred the putative host ranges of 40 cluster P mycobacteriophages, including members from 6 subclusters (P1-P6). A series of comparative genomic analyses revealed that mycobacteriophages of subcluster P1 are restricted to the Mycobacterium genus, whereas mycobacteriophages of subclusters P2-P6 are likely also able to infect other genera, several of which are commonly associated with human disease. Further genomic analysis highlighted that the majority of cluster P mycobacteriophages harbor a conserved integration-dependent immunity system, hypothesized to be the ancestral state of a genetic switch that controls the shift between lytic and lysogenic life cycles-a temperate characteristic that impedes their usage in antibacterial applications.
Collapse
Affiliation(s)
- Abigail A Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Gabriella Cerna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Tyler Johnston
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shriya Kakde
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Keith Karuku
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Maria Kowal
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jasmine Monahan
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jillian Murray
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Teresa Nguyen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aurely Sanchez Carreon
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Abigail Streiff
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Blake Su
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Politics and Global Studies, Arizona State University, Tempe, AZ 85281, USA
| | - Faith Youkhana
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Kribelbauer JF, Rastogi C, Bussemaker HJ, Mann RS. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Annu Rev Cell Dev Biol 2019; 35:357-379. [PMID: 31283382 DOI: 10.1146/annurev-cellbio-100617-062719] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; .,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA;
| | - Richard S Mann
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10031, USA; .,Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10031, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
6
|
Roncarati D, Pelliciari S, Doniselli N, Maggi S, Vannini A, Valzania L, Mazzei L, Zambelli B, Rivetti C, Danielli A. Metal-responsive promoter DNA compaction by the ferric uptake regulator. Nat Commun 2016; 7:12593. [PMID: 27558202 PMCID: PMC5007355 DOI: 10.1038/ncomms12593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/13/2016] [Indexed: 01/09/2023] Open
Abstract
Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. The Fur protein regulates transcription of bacterial genes in response to metal ions. Here, the authors show that the Fur protein from Helicobacter pylori represses transcription by iron-responsive oligomerization and DNA compaction, encasing the transcriptional start site in a macromolecular complex.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Simone Pelliciari
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Nicola Doniselli
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Stefano Maggi
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Luca Valzania
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Rivetti
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Crocker J, Noon EPB, Stern DL. The Soft Touch: Low-Affinity Transcription Factor Binding Sites in Development and Evolution. Curr Top Dev Biol 2016; 117:455-69. [PMID: 26969995 DOI: 10.1016/bs.ctdb.2015.11.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factor proteins regulate gene expression by binding to specific DNA regions. Most studies of transcription factor binding sites have focused on the highest affinity sites for each factor. There is abundant evidence, however, that binding sites with a range of affinities, including very low affinities, are critical to gene regulation. Here, we present the theoretical and experimental evidence for the importance of low-affinity sites in gene regulation and development. We also discuss the implications of the widespread use of low-affinity sites in eukaryotic genomes for robustness, precision, specificity, and evolution of gene regulation.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ella Preger-Ben Noon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
| |
Collapse
|
8
|
Hammerl JA, Roschanski N, Lurz R, Johne R, Lanka E, Hertwig S. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site. Viruses 2015; 7:2771-93. [PMID: 26043380 PMCID: PMC4488713 DOI: 10.3390/v7062746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022] Open
Abstract
Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (OR3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (OR3) upstream of the prophage repressor gene. The OR3 operator sequences of PY54 and ϕKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages.
Collapse
Affiliation(s)
- Jens Andre Hammerl
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Nicole Roschanski
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| | - Rudi Lurz
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Reimar Johne
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Erich Lanka
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Stefan Hertwig
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| |
Collapse
|
9
|
Affiliation(s)
- Mark Ptashne
- From the Sloan-Kettering Institute, New York, New York 10065
| |
Collapse
|
10
|
Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2012; 49:237-48. [PMID: 23246436 DOI: 10.1016/j.molcel.2012.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Collapse
Affiliation(s)
- Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
11
|
Smith DL, Rooks DJ, Fogg PCM, Darby AC, Thomson NR, McCarthy AJ, Allison HE. Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 2012; 13:311. [PMID: 22799768 PMCID: PMC3430580 DOI: 10.1186/1471-2164-13-311] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/01/2012] [Indexed: 01/21/2023] Open
Abstract
Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.
Collapse
Affiliation(s)
- Darren L Smith
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhu XM, Yin L, Hood L, Ao P. ROBUSTNESS, STABILITY AND EFFICIENCY OF PHAGE λ GENETIC SWITCH: DYNAMICAL STRUCTURE ANALYSIS. J Bioinform Comput Biol 2011; 2:785-817. [PMID: 15617166 DOI: 10.1142/s0219720004000946] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Revised: 09/16/2004] [Accepted: 09/18/2004] [Indexed: 11/18/2022]
Abstract
Based on the dynamical structure theory for complex networks recently developed by one of us and on the physical-chemical models for gene regulation, developed by Shea and Ackers in the 1980's, we formulate a direct and concise mathematical framework for the genetic switch controlling phage λ life cycles, which naturally includes the stochastic effect. The dynamical structure theory states that the dynamics of a complex network is determined by its four elementary components: The dissipation (analogous to degradation), the stochastic force, the driving force determined by a potential, and the transverse force. The potential may be interpreted as a landscape for the phage development in terms of attractive basins, saddle points, peaks and valleys. The dissipation gives rise to the adaptivity of the phage in the landscape defined by the potential: The phage always has the tendency to approach the bottom of the nearby attractive basin. The transverse force tends to keep the network on the equal-potential contour of the landscape. The stochastic fluctuation gives the phage the ability to search around the potential landscape by passing through saddle points.With molecular parameters in our model fixed primarily by the experimental data on wild-type phage and supplemented by data on one mutant, our calculated results on mutants agree quantitatively with the available experimental observations on other mutants for protein number, lysogenization frequency, and a lysis frequency in lysogen culture. The calculation reproduces the observed robustness of the phage λ genetic switch. This is the first mathematical description that successfully represents such a wide variety of major experimental phenomena. Specifically, we find: (1) The explanation for both the stability and the efficiency of phage λ genetic switch is the exponential dependence of saddle point crossing rate on potential barrier height, a result of the stochastic motion in a landscape; and (2) The positive feedback of cI repressor gene transcription, enhanced by the CI dimer cooperative binding, is the key to the robustness of the phage λ genetic switch against mutations and fluctuations in kinetic parameter values.
Collapse
Affiliation(s)
- X-M Zhu
- GenMath, Corp. 5525 27th Ave.N.E., Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
13
|
Razooky BS, Weinberger LS. Mapping the architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and exploits stochastic noise. Methods 2011; 53:68-77. [PMID: 21167940 PMCID: PMC4096296 DOI: 10.1016/j.ymeth.2010.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2010] [Indexed: 01/02/2023] Open
Abstract
Upon infection of a CD4(+) T cell, HIV-1 appears to 'choose' between two alternate fates: active replication or a long-lived dormant state termed proviral latency. A transcriptional positive-feedback loop generated by the HIV-1 Tat protein appears sufficient to mediate this decision. Here, we describe a coupled wet-lab and computational approach that uses mathematical modeling and live-cell time-lapse microscopy to map the architecture of the HIV-1 Tat transcriptional regulatory circuit and generate predictive models of HIV-1 latency. This approach provided the first characterization of a 'decision-making' circuit that lacks bistability and instead exploits stochastic fluctuations in cellular molecules (i.e. noise) to generate a decision between an on or off transcriptional state.
Collapse
Affiliation(s)
- Brandon S. Razooky
- Department of Chemistry and Biochemistry, U niversity of California, San Diego 9500 Gilman Drive #0314, La Jolla, CA 92093-0314
| | - Leor S. Weinberger
- Department of Chemistry and Biochemistry, U niversity of California, San Diego 9500 Gilman Drive #0314, La Jolla, CA 92093-0314
| |
Collapse
|
14
|
Koo BM, Rhodius VA, Campbell EA, Gross CA. Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite -10 region with an 'extended -10' motif and a core -10 element. Mol Microbiol 2009; 72:815-29. [PMID: 19400791 PMCID: PMC4412615 DOI: 10.1111/j.1365-2958.2009.06690.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sigma32 controls expression of heat shock genes in Escherichia coli and is widely distributed in proteobacteria. The distinguishing feature of sigma32 promoters is a long -10 region (CCCCATNT) whose tetra-C motif is important for promoter activity. Using alanine-scanning mutagenesis of sigma32 and in vivo and in vitro assays, we identified promoter recognition determinants of this motif. The most downstream C (-13) is part of the -10 motif; our work confirms and extends recognition determinants of -13C. Most importantly, our work suggests that the two upstream Cs (-16, -15) constitute an 'extended -10' recognition motif that is recognized by K130, a residue universally conserved in beta- and gamma-proteobacteria. This residue is located in the alpha-helix of sigmaDomain 3 that mediates recognition of the extended -10 promoter motif in other sigmas. K130 is not conserved in alpha- and delta-/epsilon-proteobacteria and we found that sigma32 from the alpha-proteobacterium Caulobacter crescentus does not need the extended -10 motif for high promoter activity. This result supports the idea that K130 mediates extended -10 recognition. Sigma32 is the first Group 3 sigma shown to use the 'extended -10' recognition motif.
Collapse
Affiliation(s)
- Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Virgil A. Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth A. Campbell
- Department of Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Cell and Tissue biology, University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Koo BM, Rhodius VA, Campbell EA, Gross CA. Mutational analysis of Escherichia coli sigma28 and its target promoters reveals recognition of a composite -10 region, comprised of an 'extended -10' motif and a core -10 element. Mol Microbiol 2009; 72:830-43. [PMID: 19400790 PMCID: PMC2756079 DOI: 10.1111/j.1365-2958.2009.06691.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sigma28 controls the expression of flagella-related genes and is the most widely distributed alternative sigma factor, present in motile Gram-positive and Gram-negative bacteria. The distinguishing feature of sigma28 promoters is a long -10 region (GCCGATAA). Despite the fact that the upstream GC is highly conserved, previous studies have not indicated a functional role for this motif. Here we examine the functional relevance of the GCCG motif and determine which residues in sigma28 participate in its recognition. We find that the GCCG motif is a functionally important composite element. The upstream GC constitutes an extended -10 motif and is recognized by R91, a residue in Domain 3 of sigma28. The downstream CG is the upstream edge of -10 region of the promoter; two residues in Region 2.4, D81 and R84, participate in its recognition. Consistent with their role in base-specific recognition of the promoter, R91, D81 and D84 are universally conserved in sigma28 orthologues. Sigma28 is the second Group 3 sigma shown to use an extended -10 region in promoter recognition, raising the possibility that other Group 3 sigmas will do so as well.
Collapse
Affiliation(s)
- Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Virgil A. Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth A. Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Cell and Tissue biology, University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Jia H, Satumba WJ, Bidwell GL, Mossing MC. Slow Assembly and Disassembly of λ Cro Repressor Dimers. J Mol Biol 2005; 350:919-29. [PMID: 15982668 DOI: 10.1016/j.jmb.2005.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/03/2005] [Accepted: 05/23/2005] [Indexed: 11/23/2022]
Abstract
Dimers of Cro are required to recognize operator DNA and repress transcription, but dimerization is weak compared to DNA binding. Fluorophore-conjugated, single-cysteine variants of Cro have been used to investigate the equilibria and kinetics of dimer assembly. Equilibrium distributions of mixed dimers, monitored by fluorescence resonance energy transfer (FRET), confirm that labeled variants have equilibrium dimer dissociation constants in the micromolar concentration range. Subunit exchange experiments yield first order rate constants for dimer dissociation that range from 0.02 s(-1) to 0.04 s(-1). Association rate constants calculated from the ratios of dissociation equilibrium and rate constants range from 0.7x10(4) M(-1) s(-1) to 3x10(4) M(-1) s(-1), depending on the site of the fluorescent label. At nanomolar concentrations of subunits, assembly can be driven by addition of DNA. The bimolecular association rate constants measured under these conditions are not dramatically enhanced, ranging from 7x10(4) M(-1) s(-1) to 9x10(4) M(-1) s(-1). The association rate is second order in protein but independent of DNA concentration between 10 nM and 200 nM. The association of subunits under native conditions is more than four orders of magnitude slower than the fast assembly phase measured previously in refolding experiments, and is unaffected by peptidyl-prolyl isomerases. Stabilization of the folded structure of the protein by residue substitution in Cro F58W or reduced temperature increases the ratio of dimers to monomers and decreases the rate of subunit exchange. These data suggest that native monomers have compact structures with substantial barriers to unfolding and that unfolded or partially folded monomers are the preferred substrates for dimer assembly. Cro binding in vivo may be under kinetic rather than thermodynamic control. The slow assembly of Cro dimers demonstrated here provides a new perspective on the lysis/lysogeny switch of bacteriophage lambda.
Collapse
Affiliation(s)
- Haifeng Jia
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
17
|
Sau S, Chattoraj P, Ganguly T, Lee CY, Mandal NC. Cloning and Sequencing Analysis of the Repressor Gene of Temperate Mycobacteriophage L1. BMB Rep 2004; 37:254-9. [PMID: 15469704 DOI: 10.5483/bmbrep.2004.37.2.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wild-type and temperature-sensitive (ts) repressor genes were cloned from the temperate mycobacteriophage L1 and its mutant L1cIts391, respectively. A sequencing analysis revealed that the 131st proline residue of the wild-type repressor was changed to leucine in the ts mutant repressor. The 100% identity that was discovered between the two DNA regions of phages L1 and L5, carrying the same sets of genes including their repressor genes, strengthened the speculation that L1 is a minor variant of phage L5 or vice versa. A comparative analysis of the repressor proteins of different mycobacteriophages suggests that the mycobacteriophage-specific repressor proteins constitute a new family of repressors, which were possibly evolved from a common ancestor. Alignment of the mycobacteriophage-specific repressor proteins showed at least 7 blocks (designated I-VII) that carried 3-8 identical amino acid residues. The amino acid residues of blocks V, VI, and some residues downstream to block VI are crucial for the function of the L1 (or L5) repressor. Blocks I and II possibly form the turn and helix 2 regions of the HTH motif of the repressor. Block IV in the L1 repressor is part of the most charged region encompassing amino acid residues 72-92, which flanks the putative N-terminal basic (residues 1-71) and C-terminal acidic (residues 93-183) domains of L1 repressor.
Collapse
Affiliation(s)
- Subrata Sau
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII M, Calcutta 700 054, India.
| | | | | | | | | |
Collapse
|
18
|
Zhu XM, Yin L, Hood L, Ao P. Calculating biological behaviors of epigenetic states in the phage lambda life cycle. Funct Integr Genomics 2004; 4:188-95. [PMID: 14762706 DOI: 10.1007/s10142-003-0095-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 09/22/2003] [Accepted: 10/22/2003] [Indexed: 11/25/2022]
Abstract
The biology and behavior of bacteriophage lambda regulation have been the focus of classical investigations of molecular control of gene expression. Both qualitative and quantitative aspects of this behavior have been systematically characterized experimentally. Complete understanding of the robustness and stability of the genetic circuitry for the lysis-lysogeny switch remains an unsolved puzzle. It is an excellent test case for our understanding of biological behavior of an integrated network based on its physical, chemical, DNA, protein, and functional properties. We have used a new approach to non-linear dynamics to formulate a new mathematical model, performed a theoretical study on the phage lambda life cycle, and solved the crucial part of this puzzle. We find a good quantitative agreement between the theoretical calculation and published experimental observations in the protein number levels, the lysis frequency in the lysogen culture, and the lysogenization frequency for mutants of O(R). We also predict the desired robustness for the lambda genetic switch. We believe that this is the first successful example in the quantitative calculation of robustness and stability of the phage lambda regulatory network, one of the simplest and most well-studied regulatory systems.
Collapse
Affiliation(s)
- X-M Zhu
- GENMATH, 5525 27th Avenue N.E., Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
19
|
Gaal T, Ross W, Estrem ST, Nguyen LH, Burgess RR, Gourse RL. Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol Microbiol 2001; 42:939-54. [PMID: 11737638 DOI: 10.1046/j.1365-2958.2001.02703.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although more than 30 Escherichia coli promoters utilize the RNA polymerase holoenzyme containing sigmaS (EsigmaS), and it is known that there is some overlap between the promoters recognized by EsigmaS and by the major E. coli holoenzyme (Esigma70), the sequence elements responsible for promoter recognition by EsigmaS are not well understood. To define the DNA sequences recognized best by EsigmaS in vitro, we started with random DNA and enriched for EsigmaS promoter sequences by multiple cycles of binding and selection. Surprisingly, the sequences selected by EsigmaS contained the known consensus elements (-10 and -35 hexamers) for recognition by Esigma70. Using genetic and biochemical approaches, we show that EsigmaS and Esigma70 do not achieve specificity through 'best fit' to different consensus promoter hexamers, the way that other forms of holoenzyme limit transcription to discrete sets of promoters. Rather, we suggest that EsigmaS-specific promoters have sequences that differ significantly from the consensus in at least one of the recognition hexamers, and that promoter discrimination against Esigma70 is achieved, at least in part, by the two enzymes tolerating different deviations from consensus. DNA recognition by EsigmaS versus Esigma70 thus presents an alternative solution to the problem of promoter selectivity.
Collapse
Affiliation(s)
- T Gaal
- Department of Bacteriology, University of Wisconsin, Madison WI 53706, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hatt JK, Youngman P. Mutational analysis of conserved residues in the putative DNA-binding domain of the response regulator Spo0A of Bacillus subtilis. J Bacteriol 2000; 182:6975-82. [PMID: 11092858 PMCID: PMC94823 DOI: 10.1128/jb.182.24.6975-6982.2000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Spo0A protein of Bacillus subtilis is a DNA-binding protein that is required for the expression of genes involved in the initiation of sporulation. Spo0A binds directly to and both activates and represses transcription from the promoters of several genes required during the onset of endospore formation. The C-terminal 113 residues are known to contain the DNA-binding activity of Spo0A. Previous studies identified a region of the C-terminal half of Spo0A that is highly conserved among species of endospore-forming Bacillus and Clostridium and which encodes a putative helix-turn-helix DNA-binding domain. To test the functional significance of this region and determine if this motif is involved in DNA binding, we changed three conserved residues, S210, E213, and R214, to Gly and/or Ala by site-directed mutagenesis. We then isolated and analyzed the five substitution-containing Spo0A proteins for DNA binding and sporulation-specific gene activation. The S210A Spo0A mutant exhibited no change from wild-type binding, although it was defective in spoIIA and spoIIE promoter activation. In contrast, both the E213G and E213A Spo0A variants showed decreased binding and completely abolished transcriptional activation of spoIIA and spoIIE, while the R214G and R214A variants completely abolished both DNA binding and transcriptional activation. These data suggest that these conserved residues are important for transcriptional activation and that the E213 residue is involved in DNA binding.
Collapse
Affiliation(s)
- J K Hatt
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| | | |
Collapse
|
21
|
Abstract
Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis that shares a similar genome organization to mycobacteriophage L5, although the two phages are heteroimmune. We have investigated the regulatory circuitry of Bxb1 and found that it encodes a repressor, gp69, which regulates at least two promoters, an early lytic promoter, Pleft, and the divergent promoter, Pright. Bxb1 gp69 is 41% identical to the L5 repressor (gp71) and binds to repressor binding sites that conform to a similar, but distinct, 13 bp asymmetric consensus sequence to that for the L5 gp71 binding sites. The two phage repressors have a strong preference for their cognate binding sites, thus accounting for their immunity phenotypes. The Bxb1 genome contains 34 putative repressor binding sites located throughout the genome, but situated within short intergenic spaces and orientated in only one direction relative to the direction of transcription. Comparison with the locations of repressor binding sites within the L5 genome provides insights into how these unusual regulatory systems evolve.
Collapse
Affiliation(s)
- S Jain
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
22
|
Tochio H, Kojima C, Matsuo H, Yamazaki T, Kyogoku Y. Intermolecular contacts between the lambda-Cro repressor and the operator DNA characterized by nuclear magnetic resonance spectroscopy. J Biomol Struct Dyn 1999; 16:989-1002. [PMID: 10333170 DOI: 10.1080/07391102.1999.10508309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The specific interaction between lambda phage Cro repressor and the DNA fragment bearing the consensus sequence of operators has been studied using nuclear magnetic resonance (NMR). Using both 15N- and 13C/15N- labeled lambda-Cro in complex with unlabeled DNA, chemical shift assignments of the lambda-Cro-DNA complex were obtained using heteronuclear NMR experiments. Inter-molecular contacts between the protein and DNA were identified using heteronuclear filtered NOESY experiments. The inter-molecular contacts were supplemented with intra-protein and intra-DNA NOE constraints to dock lambda-Cro to the bent B-form DNA using restrained molecular dynamics. The structure of one of the subunits of lambda-Cro in the complex is essentially the same as that of the unbound form. In the complex, inter-molecular NOEs were observed between the "helix-turn-helix" region comprising the alpha2 and alpha3 helices of the lambda-Cro protein and the major groove of the DNA. The methyl group of Thr17 forms a hydrophobic contact with the methyl group of the thymine at base pair 1 in the DNA, and Val25 and Ala29 make hydrophobic contacts with the methyl group of the thymine at base pair 5. The presence and the absence of these contacts can explain the difference in the affinity of lambda-Cro to several variants of the operator sequence.
Collapse
Affiliation(s)
- H Tochio
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
23
|
Edwards CA, Tung CS, Silks LA, Gatewood JM, Fee JA, Mariappan SV. Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3. J Biomol Struct Dyn 1998; 16:13-20. [PMID: 9745890 DOI: 10.1080/07391102.1998.10508222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this paper, a general method is developed to study site-specific interactions in DNA-protein complexes using heteronuclear NMR spectroscopy and molecular modeling. This method involves two steps: (a) homonuclear 1H NMR and molecular modeling are used to develop a low resolution model and (b) 15N7-guanosine containing oligonucleotides are employed to probe the specific intermolecular interactions predicted in (a). This method is applied to Cro-operator complex due to its small size and extensive prior characterization. Non-exchangeable and exchangeable base protons have been assigned by nuclear Overhauser effect spectroscopy (NOESY) and chemical shift correlation spectroscopy. Extensive line-broadening has been observed in the 1H NMR spectra of the operator DNA in the presence of protein. Differential line-broadening observed in the imino proton region and the comparison of NOESY spectra in the presence and absence of Cro protein show that guanosine-12 and guanosine-14 are involved in the Cro-DNA interaction, while the three A.T base-pairs at the 3'- and 5'-termini play only a minor role in the binding. A model of the Cro-operator DNA complex has been constructed by docking helix-3 of the Cro protein in the major groove and it predicted specific hydrogen bonds between N7 of guanosines-12 and -14 and the side-chain of Lys-32 and Ser-28, respectively. The appearance of a new resonance in the temperature dependent proton detected heteronuclear multiple quantum coherence (HMQC) spectra of the Cro-DNA complex also demonstrates a specific interaction of Cro with guanosine-14 of the operator DNA.
Collapse
Affiliation(s)
- C A Edwards
- Structural Biology, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
24
|
Albright RA, Matthews BW. Crystal structure of lambda-Cro bound to a consensus operator at 3.0 A resolution. J Mol Biol 1998; 280:137-51. [PMID: 9653037 DOI: 10.1006/jmbi.1998.1848] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the Cro protein from bacteriophage lambda in complex with a 19 base-pair DNA duplex that includes the 17 base-pair consensus operator has been determined at 3.0 A resolution. The structure confirms the large changes in the protein and DNA seen previously in a crystallographically distinct low-resolution structure of the complex and, for the first time, reveals the detailed interactions between the side-chains of the protein and the base-pairs of the operator. Relative to the crystal structure of the free protein, the subunits of Cro rotate 53 degrees with respect to each other on binding DNA. At the same time the DNA is bent by 40 degrees through the 19 base-pairs. The intersubunit connection includes a region within the protein core that is structurally reminiscent of the "ball and socket" motif seen in the immunoglobulins and T-cell receptors. The crystal structure of the Cro complex is consistent with virtually all available biochemical and related data. Some of the interactions between Cro and DNA proposed on the basis of model-building are now seen to be correct, but many are different. Tests of the original model by mutagenesis and biochemical analysis corrected some but not all of the errors. Within the limitations of the crystallographic resolution it appears that operator recognition is achieved almost entirely by direct hydrogen-bonding and van der Waals contacts between the protein and the exposed bases within the major groove of the DNA. The discrimination of Cro between the operators OR3 and OR1, which differ in sequence at just three positions, is inferred to result from a combination of small differences, both favorable and unfavorable. A van der Waals contact at one of the positions is of primary importance, while the other two provide smaller, indirect effects. Direct hydrogen bonding is not utilized in this distinction.
Collapse
Affiliation(s)
- R A Albright
- Institute of Molecular Biology Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR, 97403-1229, USA
| | | |
Collapse
|
25
|
Jana R, Hazbun TR, Fields JD, Mossing MC. Single-chain lambda Cro repressors confirm high intrinsic dimer-DNA affinity. Biochemistry 1998; 37:6446-55. [PMID: 9572862 DOI: 10.1021/bi980152v] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overall affinity of the bacteriophage lambda Cro repressor for its operator DNA site is limited by dimer dissociation at submicromolar concentrations. Since Cro dimer-operator complexes form at nanomolar concentrations of Cro subunits where free dimers are rare, these dimers must bind with compensating high affinities. Previous studies of the covalent dimer Cro V55C suggest little change in DNA binding affinity even though the dimeric species is quantitatively populated; this is an apparent contradiction to the expectation of high intrinsic dimer-DNA affinity. In contrast to the disulfide linkage at the center of the dimer interface in Cro V55C, polypeptide linkers that join the two subunits allow single-chain Cro repressors to bind operator DNA with picomolar affinities. A series of five single-chain Cro repressors have been expressed from fused tandem cro genes. Each contains a peptide linker of 8-16 hydrophilic residues that connects the C-terminus of one subunit to the N-terminus of the next. All bind to operator DNA with at least 100-fold higher affinity than Cro V55C. Proteins containing the longest and shortest linkers have been purified and characterized in detail. Both exhibit similar CD spectra to wild-type Cro and enhanced thermal stability. Sedimentation equilibrium experiments show that single-chain Cro repressors do not associate at concentrations up to 30 microM. The rate of dissociation of Cro-DNA complexes is almost unchanged by covalent linkage. Biophysical characterization of Cro variants such as these, where DNA binding is uncoupled from subunit assembly, is necessary for a quantitative understanding of the structural and energetic determinants of DNA recognition in this simple model system.
Collapse
Affiliation(s)
- R Jana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
26
|
Mossing MC. Solution structure and dynamics of a designed monomeric variant of the lambda Cro repressor. Protein Sci 1998; 7:983-93. [PMID: 9568905 PMCID: PMC2143973 DOI: 10.1002/pro.5560070416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The solution structure of a monomeric variant of the lambda Cro repressor has been determined by multidimensional NMR. Cro K56[DGEVK] differs from wild-type Cro by the insertion of five amino acids at the center of the dimer interface. 1H and 15N resonances for 70 of the 71 residues have been assigned. Thirty-two structures were calculated by hybrid distance geometry/simulated annealing methods using 463 NOE-distance restraints, 26 hydrogen-bond, and 39 dihedral-angle restraints. The root-mean-square deviation (RMSD) from the average structure for atoms in residues 3-60 is 1.03 +/- 0.44 A for the peptide backbone and 1.6 +/- 0.73 A for all nonhydrogen atoms. The overall structure conforms very well to the original design. Although the five inserted residues form a beta hairpin as expected, this engineered turn as well as other turns in the structure are not well defined by the NMR data. Dynamics studies of backbone amides reveal T1/T2 ratios of residues in the alpha2-alpha3, beta2-beta3, and engineered turn that are reflective of chemical exchange or internal motion. The solution structure and dynamics are discussed in light of the conformational variation that has been observed in other Cro structures, and the importance of flexibility in DNA recognition.
Collapse
Affiliation(s)
- M C Mossing
- Department of Biological Sciences, University of Notre Dame, Indiana 46556, USA.
| |
Collapse
|
27
|
Albright RA, Matthews BW. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S A 1998; 95:3431-6. [PMID: 9520383 PMCID: PMC19853 DOI: 10.1073/pnas.95.7.3431] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/1998] [Indexed: 02/06/2023] Open
Abstract
Knowledge of the three-dimensional structures of the lambda-Cro and lambda-repressor proteins in complex with DNA has made it possible to evaluate how these proteins discriminate between different operators in phage lambda. As anticipated in previous studies, the helix-turn-helix units of the respective proteins bind in very different alignments. In Cro the recognition helices are 29 A apart and are tilted by 55 degrees with respect to each other, but bind parallel to the major groove of the DNA. In lambda-repressor [Beamer, L. J. & Pabo, C. O. (1992) J. Mol. Biol. 227, 177-196] the helices are 34 A apart and are essentially parallel to each other, but are inclined to the major grooves. The DNA is much more bent when bound by Cro than in the case with lambda-repressor. The first two amino acids of the recognition helices of the two proteins, Gln-27 and Ser-28 in Cro, and Gln-44 and Ser-45 in lambda-repressor, make very similar interactions with the invariant bps 2 and 4. There are also analogous contacts between the thymine of bp 5 and, respectively, the backbone of Ala-29 of Cro and the backbone of Gly-46 of lambda-repressor. Otherwise, however, unrelated parts of the two proteins are used in sequence-specific recognition. It appears that similar contacts to the invariant or almost invariant bps (especially 2 and 4) are used by both Cro and lambda-repressor to differentiate the operator sites as a group from other sites on the DNA. The discrimination of Cro and lambda-repressor between their different operators is more subtle and seems to be achieved primarily through differences in van der Waals contacts at bp 3', together with weaker, less direct effects at bps 5' and 8', all in the nonconsensus half of the operators. The results provide further support for the idea that there is no simple code for DNA-protein recognition.
Collapse
Affiliation(s)
- R A Albright
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
28
|
Abstract
Binding energy of DNA-Cro protein complexes is analyzed in terms of DNA elasticity, using a sequence-dependent anisotropic bendability (SDAB) model of DNA, developed recently [M.M. Gromiha, M.G. Munteanu, A. Gabrielian and S. Pongor, J. Biol. Phys. 22(1996) 227-243.]. The protein is considered to bind aspecifically to DNA that reduces the freedom of movement in the DNA molecule. In cognate DNA, the Cro protein moves on to form specific interactions and bends DNA. A comparison of the experimental data [Y. Takeda, A. Sarai and V.M. Rivera, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 439-443.] with the calculated DNA stiffness data shows that delta G of the complex formation increases with stiffness of the ligand when the interactions are nonspecific ones, while an opposite trend is observed for specific binding. Both of these trends are in agreement with our approach using the SDAB model. A decomposition of the energy terms suggests that binding energy in the nonspecific case is used maily to compensate the free energy changes due to entropy lost by DNA, while the energy of specific interactions provide enough energy both to bend the DNA molecule and to change the conformation of the Cro protein upon ligand binding.
Collapse
Affiliation(s)
- M M Gromiha
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
29
|
Esposito D, Wilson JC, Scocca JJ. Reciprocal regulation of the early promoter region of bacteriophage HP1 by the Cox and Cl proteins. Virology 1997; 234:267-76. [PMID: 9268158 DOI: 10.1006/viro.1997.8646] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified a transcriptional switch at the early promoter region of bacteriophage HP1. This switch controls the transcription of the early lytic operon from the P(R1) and P(R2) promoters and the transcription of the lysogenic operon from the P(L) promoter. The start sites of the three promoters were mapped, and using a chloramphenicol acetyl transferase assay, we have investigated the levels of transcription from the promoters in the absence or in the presence of two phage-encoded transcription factors: HP1 Cox and HP1 Cl. The HP1 Cox protein repressed the production of P(L) transcripts 30-fold, while the HP1 Cl protein repressed lytic transcription at least 70-fold. Binding sites for HP1 Cox and Cl were identified in the early promoter region; mutations of these sites eliminated transcriptional repression. In addition, a mutant Cl protein was isolated which is temperature sensitive for repression. Taken together, these data demonstrate the reciprocal regulation of a transcriptional switch in which the actions of the two phage-encoded proteins at the phage early promoters determine the choice between lytic and lysogenic growth.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
30
|
Zeng G, Ye S, Larson TJ. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol 1996; 178:7080-9. [PMID: 8955387 PMCID: PMC178618 DOI: 10.1128/jb.178.24.7080-7089.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of the glpEGR operon of Escherichia coli was determined. The translational reading frame at the beginning, middle, and end of each gene was verified. The glpE gene encodes an acidic, cytoplasmic protein of 108 amino acids with a molecular weight of 12,082. The glpG gene encodes a basic, cytoplasmic membrane-associated protein of 276 amino acids with a molecular weight of 31,278. The functions of GlpE and GlpG are unknown. The glpR gene encodes the repressor for the glycerol 3-phosphate regulon, a protein predicted to contain 252 amino acids with a calculated molecular weight of 28,048. The amino acid sequence of the glp repressor was similar to several repressors of carbohydrate catabolic systems, including those of the glucitol (GutR), fucose (FucR), and deoxyribonucleoside (DeoR) systems of E. coli, as well as those of the lactose (LacR) and inositol (IolR) systems of gram-positive bacteria and agrocinopine (AccR) system of Agrobacterium tumefaciens. These repressors constitute a family of related proteins, all of which contain approximately 250 amino acids, possess a helix-turn-helix DNA-binding motif near the amino terminus, and bind a sugar phosphate molecule as the inducing signal. The DNA recognition helix of the glp repressor and the nucleotide sequence of the glp operator were very similar to those of the deo system. The presumptive recognition helix of the glp repressor was changed by site-directed mutagenesis to match that of the deo repressor or, in a separate construct, to abolish DNA binding. Neither altered form of the glp repressor recognized the glp or deo operator, either in vivo or in vitro. However, both altered forms of the glp repressor were negatively dominant to the wild-type glp repressor, indicating that the inability to bind DNA with high affinity was due to alteration of the DNA-binding domain, not to an inability to oligomerize or instability of the altered repressors. For the first time, analysis of repressors with altered DNA-binding domains has verified the assignment of the helix-turn-helix motif of the transcriptional regulators in the deoR family.
Collapse
Affiliation(s)
- G Zeng
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
31
|
Abstract
DNA-binding proteins can be converted into site-specific nucleases by linking them to the chemical nuclease 1,10-phenanthroline-copper. This can be readily accomplished by converting a minor groove-proximal amino acid to a cysteine residue using site-directed mutagenesis and then chemically modifying the sulphydryl group with 5-iodoacetamido-1,10-phenanthroline-copper. These chimeric scission reagents can be used as rare cutters to analyse chromosomal DNA, to test predictions based on high-resolution nuclear magnetic resonance and X-ray crystal structures, and to locate binding sites of proteins within genomes.
Collapse
Affiliation(s)
- C Q Pan
- Molecular Biology Institute, UCLA 90024-1570
| | | | | |
Collapse
|
32
|
Jancso A, Botfield MC, Sowers LC, Weiss MA. An altered-specificity mutation in a human POU domain demonstrates functional analogy between the POU-specific subdomain and phage lambda repressor. Proc Natl Acad Sci U S A 1994; 91:3887-91. [PMID: 8171007 PMCID: PMC43687 DOI: 10.1073/pnas.91.9.3887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The POU motif, conserved among a family of eukaryotic transcription factors, contains two DNA-binding domains: an N-terminal POU-specific domain (POUS) and a C-terminal homeodomain (POUHD). Surprisingly, POUS is similar in structure to the helix-turn-helix domains of bacteriophage repressor and Cro proteins. Such similarity predicts a common mechanism of DNA recognition. To test this prediction, we have studied the DNA-binding properties of the human Oct-2 POU domain by combined application of chemical synthesis and site-directed mutagenesis. The POUS footprint of DNA contacts, identified by use of modified bases, is analogous to those of bacteriophage repressor-operator complexes. Moreover, a loss-of-contact substitution in the putative POUS recognition alpha-helix leads to relaxed specificity at one position in the DNA target site. The implied side chain-base contact is identical to that of bacteriophage repressor and Cro proteins. These results establish a functional analogy between the POUS and prokaryotic helix-turn-helix elements and suggest that their DNA specificities may be governed by a shared set of rules.
Collapse
Affiliation(s)
- A Jancso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
33
|
Suppression of a defect in the 5' untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol Cell Biol 1993. [PMID: 8393138 DOI: 10.1128/mcb.13.8.4806] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.
Collapse
|
34
|
Costanzo MC, Fox TD. Suppression of a defect in the 5' untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol Cell Biol 1993; 13:4806-13. [PMID: 8393138 PMCID: PMC360107 DOI: 10.1128/mcb.13.8.4806-4813.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.
Collapse
Affiliation(s)
- M C Costanzo
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703
| | | |
Collapse
|
35
|
Abstract
The crystal structure of the lambda repressor-operator complex has been refined to an R-factor of 18.9% at 1.8 A resolution. This refinement, using data collected at low temperature, has revealed the structure of the N-terminal arm and shows that the interactions of repressor with the two halves of the pseudo-symmetric operator site are significantly different. The two halves of the complex are most similar near the outer edge of the operator site (in a region where the lambda and 434 repressors make similar contacts), but they become increasingly different toward the center of the operator. There are striking differences near the center of the site where it appears that the arm makes significant contacts to only one half of the DNA site. This suggested a new way of aligning the operator sites in phage lambda. The high resolution structure confirms many of the previously noted features of the complex, but also reveals a number of new protein-DNA contacts. It also gives a better view of the extensive H-bonding networks that couple contacts made by different residues and different regions of the protein, and reveals important new details about the helix-turn-helix (HTH) region, and the positions of many water molecules in the complex.
Collapse
Affiliation(s)
- L J Beamer
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
36
|
Tzamarias D, Pu WT, Struhl K. Mutations in the bZIP domain of yeast GCN4 that alter DNA-binding specificity. Proc Natl Acad Sci U S A 1992; 89:2007-11. [PMID: 1549559 PMCID: PMC48585 DOI: 10.1073/pnas.89.6.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bZIP class of eukaryotic transcriptional regulators utilize a distinct structural motif that consists of a leucine zipper that mediates dimerization and an adjacent basic region that directly contacts DNA. Although models of the protein-DNA complex have been proposed, the basis of DNA-binding specificity is essentially unknown. By genetically selecting for derivatives of yeast GCN4 that activate transcription from promoters containing mutant binding sites, we isolate an altered-specificity mutant in which the invariant asparagine in the basic region of bZIP proteins (Asn-235) has been changed to tryptophan. Wild-type GCN4 binds the optimal site (ATGACTCAT) with much higher affinity than the mutant site (TTGACTCAA), whereas the Trp-235 protein binds these sites with similar affinity. Moreover, the Trp-235, Ala-235, and Gln-235 derivatives differ from GCN4 in their strong discrimination against GTGACTCAC. These results suggest a direct interaction between Asn-235 and the +/- 4 position of the DNA target site and are discussed in terms of the scissors-grip and induced-fork models of bZIP proteins.
Collapse
Affiliation(s)
- D Tzamarias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
37
|
Dahlman-Wright K, Wright A, Carlstedt-Duke J, Gustafsson JA. DNA-binding by the glucocorticoid receptor: a structural and functional analysis. J Steroid Biochem Mol Biol 1992; 41:249-72. [PMID: 1562506 DOI: 10.1016/0960-0760(92)90351-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The glucocorticoid receptor belongs to a family of ligand activated nuclear receptors. This family includes, in addition to the receptors for steroid hormones, receptors for thyroid hormone, retinoic acid and 1,25-dihydroxy vitamin D3 as well as some receptors with as yet unknown ligands. The glucocorticoid receptor DNA-binding domain has been expressed in E. coli. The purified protein binds to the same DNA sequences as the native receptor and is therefore suitable for biochemical and structural studies of the DNA-binding function of the receptor protein. This protein has been shown to bind as a dimer to its DNA-binding site. Protein-protein interactions facilitate DNA-binding and a segment responsible for these interactions has been identified close to the C-terminal zinc-binding site. The family of nuclear receptors, with their related DNA-binding sites, provides an opportunity to study determinants for DNA sequence recognition. A segment close to the N-terminal zinc ion has been shown to be responsible for the target specificity of glucocorticoid and estrogen receptors. DNA-binding domains of nuclear receptors include nine conserved cysteine residues which have been shown to coordinate two zinc ions and zinc has been shown to be required for the structural integrity and DNA-binding ability of the glucocorticoid receptor DNA-binding domain. A motif for DNA recognition, based around zinc ions, was first described for transcription factor IIIA and nuclear receptors were believed to recognize DNA via a similar motif. However, the three-dimensional structure determination of the glucocorticoid receptor DNA-binding domain shows that its structure is clearly different from that of the TFIIIA type zinc-binding domains.
Collapse
Affiliation(s)
- K Dahlman-Wright
- Department of Medical Nutrition, Huddinge Hospital, Karolinska Institute, Sweden
| | | | | | | |
Collapse
|
38
|
Chabbert M, Hillen W, Hansen D, Takahashi M, Bousquet JA. Structural analysis of the operator binding domain of Tn10-encoded Tet repressor: a time-resolved fluorescence and anisotropy study. Biochemistry 1992; 31:1951-60. [PMID: 1311199 DOI: 10.1021/bi00122a008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An engineered Tn10-encoded Tet repressor, bearing a single Trp residue at position 43, in the putative alpha-helix-turn-alpha-helix motif of the operator binding domain, was studied by time-resolved fluorescence and anisotropy. Fluorescence intensity decay data suggested the existence of two classes of Trp-43, defined by different lifetimes. Analysis of anisotropy data were consistent with a model in which each class was defined by a different lifetime, rotational correlation time, and fluorescence emission maximum. The long-lifetime class had a red-shifted spectrum, similar to that of tryptophan zwitterion in water, and a short rotational correlation time. In contrast, the spectrum of the short-lifetime class was blue-shifted 10 nm compared to that of the long-lifetime class. Its correlation time was similar to that of the protein, which showed that Trp in this class was entirely constrained. Trp in this latter class could not be quenched by iodide, whereas most of the long-lifetime class was easily accessible. Presence of disruptive agents, such as 1 M GuCl or 3 M KCl, did not alter markedly the lifetimes but increased the weight of the short-lifetime component. In the same time, the rotational correlation time of this component was dramatically reduced. Taken together, our data suggest that the long-lifetime class could correspond to the tryptophan residues exposed to solvent whereas the short-lifetime class would correspond to the tryptophan residues embedded inside the hydrophobic core holding the helix-turn-helix motif. Destabilization of hydrophobic interactions would lead to an increase in the weight of the latter class for entropic reasons. Analysis of the fluorescence parameters of Trp-43 could provide structural information on the operator binding domain of Tet repressor.
Collapse
Affiliation(s)
- M Chabbert
- CNRS UA 491, Faculté de Pharmacie de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
TFIID is the highly conserved, but species-specific, component of the RNA polymerase II transcription machinery that binds specifically to the TATA element (consensus TATAAA). Using a genetic selection, we isolated an altered specificity derivative of yeast TFIID that permits transcription from promoters containing a mutated TATA element (TGTAAA). Biochemical analysis indicates that this TFIID derivative has specifically gained the ability to bind TGTAAA efficiently. The mutant protein contains three substitutions within a 12 amino acid region; two of these are necessary and primarily responsible for the altered specificity. An analogous version of human TFIID, generated by introducing the same amino acid substitutions in the corresponding region of the protein, can support basal and GCN4-activated transcription in yeast cells from a TGTAAA-containing promoter. These results define a surface of TFIID that directly interacts with the TATA element, and they indicate that human TFIID can respond to acidic activator proteins in conjunction with the other components of the yeast transcription machinery.
Collapse
Affiliation(s)
- M Strubin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
40
|
The role of the N terminus in Tet repressor for tet operator binding determined by a mutational analysis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46038-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Clarke ND, Beamer LJ, Goldberg HR, Berkower C, Pabo CO. The DNA binding arm of lambda repressor: critical contacts from a flexible region. Science 1991; 254:267-70. [PMID: 1833818 DOI: 10.1126/science.254.5029.267] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Segments of protein that do not adopt a well-ordered conformation in the absence of DNA can still contribute to site-specific recognition of DNA. The first six residues (NH2-Ser1-Thr2-Lys3-Lys4-Lys5-Pro6-) of phage lambda repressor are flexible but are important for site-specific binding. Low-temperature x-ray crystallography and codondirected saturation mutagenesis were used to study the role of this segment. All of the functional sequences have the form [X]1-[X]2-[Lys or Arg]3-[Lys]4-[Lys or Arg]5-[X]6. A high-resolution (1.8 angstrom) crystal structure shows that Lys3 and Lys4 each make multiple hydrogen bonds with guanines and that Lys5 interacts with the phosphate backbone. The symmetry of the complex breaks down near the center of the site, and these results suggest a revision in the traditional alignment of the six lambda operator sites.
Collapse
Affiliation(s)
- N D Clarke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
42
|
Clarke ND, Beamer LJ, Goldberg HR, Berkower C, Pabo CO. The DNA Binding Arm of λ Repressor: Critical Contacts from a Flexible Region. Science 1991. [DOI: 10.1126/science.1833818] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Neil D. Clarke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lesa J. Beamer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Harry R. Goldberg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carol Berkower
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carl O. Pabo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
43
|
Torigoe C, Kidokoro S, Takimoto M, Kyogoku Y, Wada A. Spectroscopic studies on lambda cro protein-DNA interactions. J Mol Biol 1991; 219:733-46. [PMID: 2056536 DOI: 10.1016/0022-2836(91)90668-v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spectroscopic (circular dichroism and fluorescence) and thermodynamic studies were conducted on lambda Cro-DNA interactions. Some base substitutions were introduced to the operator and the effects on the conformation of the complex and thermodynamic parameters for dissociation of the complex were examined. It was found that, (1) in the specific binding of Cro with DNA which has a (pseudo) consensus sequence, DNA is overwound, while in non-specific binding it is unchanged, or rather unwound; (2) substitution of central base-pairs or the introduction of a mismatched base-pair at the center of the operator reduces the extent of DNA conformational change on Cro binding and lessens the stability of the Cro-DNA complex, even though there is apparently no direct interaction between Cro and DNA at these positions; (3) stability of the complex increases with the degree of DNA conformational change of the same type during binding; (4) in some cases of specific binding, there are three states in the dissociation of the complex as observed by salt titration: two conformational states for the complex depending on salt concentration and, in non-specific binding, dissociation is a two-state transition; (5) the number of ions involved in interactions between Cro and 17 base-pair DNA is about 7.7 for NaCl titrations; (6) dissociation free energy prediction of the Cro-DNA complex by simple addition of the dissociation free energy change of a single base-pair substitution agrees with our experimental results when DNA overwinding occurs during binding, i.e. in specific binding.
Collapse
Affiliation(s)
- C Torigoe
- Department of Physics, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Kisters-Woike B, Lehming N, Sartorius J, von Wilcken-Bergmann B, Müller-Hill B. A model of the lac repressor-operator complex based on physical and genetic data. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:411-9. [PMID: 2040302 DOI: 10.1111/j.1432-1033.1991.tb16030.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Computer graphics were used to build a molecular model of the complex of Lac repressor and lac operator. The model is based (a) on the NMR data of the Kaptein group [Boelens, R., Lamerichs, R. M. J. N., Rullmann, J. A. C., van Boom, J. H. & Kaptein, R. (1988) Protein Sequence Data Anal. 1, 487-498] and (b) on our genetic and biochemical data including specificity changes [Lehming, N., Sartorius, J., Kisters-Woike, B., von Wilcken-Bergmann, B. & Müller-Hill, B. (1990) EMBO J. 9, 615-621]. Effects of amino acid exchanges in the recognition helix could be predicted by the model and were subsequently tested and confirmed by genetic experiments. Comparison of the modelled lac complex with the known crystallographic structures of several helix-turn-helix DNA complexes reveals striking similarities and suggests rules which govern the recognition between particular amino acid side chains and particular base pairs in these systems.
Collapse
Affiliation(s)
- B Kisters-Woike
- Institut für Genetik, Universität zu Köln, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
The Bicoid homeodomain protein controls anterior development in the Drosophila embryo by binding to DNA and regulating gene expression. With the use of genetic assays in yeast, the interaction between the Bicoid homeodomain and a series of mutated DNA sites was studied. These experiments defined important features of homeodomain binding sites, identified specific amino acid-base pair contacts, and suggested a model for interaction of the recognition alpha-helices of Bicoid and Antennapedia-class homeodomain proteins with DNA. The model is in general agreement with results of crystallographic and magnetic resonance studies, but differs in important details. It is likely that genetic studies of protein-DNA interaction will continue to complement conventional structural approaches.
Collapse
Affiliation(s)
- S D Hanes
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
47
|
|
48
|
Brennan RG, Roderick SL, Takeda Y, Matthews BW. Protein-DNA conformational changes in the crystal structure of a lambda Cro-operator complex. Proc Natl Acad Sci U S A 1990; 87:8165-9. [PMID: 2146682 PMCID: PMC54913 DOI: 10.1073/pnas.87.20.8165] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The structure of a complex of bacteriophage lambda Cro protein with a 17-base-pair operator has been determined at 3.9-A resolution. Isomorphous derivatives obtained by the synthesis of site-specific iodinated DNA oligomers were of critical importance in solving the structure. The crystal structure contains three independent Cro-operator complexes that have very similar, although not necessarily identical, conformations. In the complex, the protein dimer undergoes a large conformational change relative to the crystal structure of the free protein. One monomer rotates by about 40 degrees relative to the other, this being accomplished primarily by a twisting of the two beta-sheet strands that connect one monomer with the other. In the complex, the DNA is bent by about 40 degrees into the shape of a boomerang but maintains essentially Watson-Crick B-form. In contrast to other known protein-DNA complexes, the DNA is not stacked end-to-end. The structure confirms the general features of the model previously proposed for the interaction of Cro with DNA.
Collapse
Affiliation(s)
- R G Brennan
- Department of Physics, University of Oregon, Eugene 97403
| | | | | | | |
Collapse
|
49
|
Daniels D, Zuber P, Losick R. Two amino acids in an RNA polymerase sigma factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc Natl Acad Sci U S A 1990; 87:8075-9. [PMID: 2122453 PMCID: PMC54895 DOI: 10.1073/pnas.87.20.8075] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The recognition of promoter region -10 nucleotide sequences in prokaryotes is believed to be mediated by a segment of alpha-helix in a region of RNA polymerase sigma factors called 2.4. Earlier genetic studies implicated Thr-100 in region 2.4 of the Bacillus subtilis sigma factor sigma H in the recognition of the G.C base pair at position -13 in the -10 region (GAAT) of a cognate promoter. In confirmation of this assignment, we now show that a change-of-specificity mutant of sigma H in which Thr-100 was replaced with isoleucine suppresses a G.C----A.T nucleotide substitution at position -13 but not other "promoter down mutations" (causing impaired promoter activity) at positions -13, -12, and -11. We also show that a loss-of-contact mutant created by the replacement of Thr-100 with alanine (having a short side chain) enables sigma H to tolerate three different promoter down mutations at position -13 but not down mutations at other positions. Finally, we suggest the identification of an additional amino acid involved in base-pair recognition by the demonstration that the replacement of Arg-96 with alanine specifically suppresses an A.T----G.C promoter down mutation at position -12. The identification of amino acids that are four residues apart that are involved in the recognition of adjacent base pairs may fix the orientation of region 2.4 (its NH2 terminus being proximal to the promoter transcription start site) and is consistent with a model in which the recognition of promoter region -10 nucleotide sequences is mediated by an alpha-helix in which residues involved in base-pair contact are separated by one turn and clustered on one face of the helix.
Collapse
Affiliation(s)
- D Daniels
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|
50
|
Closely related DNA sequences specify distinct patterns of developmental expression in Drosophila melanogaster. Mol Cell Biol 1990. [PMID: 2111452 DOI: 10.1128/mcb.10.6.3272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three short synthetic DNA sequences, which are closely related to one another, confer three distinct patterns of developmental expression on the heat shock hsp70 gene in transgenic Drosophila melanogaster lines. These results show that small variations or even single base pair changes in a repeated element of a regulatory sequence can create promoters that display new specificities of tissue and developmental regulation. Interestingly, the three patterns of developmental expression conferred by the synthetic DNAs resemble in part those of the known developmental genes: glucose dehydrogenase (Gld), Dopa decarboxylase (Ddc), and salivary gland secretory proteins (Sgs), respectively. In each case, the defined regulatory region of the known developmental gene contains multiple sequences that are similar or identical to the synthetic sequence that confers a similar pattern of developmental expression on the hsp70 gene. Thus, these results are congruent with the view that short sequence elements in multiple copies can confer either simple or relatively complex patterns of developmental expression on a receptive promoter like that of hsp70. Furthermore, the fact that the three variants tested produced three distinct patterns of expression in transgenic animals suggests that the number of different elements is large.
Collapse
|