1
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and Current Research Models of Mendelian Tumor Predisposition Syndromes with Ocular Involvement. Prog Retin Eye Res 2025:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 Tumor Predisposition Syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Cole JJ, Ferner RE, Gutmann DH. Neurofibromatosis type 1. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:231-249. [DOI: 10.1016/b978-0-443-19176-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Chang M, Sherief M, Ioannou M, Chinnasamy V, Chen L, Frost M, Mattson-Hoss M, Sarnoff H, Kamson DO, Holdhoff M, Mukherjee D, Bettegowda C, Rincon-Torroella J, Croog V, Huang P, Rodriguez FJ, Lucas CHG, Schreck KC. NF1 expression profiling in IDH-wildtype glioblastoma: genomic associations and survival outcomes. Acta Neuropathol Commun 2024; 12:172. [PMID: 39472976 PMCID: PMC11520828 DOI: 10.1186/s40478-024-01875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND NF1 inactivation is associated with sensitivity to MEK inhibitor targeted therapy in low-grade and some high-grade gliomas. NF1 loss may also be a harbinger of exploitable vulnerabilities in IDH-wildtype glioblastoma (GBM). Accurate and consistent detection of NF1 loss, however, is fraught given the large gene size, challenges with complete coverage and variant calling upon sequencing, and mechanisms of mRNA and protein regulation that result in early degradation in the absence of genomic alterations. Here, we seek to perform a composite analysis for NF1 loss accounting for genomic alterations and protein expression via immunohistochemistry. We also characterize the landscape of NF1 alterations in GBM. METHODS We assembled a single-institution, retrospective cohort of 542 IDH-wildtype GBM with somatic next generation sequencing to investigate the frequency and nature of detected NF1 alterations. We selected 69 GBMs from which to build a tissue microarray (TMA) of 44 NF1-wildtype and 25 NF1-mutant cases. We performed NF1 immunohistochemistry using two different NF1 antibodies (NFC, Sigma-Aldrich; and iNF-07E, iNFixion Bioscience) and correlated results with clinical, genomic, and other immunohistochemical features. RESULTS In our retrospective cohort, we identified 88 IDH-wildtype GBM with NF1 alterations (16%). NF1 alterations were mutually exclusive with EGFR and MDM2 alterations (p-adj < 0.001, 0.05, respectively), but co-occurred with PIK3R1 alterations (Log2(OR) = - 1.6, p-adj = 0.03). Of the 63 scorable sporadic GBMs in the TMA, 14 harbored NF1 inactivating alterations and of those, 12 (86%) demonstrated minimal NF1 immunoreactivity by NFC antibody, compared to 8 (57%) by iNF-07E antibody. Among the 42 scorable NF1-wildtype GBM in the TMA, NF1 immunostaining was minimal in 18 (43%) by NFC antibody compared to 4 (10%) by iNF-07E antibody, potentially reflecting false positives or differential protein regulation. Minimal immunoreactivity by NFC antibody was associated with decreased median overall survival (8.5 vs. 16.4 months, p = 0.011). Cox proportional hazards model correcting for prognostic variables in this subset revealed HR 3.23 (95% CI 1.29-8.06, p = 0.01) associated with decreased NF1 expression by IHC. CONCLUSION NF1 immunostaining may serve as a sensitive surrogate marker of NF1 genomic inactivation and a valuable extension to next-generation sequencing for defining NF1 status. Minimal NF1 immunoreactivity is a poor prognostic marker, even in IDH-wildtype glioblastoma without apparent NF1 genomic alterations, but the underlying molecular mechanism requires further investigation.
Collapse
Affiliation(s)
- Michael Chang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed Sherief
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Ioannou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Viveka Chinnasamy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lucy Chen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - David O Kamson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Victoria Croog
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Huang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Gui C, Canthiya L, Zadeh G, Suppiah S. Current state of spinal nerve sheath tumor management and future advances. Neurooncol Adv 2024; 6:iii83-iii93. [PMID: 39430389 PMCID: PMC11485951 DOI: 10.1093/noajnl/vdae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Nerve sheath tumors are the most common tumors of the spine after meningiomas. They include schwannomas, neurofibroma, and malignant peripheral nerve sheath tumors. These can arise sporadically or in association with tumor predisposition syndromes, including neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Though surgery is the traditional mainstay of treatment for these tumors, the discovery of the genetic and molecular basis of these diseases in recent decades has prompted investigation into targeted therapies. Here, we give a clinical overview of spinal nerve sheath tumors, their imaging features, current management practices, and explore ongoing advances in systemic therapies.
Collapse
Affiliation(s)
- Chloe Gui
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Luxshikka Canthiya
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Suganth Suppiah
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wachtel H, Nathanson KL. Molecular Genetics of Pheochromocytoma/Paraganglioma. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 36:100527. [PMID: 39328362 PMCID: PMC11424047 DOI: 10.1016/j.coemr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors which secrete catecholamines, causing cardiovascular compromise. While isolated tumors and locoregional disease can be treated surgically, treatment options for metastatic disease are limited, and no targeted therapies exist. Approximately 25% of PPGL are causatively associated with germline pathogenic variants, which are known risk factors for multifocal and metastatic PPGL. Knowledge of somatic driver mutations continues to evolve. Molecular classification of PPGL has identified three genomic subtypes: Cluster 1 (pseudohypoxia), Cluster 2 (kinase signaling) and Cluster 3 (Wnt-altered). This review summaries recent studies characterizing the tumor microenvironment, genomic drivers of tumorigenesis and progression, and current research on molecular targets for novel diagnostic and therapeutic strategies in PPGL.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Hospital of the University of Pennsylvania, Department of Medical Genetics, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Park GH, Park E, Lee SJ, Lim K, Kim J, Park JE, Jeong SY. Interferon-Induced Transmembrane Protein 1 (IFITM1) Is Downregulated in Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2024; 25:9265. [PMID: 39273214 PMCID: PMC11395022 DOI: 10.3390/ijms25179265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, is caused by mutations in the NF1 gene, which encodes the GTPase-activating protein neurofibromin. The pathogenesis of the tumor progression of benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. Here, we found that interferon-induced transmembrane protein 1 (IFITM1) was downregulated in MPNST tissues compared to those in PN tissues from patients with NF1. Overexpression of IFITM1 in NF1-associated MPNST cells resulted in a significant decrease in Ras activation (GTP-Ras) and downstream extracellular regulatory kinase 1/2 (ERK1/2) phosphorylation, whereas downregulation of IFITM1 via treatment with small interfering RNA in normal Schwann cells had the opposite result, indicating that expression levels of IFITM1 are closely associated with tumor progression in NF1. Treatment of MPNST cells with interferon-gamma (IFN-γ) significantly augmented the expression of IFITM1, thereby leading to a decrease in Ras and ERK1/2 activation. Despite the small number of patient samples, these findings may potentially provide a new target for chemotherapy in patients with NF1-associated MPNSTs. In xenograft mice injected with MPNST cells, IFN-γ treatment successfully suppressed tumor progression with increased IFITM1 expression and decreased Ras and ERK1/2 activation in tumor tissues. Collectively, these results suggest that IFITM1 is closely involved in MPNST pathogenesis and that IFN-γ is a good candidate for the therapeutic treatment of MPNSTs in NF1.
Collapse
Affiliation(s)
- Gun-Hoo Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Jeju Bio Research Center, Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Jeonbuk Institute for Food-Bioindustry, Jeonju 54810, Republic of Korea
| | - Su-Jin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Kyubin Lim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jun Eun Park
- Department of Pediatrics, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Tonouchi E, Morita KI, Harazono Y, Hoshino K, Yoda T. NF1 with 47,XYY mosaicism diagnosed by mandibular neurofibromas. Hum Genome Var 2024; 11:22. [PMID: 38755192 PMCID: PMC11099053 DOI: 10.1038/s41439-024-00279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant nevus disease characterized by multiple manifestations, primarily café-au-lait macules and neurofibromas. Here, we present the case of an NF1 patient with 47,XYY mosaicism whose diagnosis was prompted by café-au-lait macules on the skin and mandibular neurofibromas. Targeted next-generation sequencing of the patient's blood sample revealed a novel frameshift mutation in NF1 (NM_000267.3:c.6832dupA:p.Thr2278Asnfs*8) that is considered a pathogenic variant.
Collapse
Affiliation(s)
- Erina Tonouchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-Ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yosuke Harazono
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, Tokyo, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Hayashi S, Bandoh N, Hayashi M, Goto T, Kato Y, Baba S, Aimono E, Nishihara H. Salivary Duct Carcinoma Arising in the Submandibular Gland in a Patient with Neurofibromatosis Type 1. EAR, NOSE & THROAT JOURNAL 2024:1455613241231146. [PMID: 38369960 DOI: 10.1177/01455613241231146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
A 71-year-old man with neurofibromatosis type 1 (NF1) presented to our department with a 1-week history of a painful mass in the left submandibular area. Computed tomography (CT) and magnetic resonance imaging revealed an irregular-shaped tumor with a diameter of 2.0 cm in the left submandibular gland and a metastatic lymph node with a diameter of 1.0 cm adjacent to the tumor. Fluorodeoxyglucose-positron emission tomography/CT revealed increased uptake in the tumor. Fine-needle aspiration cytology revealed atypical cells, suggesting salivary duct carcinoma (SDC). Left neck dissection with resection of the tumor and submandibular gland was performed under general anesthesia. Histologic examination revealed ductal formation with a solid, cystic, cribriform, and papillary structure with intraductal comedonecrosis, diagnosing as SDC originating in the submandibular gland (pT3N1M0 pStage III). Mutational analysis of 160 cancer-related genes by next-generation sequencing (NGS) revealed a germline and frameshift mutation in the NF1 gene (p.R2408Kfs*14) and a somatic and frameshift mutation in the TP53 gene (p.C176Wfs*22). The patient received postoperative radiotherapy to the left neck area at 66 Gy. No evidence of recurrence or metastasis has been observed as of 10 months postoperatively. This is the first reported case of SDC in the submandibular gland in a patient with NF1. The mutational data by NGS may contribute to a better understanding of the oncogenesis of SDC in patients with NF1.
Collapse
Affiliation(s)
- Shuto Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Nobuyuki Bandoh
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Misaki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takashi Goto
- Department of Otolaryngology-Head and Neck Surgery, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Yasutaka Kato
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Shogo Baba
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Eriko Aimono
- Keio Cancer Center, Keio University School of Medicine, Shinjukuku, Tokyo, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Shinjukuku, Tokyo, Japan
| |
Collapse
|
9
|
Li L, Guan L, Tang Y, Zou Y, Zhong J, Qiu L. Research in the genetics of pheochromocytoma and paraganglioma: a bibliometric analysis from 2002 to 2022. Clin Exp Med 2023; 23:3969-3980. [PMID: 37103653 DOI: 10.1007/s10238-023-01049-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Over the past two decades, there has been a significant growth in articles focusing on the genetics of pheochromocytoma and paraganglioma (PPGL). We used bibliometric methods to investigate the historical changes and trend in PPGL research. There was a total of 1263 articles published in English from 2002 to 2022 included in our study. The number of annual publications and citations in this field has been increasing in the past 20 years. Furthermore, most of the publications originated from the European countries and the United States. The co-occurrence analysis showed close cooperation between different countries, institutions, or authors. The dual-map discipline analysis revealed that majority articles focused on four disciplines: #2 (Medicine, Medical, Clinical), #4 (Molecular, Biology, Immunology), #5 (Health, Nursing, Medicine), and #8 (Molecular, Biology, Genetics). The hotspot analysis revealed the keywords that have been landmark for PPGL genetics research in different time periods, and there was continued interest in gene mutations, especially on SDHX family genes. In conclusion, this study displays the current status of research and future trends in the genetics of PPGL. In future, more in-depth research should concentrate on crucial mutation genes and their specific mechanisms to assist in molecular target therapy. It is hoped that this study may help to provide directions for future research on genes and PPGL.
Collapse
Affiliation(s)
- Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Lihua Guan
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
Elbeltagy M, Abbassy M. Neurofibromatosis type1, type 2, tuberous sclerosis and Von Hippel-Lindau disease. Childs Nerv Syst 2023; 39:2791-2806. [PMID: 37819506 DOI: 10.1007/s00381-023-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Neurocutaneous syndromes (also known as phakomatoses) are heterogenous group of disorders that involve derivatives of the neuroectoderm. Each disease has diagnostic and pathognomonic criteria, once identified, thorough clinical examination to the patient and the family members should be done. Magnetic resonance imaging (MRI) is used to study the pathognomonic findings withing the CNS (Evans et al. in Am J Med Genet A 152A:327-332, 2010). This chapter includes the 4 most common syndromes faced by neurosurgeons and neurologists; neurofibromatosis types 1 and 2, tuberous sclerosis and Von Hippel-Lindau disease. Each syndrome has specific genetic anomaly that involves a tumor suppressor gene and the loss of inhibition of specific pathways. The result is a spectrum of cutaneous manifestations and neoplasms.
Collapse
Affiliation(s)
- M Elbeltagy
- Department of Neurosurgery, Cairo University, 1 University Street, Giza Governorate, 12613, Egypt.
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt.
| | - M Abbassy
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt
- Department of Neurosurgery, Alexandria University, 22 El-Gaish Rd, Al Azaritah WA Ash Shatebi, Bab Sharqi, Alexandria Governorate, 5424041, Egypt
| |
Collapse
|
11
|
Weiss JB, Raber J. Inhibition of Anaplastic Lymphoma Kinase (Alk) as Therapeutic Target to Improve Brain Function in Neurofibromatosis Type 1 (Nf1). Cancers (Basel) 2023; 15:4579. [PMID: 37760547 PMCID: PMC10526845 DOI: 10.3390/cancers15184579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Neurofibromatosis type 1 (Nf1) is a neurodevelopmental disorder and tumor syndrome caused by loss of function mutations in the neurofibromin gene (Nf1) and is estimated to affect 100,000 people in the US. Behavioral alterations and cognitive deficits have been found in 50-70% of children with Nf1 and include specific problems with attention, visual perception, language, learning, attention, and executive function. These behavioral alterations and cognitive deficits are observed in the absence of tumors or macroscopic structural abnormalities in the central nervous system. No effective treatments for the behavioral and cognitive disabilities of Nf1 exist. Inhibition of the anaplastic lymphoma kinase (Alk), a kinase which is negatively regulated by neurofibromin, allows for testing the hypothesis that this inhibition may be therapeutically beneficial in Nf1. In this review, we discuss this area of research and directions for the development of alternative therapeutic strategies to inhibit Alk. Even if the incidence of adverse reactions of currently available Alk inhibitors was reduced to half the dose, we anticipate that a long-term treatment would pose challenges for efficacy, safety, and tolerability. Therefore, future efforts are warranted to investigate alternative, potentially less toxic and more specific strategies to inhibit Alk function.
Collapse
Affiliation(s)
- Joseph B. Weiss
- Cardiovascular Institute and Warren Alpert School of Medicine at Brown University, Providence, RI 02840, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Jahanshahi R, Yasaghi Z, Mirzaei F, Ghasemi S, Sanagoo A, Jouybari L, Foji S. Burden of adult neurofibromatosis 1 questionnaire: translation and psychometric properties of the Persian version. Orphanet J Rare Dis 2023; 18:161. [PMID: 37353850 DOI: 10.1186/s13023-023-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/02/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND The notion of "burden" has taken a key place in the evaluation of care, particularly in the case of rare diseases. The aim of this study was to evaluate the psychometric properties of the burden of neurofibromatosis 1 questionnaire (BoN) and to determine the perceived disease burden. RESULTS The 15-item BoN was translated into Persian, and no items were removed based on content validity. The adequacy of the sample was acceptable (KMO = 0.902), and Bartlett's test of sphericity revealed statistically significant results (P < 0.001). Exploratory factor analysis revealed three factors. The reliability of the scale was good (Cronbach's alpha: 0.90), and the intraclass coefficient was 0.85. The severity of the burden of neurofibromatosis was moderate, and the total mean burden score was 33.12 ± 16.12. CONCLUSIONS The Persian version of the BoN is an acceptable tool in terms of structure and content, and it specifically assesses the practical aspects of daily activities for patients with neurofibromatosis.
Collapse
Affiliation(s)
- Reza Jahanshahi
- BSN, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Yasaghi
- Master of critical care nursing, school of nursing and midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mirzaei
- DDS, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shohreh Ghasemi
- DDS, MSc of Oral Surgery, Adjunct Clinical, Department of Augusta University, GA, Augusta, USA
| | - Akram Sanagoo
- School of nursing and midwifery, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Leila Jouybari
- School of nursing and midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samira Foji
- School of Nursing and Midwifery, Sabzevar university of medical scinces, Sabzevar, Iran
| |
Collapse
|
13
|
Dervovic D, Malik AA, Chen ELY, Narimatsu M, Adler N, Afiuni-Zadeh S, Krenbek D, Martinez S, Tsai R, Boucher J, Berman JM, Teng K, Ayyaz A, Lü Y, Mbamalu G, Loganathan SK, Lee J, Zhang L, Guidos C, Wrana J, Valipour A, Roux PP, Reimand J, Jackson HW, Schramek D. In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer. Nat Commun 2023; 14:3150. [PMID: 37258521 PMCID: PMC10232477 DOI: 10.1038/s41467-023-38841-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
How the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by KrasG12D and further elevated by immunotherapy. Using loss- and gain-of-function experiments, we show that ADAM2 functions as an oncogene by restraining interferon and TNF cytokine signaling causing reduced presentation of tumor-associated antigens. ADAM2 also restricts expression of the immune checkpoint inhibitors PDL1, LAG3, TIGIT and TIM3 in the tumor microenvironment, which might explain why ex vivo expanded and adoptively transferred cytotoxic T-cells show enhanced cytotoxic efficacy in ADAM2 overexpressing tumors. Together, direct in vivo CRISPR/Cas9 screens can uncover genetic alterations that control responses to immunotherapies.
Collapse
Affiliation(s)
- Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edward L Y Chen
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Masahiro Narimatsu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nina Adler
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Somaieh Afiuni-Zadeh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Dagmar Krenbek
- Department of Pathology and Bacteriology, Klinik Floridsdorf, Vienna, Austria
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jonathan Boucher
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Jacob M Berman
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arshad Ayyaz
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sampath K Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Jongbok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Laboratory Medicine and Pathobiology, Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia Guidos
- SickKids Research Institute, University Health Network, Toronto, ON, Canada
| | - Jeffrey Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arschang Valipour
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Hartland W Jackson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Spolia A, Angural A, Sharma V, Razdan S, Dhar MK, Mahajan A, Verma V, Pandita KK, Sharma S, Rai E. Cost-effective Whole Exome Sequencing discovers pathogenic variant causing Neurofibromatosis type 1 in a family from Jammu and Kashmir, India. Sci Rep 2023; 13:7852. [PMID: 37188759 DOI: 10.1038/s41598-023-34941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a multisystemic hereditary disorder associated with an increased risk of benign and malignant tumor formation predominantly on the skin, bone, and peripheral nervous system. It has been reported that out of all the NF1 cases, more than 95% cases develop the disease due to heterozygous loss-of-function variants in Neurofibromin (NF1) gene. However, identification of NF1 causative variants by presently recommended method of gene-targeted Sanger sequencing is challenging and cost-intensive due to the large size of the NF1gene with 60 exons spanning about 350 kb. Further, conducting the genetic studies is difficult in low resource regions and among families with the limited financial capabilities, restricting them from availing diagnostic as well as proper disease management measures. Here, we studied a three-generation family from Jammu and Kashmir state in India, with multiple affected family members showing clinical indications of NF1. We combinedly used two applications, Whole Exome Sequencing (WES) and Sanger sequencing, for this study and discovered a nonsense variant NM_000267.3:c.2041C>T (NP_000258.1:p.Arg681Ter*) in exon 18 of NF1 gene in a cost effective manner. In silico analyses further substantiated the pathogenicity of this novel variant. The study also emphasized on the role of Next Generation Sequencing (NGS) as a cost-effective method for the discovery of pathogenic variants in disorders with known phenotypes found in large sized candidate genes. The current study is the first study based on the genetic characterization of NF1 from Jammu and Kashmir-India, highlighting the importance of the described methodology adopted for the identification and understanding of the disease in low resource region. The early diagnosis of genetic disorders would open the door to appropriate genetic counseling, reducing the disease burden in the affected families and the general population at large.
Collapse
Affiliation(s)
- Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
| | - Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
- Department of Medical Genetics, JSS Medical College and JSS Hospital, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
- NMC Genetics India Pvt Ltd, Gurugram, 122002, Haryana, India
| | - Sushil Razdan
- Bhagwati Nagar, House No.:7, 180016, Jammu and Kashmir, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ankit Mahajan
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Vijeshwar Verma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
| | - Kamal K Pandita
- Health Clinic, Swarn Vihar, Muthi, 181205, Jammu and Kashmir, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India.
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, 181143, India.
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India.
| |
Collapse
|
15
|
Speth US, König D, Burg S, Gosau M, Friedrich RE. Evaluation of the sense of taste and smell in patients with Neurofibromatosis Type 1. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101271. [PMID: 36038126 DOI: 10.1016/j.jormas.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this study was to determine if patients with Neurofibromatosis Type 1 (NF1) have an impaired sense of smell or taste. Neurofibromin, the NF1gene protein product is ubiquitous in the body and is especially associated with the development of neurogenetic structures. Lately enlarged olfactory bulbs have been described in patients with NF1. Until now, there is no study to evaluate the sense of smell and taste in patients with NF1. METHOD This study has been approved by the Hamburg Ethics committee. An evaluation of the sense of smell and taste was undertaken in 26 patients with NF1 using the Burghart Sniffin' Sticks. Three patients were excluded due to a prior infection with the Corona virus. As a control group the same examination was performed in healthy individuals (same sex/ same age as the NF1 patients) by the same examiner. RESULTS The results show a normal sense of smell in patients with NF1. The morphologic finding of enlarged olfactory bulbs seem to have no functional equivalent. However, 8 out of 23 patients with NF1 had difficulties identifying at least one taste flavor. In total 9.8% of possible taste qualities were misidentified. In the healthy control group, all taste qualities were identified correctly. Considering each taste quality as separate case, a significant difference in the taste function was identified based on Fisher's exact test (p=0.003). CONCLUSION The current study does not show a correlation between NF1 and an impaired sense of smell. Yet significant reduction in the sense of taste was found in the patients with NF1. Further research will have to be conducted to find the underlying causal pathways. CLINICAL RELEVANCE NF1 is recently being acknowledged not only for its' macroscopic aesthetic and functional impairments, but also as a neurodevelopmental disorder. Evaluating the neural structures in regard to their function is a first step in understanding more about the disease.
Collapse
Affiliation(s)
- Ulrike Simone Speth
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Daniela König
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Reinhard Edgar Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, Król ZJ, Szyda J, Dobosz P. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers (Basel) 2023; 15:779. [PMID: 36765737 PMCID: PMC9913594 DOI: 10.3390/cancers15030779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.
Collapse
Affiliation(s)
- Jakub Liu
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Magdalena Mroczek
- Centre for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, 20-059 Lublin, Poland
| | - Angelika Aplas
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Bartosz Pronobis-Szczylik
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Szymon Bukowski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Ewelina Gajewska
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Piotr Topolski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| |
Collapse
|
17
|
Zhang W, Koh MY, Sirohi D, Ying J, Brintz BJ, Knudsen BS. Predicting IHC staining classes of NF1 using features in the hematoxylin channel. J Pathol Inform 2023; 14:100196. [PMID: 36814440 PMCID: PMC9939724 DOI: 10.1016/j.jpi.2023.100196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Immunohistochemistry (IHC) highlights specific cell types in tissues and traditionally involves antibody staining together with a hematoxylin counterstain. The intensity and pattern of hematoxylin staining differs between cell types and reveals morphological characteristics of cells. Here, we propose that features in the hematoxylin stain can be used to predict IHC labels, such as Neurofibromin (encoded by the gene NF1). The dataset consists of 7.2 million cells from benign and kidney cancer cores in a tissue microarray. Morphology and hematoxylin (H&M) features defined within QuPath are subjected to a clustering analysis in CytoMap. H&M features are also used to train 4 different XGBoost models to predict high, low, and negative NF1 stain classes in benign renal tubules, clear cell (ccRCC), papillary (PRCC), and chromophobe (ChRCC) renal carcinoma. The prediction accuracies of NF1 staining classes in benign, ccRCC, ChRCC, and PRCC range between 70% and 90% with areas under the precision recall curve PRAUCNF1-high = 0.82+0.12, PRAUCNF1-low = 0.62+0.25, and PRAUCNF1-negative = 0.83+0.16. The most important feature for predicting the NF1 class involves the minimum cellular hematoxylin staining intensity. Together, these results demonstrate the feasibility to predict NF1 expression solely from features in hematoxylin staining using open source software. Since the hematoxylin features can be obtained from regular H&E and IHC slides, the proposed workflow has broad applicability.
Collapse
Affiliation(s)
- Wei Zhang
- Huntsman Cancer Institute BMP core, University of Utah, Salt Lake City, Utah 84108, USA,Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA,Corresponding authors.
| | - Mei Yee Koh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Jian Ying
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | - Ben J. Brintz
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | - Beatrice S. Knudsen
- Huntsman Cancer Institute BMP core, University of Utah, Salt Lake City, Utah 84108, USA,Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA,Corresponding authors.
| |
Collapse
|
18
|
Durrani S, Mualem W, Shoushtari A, Nathani KR, Bydon M. Mapping the Landscape of Neurofibromatosis: A Bibliometric Evaluation Highlighting Our Current Understanding, Emerging Therapies, and Global Research Trends. World Neurosurg 2022; 167:e1345-e1353. [PMID: 36108912 DOI: 10.1016/j.wneu.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The literature on neurofibromatosis (NF) has never been systematically assessed using bibliometric analytic methodologies. We quantitatively analyzed the major trends and scientific output regarding NF, highlighting potential avenues for research. METHODS An Elsevier's Scopus database search was performed for all indexed studies related to NF from 1898 to 2021. Validated bibliometric parameters were analyzed using productivity, citation, and keyword analysis, including text mining, content analysis, and collaboration network mapping from inception to date on R 4.1.2. RESULTS Our search yielded 15,024 documents. Annual scientific production has grown at a compounded rate of 5.86%, with the largest occurring in 2021 (n = 626). Journals with the most publications on NF include the Journal of Medical Genetics (n = 117) and Neurology (n = 113). The topmost cited author was Gutmann DH (n = 295). The United States had the most international collaboration (n = 435; multiple country publications). Identification of citation classics revealed a shift in recent decades towards understanding genetic and molecular pathways of NF tumorigenesis. Macro-level and micro-level text mining revealed the top 20 genetic and molecular pathways, and syndromes, associated with NF. CONCLUSIONS Our study exemplifies a quantitative method for understanding the historical and current state of academic efforts regarding NF. There has been a shift of treatment strategies towards targeting specific pathways involved in tumorigenesis. We highlight the top 20 genetic and molecular pathways in the literature as well as the top 20 associated syndromes. This data is encouraging as increased research in molecular targeted therapies aimed at NF pathogenesis may allow advances in disease control.
Collapse
Affiliation(s)
- Sulaman Durrani
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - William Mualem
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ali Shoushtari
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Karim Rizwan Nathani
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
19
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Alnefaie N, Almutairi OT, Alturki AY, Bafaquh M. Bibliometric analysis of the top 100 most-cited articles in neurofibromatosis. Surg Neurol Int 2022; 13:282. [PMID: 35855179 PMCID: PMC9282785 DOI: 10.25259/sni_114_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Neurofibromatosis (NF) is an umbrella term that refers to three distinct disease entities: NF Type 1, Type 2, and schwannomatosis. Here, we reviewed the scientific performance and the most influential publications on NF.
Methods:
A keyword-based search was performed using the Scopus database. The top 100 articles were grouped based on NF types and the studied entities. The differences between the articles, authors, and journals were quantified based on certain parameters. Other parameters were collected for the complete citational analysis.
Results:
The top 100 articles were published between 1961 and 2020. The most trending period of research was in the 1990s and articles studying the clinical aspect and the underlying genetic correlation made up 84% of all articles from the list. The United States of America (USA) had the highest number of contributions (69 articles, 69%). The top institute of contribution to the list was the Howard Hughes Medical Institute, USA (14 articles, 14%). Author-based analysis reveals that the neurologist D. H. Gutmann from St. Louis Children’s Hospital, USA, was the most active and authored 11 articles (11%) on the list.
Conclusion:
The publication trends show that articles studying medical and surgical management were of little interest. The top 100 articles did not include any randomized control trials, and the highest level of evidence was obtained from reviews of pooled knowledge as well as population-based and longitudinal studies.
Collapse
|
21
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Abstract
Neurofibromatosis type (NF-1) is an autosomal dominant disorder characterized predominantly by neurocutaneous manifestations. Involvement of the gastrointestinal tract is uncommon but is associated with a significant risk of malignancy. There are a handful of case reports linking NF-1 with pancreatic neuroendocrine tumors; these include gastrin-secreting variants with the attendant Zollinger-Ellison syndrome. We present the case of a 52-year-old lady who presented with recurrent peptic ulceration and diarrhea. Serum gastrin levels were elevated and magnetic resonance imaging demonstrated the presence of a pancreatic lesion with multiple liver metastases. The lesion was moderately fludeoxyglucose avid on positron emission tomography-computed tomography. Endoscopic ultrasonography-guided sampling revealed the presence of synaptophysin positive neuroendocrine cells with positive gastrin immunostaining. A conservative approach was adopted, and the patient's symptoms improved on proton pump inhibitors. Zollinger-Ellison syndrome is an important condition, which should be kept in mind in the patient with NF-1 who presents with recurrent peptic ulceration and diarrhea. The emerging association between these 2 conditions is being examined on a cellular and immunohistochemical level.
Collapse
|
23
|
Hallan DR, Messner C, Daggubati LC, Sakya S, Thomas S, Rizk E. Evaluating the Evidence: Scientometric Analysis of Highly Cited Neurofibromatosis 1 Publications. Cureus 2022; 14:e23466. [PMID: 35481324 PMCID: PMC9034899 DOI: 10.7759/cureus.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
The study of Neurofibromatosis 1 (NF1) is progressing rapidly. This study aimed to identify historical trends in publications focusing on NF1, to find the top 100 most cited publications on this topic, and to evaluate their level of evidence. This study identifies historical trends in publication regarding NF1 with the aim of providing readers useful information about the areas of research being performed, an educational guide to facilitate novice researchers in conducting effective evidence-based medical research, and unique insight into developments and trends of NF 1 research. This study also evaluates the evidence of highly cited papers on NF1. A search of all databases and journals accessible within Elsevier's Scopus was performed on June 27th, 2020, using combinations of the Boolean queries "Neurofibromatosis 1," "Von Recklinghausen," and "NF1," which yielded 13,599 documents. The top 100 most-cited papers were identified, analyzed, and evaluated for level of evidence. Evidence was assessed using the GRADE guidelines. The top 100 most-cited articles span years 1963-2010 and are published in 50 different journals. The average number of citations per publication was 366.5 (range 189-1527). The most cited article is "Neurofibromatosis: Conference Statement" (Stumpf et al., 1988). In this study, the top 100 most-cited works in NF1 are identified, characterized, and analyzed. This study will serve as a historical point of reference for future research, a jumping point for those unfamiliar with the topic, and an educational foundation for future NF1 specialists and researchers.
Collapse
|
24
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
25
|
Castricum J, Tulen JHM, Taal W, Rietman AB, Elgersma Y. Attention and Motor Learning in Adult Patients with Neurofibromatosis Type 1. J Atten Disord 2022; 26:563-572. [PMID: 33978520 PMCID: PMC8987013 DOI: 10.1177/10870547211012035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that is associated with cognitive disabilities, including attention and motor learning problems. These disabilities have been extensively studied in children with NF1 but limited studies have been performed in adults. METHOD Attention, motor learning and intellectual performance were studied with neuropsychological tasks in 32 adults with NF1 and 32 controls. RESULTS The NF1 and control group performed similarly on attention and motor learning tasks, although controls had shorter reaction times than adults with NF1 during the motor learning task (t[60] = -2.20, p = .03). Measures of attention or motor learning were not significantly associated with reduced intellectual performance in NF1. CONCLUSION In contrast to many studies in children with NF1, our findings did not provide evidence for presence of attention or motor learning problems in adults with NF1 in neuropsychological tasks. Our observations may be of clinical importance to determine treatment focus in adults with NF1.
Collapse
Affiliation(s)
- Jesminne Castricum
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Joke H. M. Tulen
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Walter Taal
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - André B. Rietman
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands,Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Ype Elgersma
- Erasmus University Medical Center, Rotterdam, The Netherlands,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands,Ype Elgersma, Department of Clinical Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Long-term effects of pharmacological inhibition of Anaplastic lymphoma kinase in Neurofibromatosis 1 mutant mice. Behav Brain Res 2022; 423:113767. [DOI: 10.1016/j.bbr.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
27
|
Lin G, Wei H, Lai AHM, Tan ES, Lim JY, Cham B, Ling S, Jamuar SS, Tan EC. Novel Variants and Clinical Characteristics of 16 Patients from Southeast Asia with Genetic Variants in Neurofibromin-1. J Pediatr Genet 2021; 12:135-140. [PMID: 37090834 PMCID: PMC10118707 DOI: 10.1055/s-0041-1736457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
AbstractNeurofibromatosis type 1 (NF1) is one of the most common inherited disorders. It is caused by mutations in the neurofibromin-1 gene (NF1) and affects the formation and growth of nerve tissues. More than 3,600 pathogenic variants in the NF1 gene have been identified from patients with most of the germline variants are from the Western populations. We found 16 patients (15 Chinese and 1 Asian Indian) who had heterozygous variants in NF1 through targeted next-generation sequencing. There were 15 different variants: 4 frameshift, 4 nonsense, 5 missense, and 2 splice variants. One nonsense variant and three frameshift variants had never been reported in any population or patient database. Twelve of the 16 patients met the NF1 diagnostic criteria, and each was found to have a pathogenic or likely pathogenic variant. Three different missense variants of unknown significance were discovered in the other four patients who did not meet NF1 diagnostic criteria. Our findings add four novel variants to the list of genetic mutations linked to NF1's various clinical manifestations.
Collapse
Affiliation(s)
- Grace Lin
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| | - Heming Wei
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| | - Angeline H. M. Lai
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Ee-Shien Tan
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Jiin Ying Lim
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Breana Cham
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Simon Ling
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
- Department of Pediatrics, Neurology Service, KK Women's and Children's Hospital, Singapore
| | - Saumya S. Jamuar
- Department of Pediatrics, Genetics Service, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Paediatrics Academic Programme, Singapore
| |
Collapse
|
28
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Casey D, Demko S, Sinha A, Mishra-Kalyani PS, Shen YL, Khasar S, Goheer MA, Helms WS, Pan L, Xu Y, Fan J, Leong R, Liu J, Yang Y, Windsor K, Ou M, Stephens O, Oh B, Reaman GH, Nair A, Shord SS, Bhatnagar V, Daniels SR, Sickafuse S, Goldberg KB, Theoret MR, Pazdur R, Singh H. FDA Approval Summary: Selumetinib for Plexiform Neurofibroma. Clin Cancer Res 2021; 27:4142-4146. [PMID: 33712511 DOI: 10.1158/1078-0432.ccr-20-5032] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
On April 10, 2020, the FDA approved selumetinib (KOSELUGO, AstraZeneca) for the treatment of pediatric patients 2 years of age and older with neurofibromatosis type 1 who have symptomatic, inoperable plexiform neurofibromas. Approval was based on demonstration of a durable overall response rate per Response Evaluation in Neurofibromatosis and Schwannomatosis criteria and supported by observed clinical improvements in plexiform neurofibroma-related symptoms and functional impairments in 50 pediatric patients with inoperable plexiform neurofibromas in a single-arm, multicenter trial. The overall reponse rate per NCI investigator assessment was 66% (95% confidence interval, 51-79) with at least 12 months of follow-up. The median duration of response was not reached, and 82% of responding patients experienced duration of response ≥12 months. Clinical outcome assessment endpoints provided supportive efficacy data. Risks of selumetinib are consistent with MAPK (MEK) inhibitor class effects, including ocular, cardiac, musculoskeletal, gastrointestinal, and dermatologic toxicities. Safety was assessed across a pooled database of 74 pediatric patients with plexiform neurofibromas and supported by adult and pediatric selumetinib clinical trial data in cancer indications. The benefit-risk assessment for selumetinib in patients with inoperable plexiform neurofibromas was considered favorable.
Collapse
Affiliation(s)
- Denise Casey
- Office of Oncologic Diseases, FDA, Silver Spring, Maryland
| | - Suzanne Demko
- Office of Oncologic Diseases, FDA, Silver Spring, Maryland
| | - Arup Sinha
- Office of Biostatistics, FDA, Silver Spring, Maryland
| | | | - Yuan-Li Shen
- Office of Biostatistics, FDA, Silver Spring, Maryland
| | - Sachia Khasar
- Office of Oncologic Diseases, FDA, Silver Spring, Maryland
| | - M Anwar Goheer
- Office of Oncologic Diseases, FDA, Silver Spring, Maryland
| | | | - Lili Pan
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | - Yuan Xu
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | - Jianghong Fan
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | - Ruby Leong
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | - Jiang Liu
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | - Yuching Yang
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | | | - Mei Ou
- Office of Pharmaceutical Quality, FDA, Silver Spring, Maryland
| | - Olen Stephens
- Office of Pharmaceutical Quality, FDA, Silver Spring, Maryland
| | - Byeongtaek Oh
- Office of Pharmaceutical Quality, FDA, Silver Spring, Maryland
| | | | - Abhilasha Nair
- Oncology Center of Excellence, FDA, Silver Spring, Maryland
| | - Stacy S Shord
- Office of Clinical Pharmacology, FDA, Silver Spring, Maryland
| | | | - Selena R Daniels
- Division of Clinical Outcome Assessment, Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | | | | | - Marc R Theoret
- Oncology Center of Excellence, FDA, Silver Spring, Maryland
| | - Richard Pazdur
- Oncology Center of Excellence, FDA, Silver Spring, Maryland
| | - Harpreet Singh
- Office of Oncologic Diseases, FDA, Silver Spring, Maryland. .,Oncology Center of Excellence, FDA, Silver Spring, Maryland
| |
Collapse
|
30
|
Pepe F, Mininni C, Zambrotta E, Pepe G, La Rosa V, La Rosa R, Insalaco G, Monteleone MM. Neurofibromatosis and HIV infection in a pregnant woman. Clin Case Rep 2021; 9:e04686. [PMID: 34466247 PMCID: PMC8385255 DOI: 10.1002/ccr3.4686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Although pregnant neurofibromatosis or HIV patient established a high-risk group, this report demonstrated that a careful planning and widespread valuations should be associated with a favorable prognosis for both mother and newborn.
Collapse
Affiliation(s)
- Franco Pepe
- Ospedale San MarcoUOC Ostetricia e GinecologiaCataniaItaly
| | | | | | - Gabriele Pepe
- Doctor of Political Science and Health EconomicsCataniaItaly
| | - Valeria La Rosa
- Department of Anesthesia and Intensive CarePoliclinico Universitario “G. Rodolico”CataniaItaly
| | - Rosario La Rosa
- UOC Malattie Infettive, Ospedale San Marco, CataniaUniversity of CataniaCataniaCataniaItaly
| | | | | |
Collapse
|
31
|
Krenik D, Weiss JB, Raber J. Role of the parental NF1 carrier in effects of pharmacological inhibition of anaplastic lymphoma kinase in Neurofibromatosis 1 mutant mice. Brain Res 2021; 1769:147594. [PMID: 34339711 DOI: 10.1016/j.brainres.2021.147594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis type 1 (NF1), a genetically determined neurodevelopmental disorder and tumor syndrome, is associated with cognitive impairments, including in executive function and sleep-related problems. Consistent with the human data, NF1 heterozygous (Het) mice show impaired spatial learning and memory in the water maze and extinction of contextual fear memory. It is not clear whether neurological phenotypes might depend on the parental carrier. In this study, we compared the behavioral and cognitive performance of NF1 Het and wild-type litter mates with either the father (PC) or the mother (MC) as the NF1 carrier on a F1 C57BL/66/129SvJ background. The behavioral and cognitive phenotypes and responsiveness to Alk inhibition in heterozygous NF1 offspring depended on whether the parental carrier was maternal or paternal. Alk inhibition (20 mg/kg) increased activity levels during the dark period in NF1 Het PC, but not MC, mice. In the water maze, NF1 Het PC, but not MC, mice showed reduced cognitive flexibility and impaired ability to locate the third hidden platform location, which was improved by Alk inhibition (3.6 mg/kg). Consistent with reduced cognitive flexibility, WT, but not NF1, mice showed better performance in the third than second water maze probe trial. Finally, Alk inhibition (10 mg/kg) increased baseline activity of NF1 MC, but not PC, mice during the fear conditioning test. Thus, the effective dose depends on the behavioral test and genotype but indicates that in NF1 patients cognitive flexibility might be particularly sensitive to Alk inhibition.
Collapse
Affiliation(s)
- Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joseph B Weiss
- Cardiovascular Institute and Warren Alpert School of Medicine at Brown University Providence, RI 02840, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA; College of Pharmacy, Oregon State University, Corvallis, Oregon, OR 97331, USA.
| |
Collapse
|
32
|
N Abdel-Aziz N, Y El-Kamah G, A Khairat R, R Mohamed H, Z Gad Y, El-Ghor AM, Amr KS. Mutational spectrum of NF1 gene in 24 unrelated Egyptian families with neurofibromatosis type 1. Mol Genet Genomic Med 2021; 9:e1631. [PMID: 34080803 PMCID: PMC8683698 DOI: 10.1002/mgg3.1631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/19/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1; OMIM# 162200) is a common autosomal dominant genetic disease [incidence: ~1:3500]. In 95% of cases, clinical diagnosis of the disease is based on the presence of at least two of the seven National Institute of Health diagnostic criteria. The molecular pathology underlying this disorder entails mutation in the NF1 gene. The aim of this study was to investigate clinical and molecular characteristics of a cohort of Egyptian NF1 patients. Method This study included 35 clinically diagnosed NF1 patients descending from 25 unrelated families. Patients had ≥2 NIH diagnostic criteria. Examination of NF1 gene was done through direct cDNA sequencing of multiple overlapping fragments. This was supplemented by NF1 multiple ligation dependent probe amplification (MLPA) analysis of leucocytic DNA. Results The clinical presentations encompassed, café‐au‐lait spots in 100% of probands, freckling (52%), neurofibromas (20%), Lisch nodules of the iris (12%), optic pathway glioma (8%), typical skeletal disorders (20%), and positive family history (32%). Mutations could be detected in 24 families (96%). Eight mutations (33%) were novel. Conclusion This study illustrates the underlying molecular pathology among Egyptian NF1 patients for the first time. It also reports on 8 novel mutation expanding pathogenic mutational spectra in the NF1 gene.
Collapse
Affiliation(s)
- Nahla N Abdel-Aziz
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ghada Y El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Rabab A Khairat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Hanan R Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Yehia Z Gad
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Akmal M El-Ghor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. RECENT FINDINGS Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. SUMMARY PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
34
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
35
|
Metalloproteinase 1 downregulation in neurofibromatosis 1: Therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 2021; 12:513. [PMID: 34011935 PMCID: PMC8134427 DOI: 10.1038/s41419-021-03802-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Neurofibromatosis type 1 is an autosomal dominant genetic disorder caused by mutation in the neurofibromin 1 (NF1) gene. Its hallmarks are cutaneous findings including neurofibromas, benign peripheral nerve sheath tumors. We analyzed the collagen and matrix metalloproteinase 1 (MMP1) expression in Neurofibromatosis 1 cutaneous neurofibroma and found excessive expression of collagen and reduced expression of MMP1. To identify new therapeutic drugs for neurofibroma, we analyzed phosphorylation of components of the Ras pathway, which underlies NF1 regulation, and applied treatments to block this pathway (PD184352, U0126, and rapamycin) and lysosomal processes (chloroquine (CQ), hydroxychloroquine (HCQ), and bafilomycin A (BafA)) in cultured Neurofibromatosis 1 fibroblasts. We found that downregulation of the MMP1 protein was a key abnormal feature in the neurofibromatosis 1 fibroblasts and that the decreased MMP1 was restored by the lysosomal blockers CQ and HCQ, but not by the blockers of the Ras pathway. Moreover, the MMP1-upregulating activity of those lysosomal blockers was dependent on aryl hydrocarbon receptor (AHR) activation and ERK phosphorylation. Our findings suggest that lysosomal blockers are potential candidates for the treatment of Neurofibromatosis 1 neurofibroma.
Collapse
|
36
|
Coincidental Expression of Classic Hodgkin Lymphoma and Neurofibromatosis Type I and Literature Review. J Pediatr Hematol Oncol 2021; 43:e535-e538. [PMID: 32366782 DOI: 10.1097/mph.0000000000001811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic disorder with an incidence of 1 in 2600 to 3000 individuals. It is a clinical diagnosis characterized by café-au-lait macules, neurofibromas, and axillary and/or groin freckling. Because of genetic mutations in the NF1 gene affecting the Ras/mitogen-activated protein kinase pathway, there is also risk of associated soft tissue sarcomas and hematologic malignancies. However, reports of classic Hodgkin lymphoma in patients with NF1 are sparse. We report an adolescent with NF1 who developed classic Hodgkin lymphoma. Although there is an unclear association between mutations in the NF1 gene and classic Hodgkin lymphoma, further studies are warranted.
Collapse
|
37
|
Blake KS, Choi J, Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cell Mol Life Sci 2021; 78:2585-2606. [PMID: 33582841 PMCID: PMC8005480 DOI: 10.1007/s00018-020-03717-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of "last resort" there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - JooHee Choi
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
38
|
Morbidoni V, Baschiera E, Forzan M, Fumini V, Ali DS, Giorgi G, Buson L, Desbats MA, Cassina M, Clementi M, Salviati L, Trevisson E. Hybrid Minigene Assay: An Efficient Tool to Characterize mRNA Splicing Profiles of NF1 Variants. Cancers (Basel) 2021; 13:cancers13050999. [PMID: 33673681 PMCID: PMC7957615 DOI: 10.3390/cancers13050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by heterozygous loss of function mutations in the NF1 gene. Although patients are diagnosed according to clinical criteria and few genotype-phenotype correlations are known, molecular analysis remains important. NF1 displays allelic heterogeneity, with a high proportion of variants affecting splicing, including deep intronic alleles and changes outside the canonical splice sites, making validation problematic. Next Generation Sequencing (NGS) technologies integrated with multiplex ligation-dependent probe amplification (MLPA) have largely overcome RNA-based techniques but do not detect splicing defects. A rapid minigene-based system was set up to test the effects of NF1 variants on splicing. We investigated 29 intronic and exonic NF1 variants identified in patients during the diagnostic process. The minigene assay showed the coexistence of multiple mechanisms of splicing alterations for seven variants. A leaky effect on splicing was documented in one de novo substitution detected in a sporadic patient with a specific phenotype without neurofibromas. Our splicing assay proved to be a reliable and fast method to validate novel NF1 variants potentially affecting splicing and to detect hypomorphic effects that might have phenotypic consequences, avoiding the requirement of patient's RNA.
Collapse
Affiliation(s)
- Valeria Morbidoni
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Monica Forzan
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Valentina Fumini
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Dario Seif Ali
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Gianpietro Giorgi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Lisa Buson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
- Correspondence: ; Tel.: + 39-(04)-9821-1402
| |
Collapse
|
39
|
Holscher I, van den Berg TJ, Dreijerink KMA, Engelsman AF, Nieveen van Dijkum EJM. Recurrence Rate of Sporadic Pheochromocytomas After Curative Adrenalectomy: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2021; 106:588-597. [PMID: 33125073 DOI: 10.1210/clinem/dgaa794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Evidence on follow-up duration for patients with sporadic pheochromocytomas is absent, and current guidelines of the European Society of Endocrinology, American Association of Clinical Endocrinologists and Endocrine Surgeons, and the Endocrine Society are ambiguous about the appropriate duration of follow-up. The aim of this systematic review and meta-analysis is to evaluate the recurrence rate of sporadic pheochromocytomas after curative adrenalectomy. MATERIALS AND METHODS A literature search in PubMed, Embase, and the Cochrane Library was performed. A study was eligible if it included a clear report on the number of sporadic patients, recurrence rate, and follow-up duration. Studies with an inclusion period before 1990, <2 years of follow-up, <10 patients, and unclear data on the sporadic nature of pheochromocytomas were excluded. A meta-analysis on recurrence was performed provided that the heterogeneity was low (I2 < 25%) or intermediate (I2 26-75%). Hozo's method was used to calculate weighted mean follow-up duration and weighted time to recurrence with combined standard deviations (SDs). RESULTS A total of 13 studies, including 430 patients, were included in the synthesis. The meta-analysis results describe a pooled recurrence rate after curative surgery of 3% (95% confidence interval: 2-6%, I2 = 0%), with a weighted mean time to recurrence of 49.4 months (SD = 30.7) and a weighted mean follow-up period of 77.3 months (SD = 32.2). CONCLUSIONS This meta-analysis shows a very low recurrence rate of 3%. Prospective studies, including economical and health effects of limited follow-up strategies for patients with truly sporadic pheochromocytomas should be considered.
Collapse
Affiliation(s)
- Isabelle Holscher
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, AZ, The Netherlands
| | - Tijs J van den Berg
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Amsterdam, AZ, The Netherlands
| | - Koen M A Dreijerink
- Amsterdam UMC, VU University Medical Center, Department of Endocrinology, Amsterdam, HV, The Netherlands
| | - Anton F Engelsman
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, HV, The Netherlands
| | - Els J M Nieveen van Dijkum
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, AZ, The Netherlands
- ENETS Center of Excellence, Amsterdam UMC, University of Amsterdam, Amsterdam, AZ, The Netherlands
| |
Collapse
|
40
|
Evaluation of clinical findings and neurofibromatosis type 1 bright objects on brain magnetic resonance images of 60 Turkish patients with NF1 gene variants. Neurol Sci 2021; 42:2045-2057. [PMID: 33443663 DOI: 10.1007/s10072-020-04988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene. This retrospective study aims to evaluate the clinical manifestations and brain magnetic resonance images (MRI) analysis in 60 genetically confirmed NF1 patients. The results of next-generation sequencing (NGS), Sanger sequencing, and MLPA of NF1 gene were evaluated. A total of 54 different variants were identified. Fourteen out of them were novel variants (25.9%). Patients who complied with NIH criteria had most frequently frameshift variants (11/32 patients), and those with only CALMs had missense variants (9/28 patients). Neurofibromatosis type 1 bright objects (NBOs) on T2-weighted MRI were detected in 42 patients (42/56; 75%). These brain lesions were detected mostly in basal ganglia and in cerebellar vermis. NBOs were detected more in the patients who complied with NIH criteria (80.6%) compared to those who were only CALMs (68%). While frameshift variants (33.3%) were the most common type variants in the patients who had NBOs, the most common variants were splicing (35.7%) and missense (35.7%) variants in the patients whose MRIs were normal. Frameshift variants (11/28 patients; 39.3%) were the most common in the patients with more than one brain locus involvement. Therefore, we consider that frameshift variants may be associated with increased incidence of NBOs and involvement of more than one brain locus. In addition, NBOs may occur less frequently in the patients with splicing variants. To our knowledge, this is the first study evaluated the relationship between NF1 gene variants and NBOs. Future studies may help us understand the etiology of NBOs.
Collapse
|
41
|
Cai S, Tian Y, Qiu G, Zhang J, Shen J, Zhao H, Zhao Y. Neurofibromatosis Type 1 with Severe Dystrophic Kyphosis: Surgical Treatment and Prognostic Analysis of 27 Patients. Orthop Surg 2020; 12:1923-1940. [PMID: 33184974 PMCID: PMC7767777 DOI: 10.1111/os.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/06/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The aim of the present study was to explore the surgical treatment and prognosis of 27 cases of neurofibromatosis type 1 with severe dystrophic kyphosis. METHODS We performed surgical treatment for scoliosis and kyphosis caused by dystrophic curves at Peking Union Medical College Hospital, Beijing, China from December 2015 to December 2017. The study included 21 patients with moderate to severe kyphosis, 12 males and 9 females, with an average age of 14.95 ± 6.05 years. All patients had kyphosis angles greater than 70° and had more than four skeletal developmental defects. A total of 6 patients with severe kyphosis, 2 males and 4 females, with an average age of 12.5 years, had more than five skeletal developmental defects with a kyphosis angle greater than 90° or a lumbar kyphosis angle greater than 40°. According to the patient's own situation, we adopted a low-grade surgery scheme (grades 1 or 2) or a high-grade surgery scheme (grades 3-6). The low-grade surgery was mainly lower articular surface resection or pontodestomy, and the high-grade surgery was mainly apical vertebral body or upper discectomy. All patients were followed up to determine their prognosis. RESULTS Statistical analysis showed that there was a significant difference in preoperative and postoperative scores between the two groups (P < 0.05), and scoliosis correction showed that surgical treatment had a significant effect on scoliosis kyphosis. The mean follow-up time was 66.7 months. Follow-up results showed that 50% of complications after internal fixation were related to high-level surgery. Complications included displacement of the titanium cage, removal of the lamina hook, formation of pseudoarthrosis, and internal fixation failure (with a rate of 7.7%-14.3%). In contrast, there were no associated symptoms for low-grade surgery. In addition, the results showed that gender, age, extent of resection, height, and body mass index had no significant effect on preoperative, postoperative, and prognostic indicators of patients (P > 0.05). CONCLUSION Early identification of dysplastic scoliosis-related deformities plays an important role in surgical planning and prognosis, and low-level surgical procedures are more favorable for patients' prognosis.
Collapse
Affiliation(s)
- Siyi Cai
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Ye Tian
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Guixing Qiu
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Jianguo Zhang
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Jianxiong Shen
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Hong Zhao
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| | - Yu Zhao
- Department of OrthopaedicsPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
42
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
43
|
Tao J, Sun D, Dong L, Zhu H, Hou H. Advancement in research and therapy of NF1 mutant malignant tumors. Cancer Cell Int 2020; 20:492. [PMID: 33061844 PMCID: PMC7547409 DOI: 10.1186/s12935-020-01570-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The NF1 gene encodes neurofibromin, which is one of the primary negative regulatory factors of the Ras protein. Neurofibromin stimulates the GTPase activity of Ras to convert it from an active GTP-bound form to its inactive GDP-bound form through its GTPase activating protein-related domain (GRD). Therefore, neurofibromin serves as a shutdown signal for all vertebrate RAS GTPases. NF1 mutations cause a resultant decrease in neurofibromin expression, which has been detected in many human malignancies, including NSCLC, breast cancer and so on. NF1 mutations are associated with the underlying mechanisms of treatment resistance discovered in multiple malignancies. This paper reviews the possible mechanisms of NF1 mutation-induced therapeutic resistance to chemotherapy, endocrine therapy and targeted therapy in malignancies. Then, we further discuss advancements in targeted therapy for NF1-mutated malignant tumors. In addition, therapies targeting the downstream molecules of NF1 might be potential novel strategies for the treatment of advanced malignancies.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Dantong Sun
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Lina Dong
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Hua Zhu
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Helei Hou
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| |
Collapse
|
44
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
45
|
Craniofacial bone alterations in patients with neurofibromatosis type 1. Childs Nerv Syst 2020; 36:2391-2399. [PMID: 32583151 DOI: 10.1007/s00381-020-04749-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
Osseous manifestations of neurofibromatosis 1 (NF-1) occur in a minority of the affected subjects but may be because of significant clinical impairment. Typically, they involve the long bones, commonly the tibia and the fibula, the vertebrae, and the sphenoid wing. The pathogenesis of NF-1 focal osseous lesions and its possible relationships with other osseous NF-1 anomalies leading to short stature are still unknown, though it is likely that they depend on a common mechanism acting in a specific subgroup of NF-1 patients. Indeed, NF-1 gene product, neurofibromin, is expressed in all the cells that participate to bone growth: osteoblasts, osteoclasts, chondrocytes, fibroblasts, and vascular endothelial cells. Absent or low content of neurofibromin may be responsible for the osseous manifestations associated to NF-1. Among the focal NF-1 osseous anomalies, the agenesis of the sphenoid wing is of a particular interest to the neurosurgeon because of its progressive course that can be counteracted only by a surgical intervention. The sphenoid wing agenesis is regarded as a dysplasia, which is a primary bone pathology. However, its clinical progression is related to a variety of causes, commonly the development of an intraorbital plexiform neurofibroma or the extracranial protrusion of temporal lobe parenchyma and its coverings. Thus, the cranial bone defect resulting by the primary bone dysplasia is progressively accentuated by the orbit remodeling caused by the necessity of accommodating the mass effect exerted by the growing tumor or the progression of the herniated intracranial content. The aim of this paper is to review the neurosurgical and craniofacial surgical modalities to prevent the further progression of the disease by "reconstructing" the normal relationship of the orbit and the skull.
Collapse
|
46
|
Oppel F, Ki DH, Zimmerman MW, Ross KN, Tao T, Shi H, He S, Aster JC, Look AT. suz12 inactivation in p53- and nf1-deficient zebrafish accelerates the onset of malignant peripheral nerve sheath tumors and expands the spectrum of tumor types. Dis Model Mech 2020; 13:dmm.042341. [PMID: 32651197 PMCID: PMC7473648 DOI: 10.1242/dmm.042341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator of gene expression that possesses histone methyltransferase activity. PRC2 trimethylates lysine 27 of histone H3 proteins (H3K27me3) as a chromatin modification associated with repressed transcription of genes frequently involved in cell proliferation or self-renewal. Loss-of-function mutations in the PRC2 core subunit SUZ12 have been identified in a variety of tumors, including malignant peripheral nerve sheath tumors (MPNSTs). To determine the consequences of SUZ12 loss in the pathogenesis of MPNST and other cancers, we used CRISPR-Cas9 to disrupt the open reading frame of each of two orthologous suz12 genes in zebrafish: suz12a and suz12b. We generated these knockout alleles in the germline of our previously described p53 (also known as tp53)- and nf1-deficient zebrafish model of MPNSTs. Loss of suz12 significantly accelerated the onset and increased the penetrance of MPNSTs compared to that in control zebrafish. Moreover, in suz12-deficient zebrafish, we detected additional types of tumors besides MPNSTs, including leukemia with histological characteristics of lymphoid malignancies, soft tissue sarcoma and pancreatic adenocarcinoma, which were not detected in p53/nf1-deficient control fish, and are also contained in the human spectrum of SUZ12-deficient malignancies identified in the AACR Genie database. The suz12-knockout tumors displayed reduced or abolished H3K27me3 epigenetic marks and upregulation of gene sets reported to be targeted by PRC2. Thus, these zebrafish lines with inactivation of suz12 in combination with loss of p53/nf1 provide a model of human MPNSTs and multiple other tumor types, which will be useful for mechanistic studies of molecular pathogenesis and targeted therapy with small molecule inhibitors. Summary: In p53- and nf1-deficient zebrafish, onset of MPNSTs, as well as diverse other tumors, is accelerated by loss of the suz12 tumor suppressor, accompanied by global reduction in H3K27me3 marks and increased Ras-Mapk signaling.
Collapse
Affiliation(s)
- Felix Oppel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dong H Ki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth N Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
The Role of Neuro-Ophthalmologists in the Care of Patients With Neurofibromatosis Type 2. J Neuroophthalmol 2020; 40 Suppl 1:S51-S56. [PMID: 32796346 DOI: 10.1097/wno.0000000000001008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofibromatosis type 2 (NF2) is a rare genetic disorder, affecting the central nervous system and leading to various degrees of disability. Its hallmark is bilateral vestibular schwannomas that invariably lead to progressive hearing loss. Specific ophthalmic abnormalities in patients with NF2 may help to establish an early diagnosis. These include juvenile cataract, epiretinal membrane, combined hamartoma of the retina and the retinal pigment epithelium, optic disc glioma, and optic nerve sheath meningioma. In addition, intracranial tumors may produce a variety of neuro-ophthalmic abnormalities that have the potential to impair visual function, such as postpapilledema optic atrophy, compression of the visual pathways, keratopathy, ocular motor cranial nerve palsies, and amblyopia. Care of NF2 patients is best provided by interdisciplinary medical teams including a neuro-ophthalmologist.
Collapse
|
48
|
Cui XW, Ren JY, Gu YH, Li QF, Wang ZC. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr Gene Ther 2020; 20:100-108. [PMID: 32767931 DOI: 10.2174/1566523220666200806111451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.
Collapse
Affiliation(s)
- Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
49
|
Edris Sharif Rahmani, Azarpara H, Abazari MF, Mohajeri MR, Nasimi M, Ghorbani R, Azizpour A, Rahimi H. Novel Mutation C.7348C>T in NF1 Gene Identified by Whole-Exome Sequencing in Patient with Overlapping Clinical Symptoms of Neurofibromatosis Type 1 and Bannayan–Riley–Ruvalcaba Syndrome. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Bianchessi D, Ibba MC, Saletti V, Blasa S, Langella T, Paterra R, Cagnoli GA, Melloni G, Scuvera G, Natacci F, Cesaretti C, Finocchiaro G, Eoli M. Simultaneous Detection of NF1, SPRED1, LZTR1, and NF2 Gene Mutations by Targeted NGS in an Italian Cohort of Suspected NF1 Patients. Genes (Basel) 2020; 11:genes11060671. [PMID: 32575496 PMCID: PMC7349720 DOI: 10.3390/genes11060671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) displays overlapping phenotypes with other neurocutaneous diseases such as Legius Syndrome. Here, we present results obtained using a next generation sequencing (NGS) panel including NF1, NF2, SPRED1, SMARCB1, and LZTR1 genes on Ion Torrent. Together with NGS, the Multiplex Ligation-Dependent Probe Amplification Analysis (MLPA) method was performed to rule out large deletions/duplications in NF1 gene; we validated the MLPA/NGS approach using Sanger sequencing on DNA or RNA of both positive and negative samples. In our cohort, a pathogenic variant was found in 175 patients; the pathogenic variant was observed in NF1 gene in 168 cases. A SPRED1 pathogenic variant was also found in one child and in a one year old boy, both NF2 and LZTR1 pathogenic variants were observed; in addition, we identified five LZTR1 pathogenic variants in three children and two adults. Six NF1 pathogenic variants, that the NGS analysis failed to identify, were detected on RNA by Sanger. NGS allows the identification of novel mutations in five genes in the same sequencing run, permitting unambiguous recognition of disorders with overlapping phenotypes with NF1 and facilitating genetic counseling and a personalized follow-up.
Collapse
Affiliation(s)
- Donatella Bianchessi
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Maria Cristina Ibba
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (V.S.); (G.M.)
| | - Stefania Blasa
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Tiziana Langella
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 20133 Milan, Italy
| | - Rosina Paterra
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Giulia Anna Cagnoli
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Giulia Melloni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (V.S.); (G.M.)
| | - Giulietta Scuvera
- Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Gaetano Finocchiaro
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
- Correspondence:
| |
Collapse
|