1
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Simpkin AJ, Caballero I, McNicholas S, Stevenson K, Jiménez E, Sánchez Rodríguez F, Fando M, Uski V, Ballard C, Chojnowski G, Lebedev A, Krissinel E, Usón I, Rigden DJ, Keegan RM. Predicted models and CCP4. Acta Crystallogr D Struct Biol 2023; 79:806-819. [PMID: 37594303 PMCID: PMC10478639 DOI: 10.1107/s2059798323006289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Stuart McNicholas
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Kyle Stevenson
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Maria Fando
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ville Uski
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Charles Ballard
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrey Lebedev
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Eugene Krissinel
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
3
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
4
|
Simpkin AJ, Winn MD, Rigden DJ, Keegan RM. Redeployment of automated MrBUMP search-model identification for map fitting in cryo-EM. Acta Crystallogr D Struct Biol 2021; 77:1378-1385. [PMID: 34726166 PMCID: PMC8561737 DOI: 10.1107/s2059798321009165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
In crystallography, the phase problem can often be addressed by the careful preparation of molecular-replacement search models. This has led to the development of pipelines such as MrBUMP that can automatically identify homologous proteins from an input sequence and edit them to focus on the areas that are most conserved. Many of these approaches can be applied directly to cryo-EM to help discover, prepare and correctly place models (here called cryo-EM search models) into electrostatic potential maps. This can significantly reduce the amount of manual model building that is required for structure determination. Here, MrBUMP is repurposed to fit automatically obtained PDB-derived chains and domains into cryo-EM maps. MrBUMP was successfully able to identify and place cryo-EM search models across a range of resolutions. Methods such as map segmentation are also explored as potential routes to improved performance. Map segmentation was also found to improve the effectiveness of the pipeline for higher resolution (<8 Å) data sets.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martyn D. Winn
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
5
|
Youkharibache P. Topological and Structural Plasticity of the Single Ig Fold and the Double Ig Fold Present in CD19. Biomolecules 2021; 11:biom11091290. [PMID: 34572502 PMCID: PMC8470474 DOI: 10.3390/biom11091290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
The Ig fold has had a remarkable success in vertebrate evolution, with a presence in over 2% of human genes. The Ig fold is not just the elementary structural domain of antibodies and TCRs, it is also at the heart of a staggering 30% of immunologic cell surface receptors, making it a major orchestrator of cell–cell interactions. While BCRs, TCRs, and numerous Ig-based cell surface receptors form homo- or heterodimers on the same cell surface (in cis), many of them interface as ligand-receptors (checkpoints) on interacting cells (in trans) through their Ig domains. New Ig-Ig interfaces are still being discovered between Ig-based cell surface receptors, even in well-known families such as B7. What is largely ignored, however, is that the Ig fold itself is pseudosymmetric, a property that makes the Ig domain a versatile self-associative 3D structure and may, in part, explain its success in evolution, especially through its ability to bind in cis or in trans in the context of cell surface receptor–ligand interactions. In this paper, we review the Ig domains’ tertiary and quaternary pseudosymmetries, with particular attention to the newly identified double Ig fold in the solved CD19 molecular structure to highlight the underlying fundamental folding elements of Ig domains, i.e., Ig protodomains. This pseudosymmetric property of Ig domains gives us a decoding frame of reference to understand the fold, relate all Ig domain forms, single or double, and suggest new protein engineering avenues.
Collapse
|
6
|
Sánchez Rodríguez F, Simpkin AJ, Davies OR, Keegan RM, Rigden DJ. Helical ensembles outperform ideal helices in molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:962-970. [PMID: 33021498 PMCID: PMC7543657 DOI: 10.1107/s205979832001133x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 03/21/2023]
Abstract
Helical ensembles solve more structures by MR with AMPLE than do ideal helices and at no greater CPU cost. The conventional approach in molecular replacement is the use of a related structure as a search model. However, this is not always possible as the availability of such structures can be scarce for poorly characterized families of proteins. In these cases, alternative approaches can be explored, such as the use of small ideal fragments that share high, albeit local, structural similarity with the unknown protein. Earlier versions of AMPLE enabled the trialling of a library of ideal helices, which worked well for largely helical proteins at suitable resolutions. Here, the performance of libraries of helical ensembles created by clustering helical segments is explored. The impacts of different B-factor treatments and different degrees of structural heterogeneity are explored. A 30% increase in the number of solutions obtained by AMPLE was observed when using this new set of ensembles compared with the performance with ideal helices. The boost in performance was notable across three different fold classes: transmembrane, globular and coiled-coil structures. Furthermore, the increased effectiveness of these ensembles was coupled to a reduction in the time required by AMPLE to reach a solution. AMPLE users can now take full advantage of this new library of search models by activating the ‘helical ensembles’ mode.
Collapse
Affiliation(s)
- Filomeno Sánchez Rodríguez
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J Simpkin
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ronan M Keegan
- UKRI-STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel J Rigden
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
7
|
Sun X, Tie HC, Chen B, Lu L. Glycans function as a Golgi export signal to promote the constitutive exocytic trafficking. J Biol Chem 2020; 295:14750-14762. [PMID: 32826314 PMCID: PMC7586228 DOI: 10.1074/jbc.ra120.014476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Indexed: 11/15/2022] Open
Abstract
Most proteins in the secretory pathway are glycosylated. However, the role of glycans in membrane trafficking is still unclear. Here, we discovered that transmembrane secretory cargos, such as interleukin 2 receptor α subunit or Tac, transferrin receptor, and cluster of differentiation 8a, unexpectedly displayed substantial Golgi localization when their O-glycosylation was compromised. By quantitatively measuring their Golgi residence times, we found that the observed Golgi localization of O-glycan–deficient cargos is due to their slow Golgi export. Using a superresolution microscopy method that we previously developed, we revealed that O-glycan–deficient Tac chimeras localize at the interior of the trans-Golgi cisternae. O-Glycans were observed to be both necessary and sufficient for the efficient Golgi export of Tac chimeras. By sequentially introducing O-glycosylation sites to ST6GAL1, we demonstrated that O-glycan's effect on Golgi export is probably additive. Finally, the finding that N-glycosylated GFP substantially reduces the Golgi residence time of a Tac chimera suggests that N-glycans might have a similar effect. Therefore, both O- and N-glycans might function as a generic Golgi export signal at the trans-Golgi to promote the constitutive exocytic trafficking.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
8
|
Schäfer D, Henze J, Pfeifer R, Schleicher A, Brauner J, Mockel-Tenbrinck N, Barth C, Gudert D, Al Rawashdeh W, Johnston ICD, Hardt O. A Novel Siglec-4 Derived Spacer Improves the Functionality of CAR T Cells Against Membrane-Proximal Epitopes. Front Immunol 2020; 11:1704. [PMID: 32849600 PMCID: PMC7426717 DOI: 10.3389/fimmu.2020.01704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A domain that is often neglected in the assessment of chimeric antigen receptor (CAR) functionality is the extracellular spacer module. However, several studies have elucidated that membrane proximal epitopes are best targeted through CARs comprising long spacers, while short spacer CARs exhibit highest activity on distal epitopes. This finding can be explained by the requirement to have an optimal distance between the effector T cell and target cell. Commonly used long spacer domains are the CH2-CH3 domains of IgG molecules. However, CARs containing these spacers generally show inferior in vivo efficacy in mouse models compared to their observed in vitro activity, which is linked to unspecific Fcγ-Receptor binding and can be abolished by mutating the respective regions. Here, we first assessed a CAR therapy targeting membrane proximal CD20 using such a modified long IgG1 spacer. However, despite these mutations, this construct failed to unfold its observed in vitro cytotoxic potential in an in vivo model, while a shorter but less structured CD8α spacer CAR showed complete tumor clearance. Given the shortage of well-described long spacer domains with a favorable functionality profile, we designed a novel class of CAR spacers with similar attributes to IgG spacers but without unspecific off-target binding, derived from the Sialic acid-binding immunoglobulin-type lectins (Siglecs). Of five constructs tested, a Siglec-4 derived spacer showed highest cytotoxic potential and similar performance to a CD8α spacer in a CD20 specific CAR setting. In a pancreatic ductal adenocarcinoma model, a Siglec-4 spacer CAR targeting a membrane proximal (TSPAN8) epitope was efficiently engaged in vitro, while a membrane distal (CD66c) epitope did not activate the T cell. Transfer of the TSPAN8 specific Siglec-4 spacer CAR to an in vivo setting maintained the excellent tumor killing characteristics being indistinguishable from a TSPAN8 CD8α spacer CAR while outperforming an IgG4 long spacer CAR and, at the same time, showing an advantageous central memory CAR T cell phenotype with lower release of inflammatory cytokines. In summary, we developed a novel spacer that combines cytotoxic potential with an advantageous T cell and cytokine release phenotype, which make this an interesting candidate for future clinical applications.
Collapse
Affiliation(s)
- Daniel Schäfer
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Janina Henze
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anna Schleicher
- Faculty of Chemistry and Biosciences, Karlsruher Institute of Technology, Karlsruhe, Germany
| | - Janina Brauner
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Carola Barth
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Daniela Gudert
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Ian C D Johnston
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Hardt
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
9
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
10
|
Yaparla A, Reeves P, Grayfer L. Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. Front Immunol 2020; 10:3015. [PMID: 32038608 PMCID: PMC6987381 DOI: 10.3389/fimmu.2019.03015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Phillip Reeves
- School Without Walls High School, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
11
|
Simpkin AJ, Simkovic F, Thomas JMH, Savko M, Lebedev A, Uski V, Ballard CC, Wojdyr M, Shepard W, Rigden DJ, Keegan RM. Using Phaser and ensembles to improve the performance of SIMBAD. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1-8. [PMID: 31909738 PMCID: PMC6939438 DOI: 10.1107/s2059798319015031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023]
Abstract
The conventional approach to search-model identification in molecular replacement (MR) is to screen a database of known structures using the target sequence. However, this strategy is not always effective, for example when the relationship between sequence and structural similarity fails or when the crystal contents are not those expected. An alternative approach is to identify suitable search models directly from the experimental data. SIMBAD is a sequence-independent MR pipeline that uses either a crystal lattice search or MR functions to directly locate suitable search models from databases. The previous version of SIMBAD used the fast AMoRe rotation-function search. Here, a new version of SIMBAD which makes use of Phaser and its likelihood scoring to improve the sensitivity of the pipeline is presented. It is shown that the additional compute time potentially required by the more sophisticated scoring is counterbalanced by the greater sensitivity, allowing more cases to trigger early-termination criteria, rather than running to completion. Using Phaser solved 17 out of 25 test cases in comparison to the ten solved with AMoRe, and it is shown that use of ensemble search models produces additional performance benefits.
Collapse
Affiliation(s)
- Adam J Simpkin
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Jens M H Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Andrey Lebedev
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Charles C Ballard
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | | | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan M Keegan
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
12
|
Simpkin AJ, Thomas JMH, Simkovic F, Keegan RM, Rigden DJ. Molecular replacement using structure predictions from databases. Acta Crystallogr D Struct Biol 2019; 75:1051-1062. [PMID: 31793899 PMCID: PMC6889911 DOI: 10.1107/s2059798319013962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023] Open
Abstract
Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Where the lack of a suitable homologue precludes conventional MR, one option is to predict the target structure using bioinformatics. Such modelling, in the absence of homologous templates, is called ab initio or de novo modelling. Recently, the accuracy of such models has improved significantly as a result of the availability, in many cases, of residue-contact predictions derived from evolutionary covariance analysis. Covariance-assisted ab initio models representing structurally uncharacterized Pfam families are now available on a large scale in databases, potentially representing a valuable and easily accessible supplement to the PDB as a source of search models. Here, the unconventional MR pipeline AMPLE is employed to explore the value of structure predictions in the GREMLIN and PconsFam databases. It was tested whether these deposited predictions, processed in various ways, could solve the structures of PDB entries that were subsequently deposited. The results were encouraging: nine of 27 GREMLIN cases were solved, covering target lengths of 109-355 residues and a resolution range of 1.4-2.9 Å, and with target-model shared sequence identity as low as 20%. The cluster-and-truncate approach in AMPLE proved to be essential for most successes. For the overall lower quality structure predictions in the PconsFam database, remodelling with Rosetta within the AMPLE pipeline proved to be the best approach, generating ensemble search models from single-structure deposits. Finally, it is shown that the AMPLE-obtained search models deriving from GREMLIN deposits are of sufficiently high quality to be selected by the sequence-independent MR pipeline SIMBAD. Overall, the results help to point the way towards the optimal use of the expanding databases of ab initio structure predictions.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
13
|
Parise IZS, Parise GA, Noronha L, Surakhy M, Woiski TD, Silva DB, Costa TEIJB, Del-Valle MHCP, Komechen H, Rosati R, Ribeiro MG, Nascimento ML, de Souza JA, Andrade DP, Paraizo MM, Galvão MMR, Barbosa JRS, Barbosa ML, Custódio GC, Figueiredo MMO, Fabro ALMR, Bond G, Volante M, Lalli E, Figueiredo BC. The Prognostic Role of CD8 + T Lymphocytes in Childhood Adrenocortical Carcinomas Compared to Ki-67, PD-1, PD-L1, and the Weiss Score. Cancers (Basel) 2019; 11:E1730. [PMID: 31694270 PMCID: PMC6896110 DOI: 10.3390/cancers11111730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare disease among children. Our goal was to identify prognostic biomarkers in 48 primary ACCs from children (2.83 ± 2.3 y; mean age ± SD) by evaluating the tumor stage and outcome for an age of diagnosis before or after 3 years, and association with ACC cluster of differentiation 8 positive (CD8+) cytotoxic T lymphocytes (CD8+-CTL) and Ki-67 immunohistochemical expression (IHC). Programmed death 1(PD-1)/Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) in ACC was analyzed in a second, partially overlapping cohort (N = 19) with a similar mean age. All patients and control children were carriers of the germline TP53 R337H mutation. Survival without recurrence for less than 3 years and death unrelated to disease were excluded. Higher counts of CD8+-CTL were associated with patients diagnosed with ACC at a younger age and stage I, whereas a higher percentage of the Ki-67 labeling index (LI) and Weiss scores did not differentiate disease free survival (DFS) in children younger than 3 years old. No PD-1 staining was observed, whereas weakly PD-L1-positive immune cells were found in 4/19 (21%) of the ACC samples studied. A high CD8+-CTL count in ACC of surviving children is compelling evidence of an immune response against the disease. A better understanding of the options for enhancement of targets for CD8+ T cell recognition may provide insights for future pre-clinical studies.
Collapse
Affiliation(s)
- Ivy Zortéa S. Parise
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Guilherme A. Parise
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Lúcia Noronha
- Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná, 181 General Carneiro, Alto da Glória, Curitiba, PR 80060-900, Brazil
- Departamento de Medicina, PUCPR, 1155 Imaculada Conceição St., Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Mirvat Surakhy
- Oxford Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Thiago Demetrius Woiski
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Denise B. Silva
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Tatiana EI-Jaick B. Costa
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | | | - Heloisa Komechen
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Roberto Rosati
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Melyssa Grignet Ribeiro
- Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná, 181 General Carneiro, Alto da Glória, Curitiba, PR 80060-900, Brazil
| | | | - José Antônio de Souza
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Diancarlos P. Andrade
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Mariana M. Paraizo
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Marjorana Martini R. Galvão
- Ciência Laboratório Médico Ltda-Hospital Infantil Joana de Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - José Renato S. Barbosa
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Miriam Lacerda Barbosa
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Gislaine C. Custódio
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Mirna M. O. Figueiredo
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Ana Luiza M. R. Fabro
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Pequeno Príncipe, 1070 Desembargador Motta Av., Curitiba, Paraná 80250-060, Brazil
| | - Gareth Bond
- Oxford Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Marco Volante
- Department of Oncology, University of Turin, San Luigi Hospital, regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Bonald C. Figueiredo
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
- Departamento de Saúde Coletiva, Federal University of Paraná, 280 Padre Camargo, Alto da Glória, Curitiba, PR 80060-240, Brazil
| |
Collapse
|
14
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
15
|
Youkharibache P. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. Methods Mol Biol 2019; 1958:187-219. [PMID: 30945220 PMCID: PMC8323591 DOI: 10.1007/978-1-4939-9161-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a "directed" assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255-2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.
Collapse
|
16
|
Jimenez-Sandoval P, Madrigal-Carrillo EA, Santamaría-Suárez HA, Maturana D, Rentería-González I, Benitez-Cardoza CG, Torres-Larios A, Brieba LG. Mimicking a p53-MDM2 interaction based on a stable immunoglobulin-like domain scaffold. Proteins 2018; 86:802-812. [PMID: 29696695 DOI: 10.1002/prot.25519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/11/2022]
Abstract
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide-bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin-like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig-like domain of the human T cell co-receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein-protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino-acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1-p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1-p53(FG)-loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1-p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.
Collapse
Affiliation(s)
- Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Ezequiel A Madrigal-Carrillo
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Hugo A Santamaría-Suárez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, Munich, 81369, Germany
| | - Itzel Rentería-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, D.F, Mexico City, 07320, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
17
|
Millán C, Sammito MD, McCoy AJ, Nascimento AFZ, Petrillo G, Oeffner RD, Domínguez-Gil T, Hermoso JA, Read RJ, Usón I. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Acta Crystallogr D Struct Biol 2018; 74:290-304. [PMID: 29652256 PMCID: PMC5892878 DOI: 10.1107/s2059798318001365] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/22/2018] [Indexed: 01/13/2023] Open
Abstract
Macromolecular structures can be solved by molecular replacement provided that suitable search models are available. Models from distant homologues may deviate too much from the target structure to succeed, notwithstanding an overall similar fold or even their featuring areas of very close geometry. Successful methods to make the most of such templates usually rely on the degree of conservation to select and improve search models. ARCIMBOLDO_SHREDDER uses fragments derived from distant homologues in a brute-force approach driven by the experimental data, instead of by sequence similarity. The new algorithms implemented in ARCIMBOLDO_SHREDDER are described in detail, illustrating its characteristic aspects in the solution of new and test structures. In an advance from the previously published algorithm, which was based on omitting or extracting contiguous polypeptide spans, model generation now uses three-dimensional volumes respecting structural units. The optimal fragment size is estimated from the expected log-likelihood gain (LLG) values computed assuming that a substructure can be found with a level of accuracy near that required for successful extension of the structure, typically below 0.6 Å root-mean-square deviation (r.m.s.d.) from the target. Better sampling is attempted through model trimming or decomposition into rigid groups and optimization through Phaser's gyre refinement. Also, after model translation, packing filtering and refinement, models are either disassembled into predetermined rigid groups and refined (gimble refinement) or Phaser's LLG-guided pruning is used to trim the model of residues that are not contributing signal to the LLG at the target r.m.s.d. value. Phase combination among consistent partial solutions is performed in reciprocal space with ALIXE. Finally, density modification and main-chain autotracing in SHELXE serve to expand to the full structure and identify successful solutions. The performance on test data and the solution of new structures are described.
Collapse
Affiliation(s)
- Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Massimo Domenico Sammito
- Department of Structural Chemistry, Georg August University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Andrey F. Ziem Nascimento
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Caixa Postal 6192, 13083-970 Campinas-SP, Brazil
| | - Giovanna Petrillo
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- Biochemize S.L, Barcelona Advanced Industry, C/Marie Curie 8-14, 08042 Barcelona, Spain
| | - Robert D. Oeffner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Instituto Química-Física ‘Rocasolano’ CSIC (Spanish National Research Council), Serrano 119, 28006 Madrid, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Instituto Química-Física ‘Rocasolano’ CSIC (Spanish National Research Council), Serrano 119, 28006 Madrid, Spain
| | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Keegan RM, McNicholas SJ, Thomas JMH, Simpkin AJ, Simkovic F, Uski V, Ballard CC, Winn MD, Wilson KS, Rigden DJ. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment. Acta Crystallogr D Struct Biol 2018; 74:167-182. [PMID: 29533225 PMCID: PMC5947758 DOI: 10.1107/s2059798318003455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case.
Collapse
Affiliation(s)
- Ronan M. Keegan
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Adam J. Simpkin
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ville Uski
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Charles C. Ballard
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Martyn D. Winn
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
- STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
19
|
Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, Yang S, Kochenderfer JN. Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Mol Ther 2017; 25:2452-2465. [PMID: 28807568 DOI: 10.1016/j.ymthe.2017.07.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cells have caused remissions of B cell malignancies, but problems including cytokine-mediated toxicity and short persistence of CAR T cells in vivo might limit the effectiveness of anti-CD19 CAR T cells. Anti-CD19 CARs that have been tested clinically had single-chain variable fragments (scFvs) derived from murine antibodies. We have designed and constructed novel anti-CD19 CARs containing a scFv with fully human variable regions. T cells expressing these CARs specifically recognized CD19+ target cells and carried out functions including degranulation, cytokine release, and proliferation. We compared CARs with CD28 costimulatory moieties along with hinge and transmembrane domains from either the human CD28 molecule or the human CD8α molecule. Compared with T cells expressing CARs with CD28 hinge and transmembrane domains, T cells expressing CARs with CD8α hinge and transmembrane domains produced lower levels of cytokines and exhibited lower levels of activation-induced cell death (AICD). Importantly, CARs with hinge and transmembrane regions from either CD8α or CD28 had similar abilities to eliminate established tumors in mice. In anti-CD19 CARs with CD28 costimulatory moieties, lower levels of inflammatory cytokine production and AICD are potential clinical advantages of CD8α hinge and transmembrane domains over CD28 hinge and transmembrane domains.
Collapse
Affiliation(s)
- Leah Alabanza
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Melissa Pegues
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Claudia Geldres
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Victoria Shi
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Shicheng Yang
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Truong AD, Ban J, Park B, Hong YH, Lillehoj HS. Characterization and functional analyses of a novel chicken CD8α variant X1 (CD8α1)1,2. J Anim Sci 2016; 94:2737-51. [DOI: 10.2527/jas.2015-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Bender RR, Muth A, Schneider IC, Friedel T, Hartmann J, Plückthun A, Maisner A, Buchholz CJ. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment. PLoS Pathog 2016; 12:e1005641. [PMID: 27281338 PMCID: PMC4900575 DOI: 10.1371/journal.ppat.1005641] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs. Pseudotyping of lentiviral vectors (LVs) with glycoproteins from other enveloped viruses has not only often been revealing in mechanistic studies of particle assembly and entry, but is also of practical importance for gene delivery. LVs pseudotyped with engineered glycoproteins allowing free choice of receptor usage are expected to overcome current limitations in cell-type selectivity of gene transfer. Here we describe for the first time receptor-targeted Nipah virus glycoproteins as important step towards this goal. LV particles carrying the engineered Nipah virus glycoproteins were substantially more efficient in gene delivery than their state-of-the-art measles virus-based counterparts, now making the production of receptor-targeted LVs for clinical applications possible. Moreover, the data define for the first time the molecular requirements for membrane fusion with respect to the position of the receptor binding site relative to the cell membrane, a finding with implications for the molecular evolution of paramyxoviruses using proteinaceous receptors for cell entry.
Collapse
Affiliation(s)
- Ruben R Bender
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Anke Muth
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Irene C Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Thorsten Friedel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Maisner
- Institute for Virology (BMFZ), Philipps-University Marburg, Marburg, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
22
|
Liu Y, Li X, Qi J, Zhang N, Xia C. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species. Sci Rep 2016; 6:24788. [PMID: 27122108 PMCID: PMC4848529 DOI: 10.1038/srep24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,The Key Laboratory Zoonosis of Ministry of Agriculture of China, Beijing 100094, China
| |
Collapse
|
23
|
Chang VT, Spooner RA, Crispin M, Davis SJ. Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells. Methods Mol Biol 2016; 1321:307-22. [PMID: 26082231 DOI: 10.1007/978-1-4939-2760-9_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.
Collapse
Affiliation(s)
- Veronica T Chang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
24
|
Briant K, Koay YH, Otsuka Y, Swanton E. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues. J Cell Sci 2015; 128:4112-25. [PMID: 26446255 PMCID: PMC4712780 DOI: 10.1242/jcs.171215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. Summary: Proteins containing defective transmembrane domains are removed from the endoplasmic reticulum through a specific mechanism that depends upon the ubiquitylation of cytoplasmic lysine residues.
Collapse
Affiliation(s)
- Kit Briant
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yee-Hui Koay
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuka Otsuka
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Xu Q, Chen Y, Zhao WM, Huang ZY, Duan XJ, Tong YY, Zhang Y, Li X, Chang GB, Chen GH. The CD8α gene in duck (Anatidae): cloning, characterization, and expression during viral infection. Mol Biol Rep 2014; 42:431-9. [PMID: 25332128 DOI: 10.1007/s11033-014-3784-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 09/28/2014] [Indexed: 11/27/2022]
Abstract
Cluster of differentiation 8 alpha (CD8α) is critical for cell-mediated immune defense and T-cell development. Although CD8α sequences have been reported for several species, very little is known about CD8α in ducks. To elucidate the mechanisms involved in the innate and adaptive immune responses of ducks, we cloned CD8α coding sequences from domestic, Muscovy, Mallard, and Spotbill ducks using reverse transcription polymerase chain reaction (RT-PCR). Each sequence consisted of 714 nucleotides and encoded a signal peptide, an IgV-like domain, a stalk region, a transmembrane region, and a cytoplasmic tail. We identified 58 nucleotide differences and 37 amino acid differences among the four types of duck; of these, 53 nucleotide and 33 amino acid differences were between Muscovy ducks and the other duck species. The CD8α cDNA sequence from domestic duck consisted of a 61-nucleotide 5' untranslated region (UTR), a 714-nucleotide open reading frame, and an 849-nucleotide 3' UTR. Multiple sequence alignments showed that the amino acid sequence of CD8α is conserved in vertebrates. RT-PCR revealed that expression of CD8α mRNA of domestic ducks was highest in the thymus and very low in the kidney, cerebrum, cerebellum, and muscle. Immunohistochemical analyses detected CD8α on the splenic corpuscle and periarterial lymphatic sheath of the spleen. CD8α mRNA in domestic ducklings was initially up-regulated, and then down-regulated, in the thymus, spleen, and liver after treatment with duck hepatitis virus type I (DHV-1) or the immunostimulant polyriboinosinic polyribocytidylic acid (poly I:C).
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guo Z, Wang GL, Fu JP, Nie P. Characterization and expression of Cd8 molecules in mandarin fish Siniperca chuatsi. JOURNAL OF FISH BIOLOGY 2013; 82:189-205. [PMID: 23331145 DOI: 10.1111/j.1095-8649.2012.03475.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The full-length complementary DNA (cDNA) sequences encoding cd8α and cd8β molecules were sequenced and characterized from mandarin fish Siniperca chuatsi. Conserved motifs and residues were found to be present in derived peptides of the Cd8 molecules. For example, WXR motif, DXGXYXC motif, and four cysteine residues were present in the extracellular region of the Cd8 protein. Threonine, serine and proline residues involved in multiple O-linked glycosylation events were located in the membrane proximal hinge region. The common CPH motif in the cytoplasmic tail was detected similar to other teleost Cd8 molecules. Different from those in mammals, S. chuatsi Cd8 sequences have many extra cysteine residues (C149 in Cd8α sequence and C46, C51 and C158 in Cd8β sequence), which also exist in other teleost Cd8 molecules. Real-time polymerase chain reaction (RT-PCR) and Western blot analyses revealed that the thymus had the highest expression of cd8 messenger (m)RNA and protein. After stimulated with phytohaemagglutinin, polyriboinsine-polyribocyaidylic acid and concanavalin A (ConA), the expression level of cd8 mRNA increased significantly in head-kidney lymphocytes at 4 and 8 h, but decreased to normal level at 12 h. Similarly, stimulation with ConA in vivo also led to an increase in the cd8 mRNA level in the spleen. Immunohistochemistry analysis demonstrated that Cd8α-positive cells can be detected in the thymus, spleen and intestine by using polyclonal anti-Cd8α antibody.
Collapse
Affiliation(s)
- Z Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
27
|
Cole DK, Laugel B, Clement M, Price DA, Wooldridge L, Sewell AK. The molecular determinants of CD8 co-receptor function. Immunology 2012; 137:139-48. [PMID: 22804746 DOI: 10.1111/j.1365-2567.2012.03625.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands.
Collapse
Affiliation(s)
- David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Fernandes RA, Shore DA, Vuong MT, Yu C, Zhu X, Pereira-Lopes S, Brouwer H, Fennelly JA, Jessup CM, Evans EJ, Wilson IA, Davis SJ. T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J Biol Chem 2012; 287:13324-35. [PMID: 22262845 PMCID: PMC3339974 DOI: 10.1074/jbc.m111.332783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Indexed: 12/18/2022] Open
Abstract
Native and non-native ligands of the T cell receptor (TCR), including antibodies, have been proposed to induce signaling in T cells via intra- or intersubunit conformational rearrangements within the extracellular regions of TCR complexes. We have investigated whether any signatures can be found for such postulated structural changes during TCR triggering induced by antibodies, using crystallographic and mutagenesis-based approaches. The crystal structure of murine CD3ε complexed with the mitogenic anti-CD3ε antibody 2C11 enabled the first direct structural comparisons of antibody-liganded and unliganded forms of CD3ε from a single species, which revealed that antibody binding does not induce any substantial rearrangements within CD3ε. Saturation mutagenesis of surface-exposed CD3ε residues, coupled with assays of antibody-induced signaling by the mutated complexes, suggests a new configuration for the complex within which CD3ε is highly exposed and reveals that no large new CD3ε interfaces are required to form during antibody-induced signaling. The TCR complex therefore appears to be a structure that is capable of initiating intracellular signaling in T cells without substantial structural rearrangements within or between the component subunits. Our findings raise the possibility that signaling by native ligands might also be initiated in the absence of large structural rearrangements in the receptor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/immunology
- Crystallography, X-Ray
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunoglobulin Fab Fragments/immunology
- Jurkat Cells
- Mice
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ricardo A. Fernandes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - David A. Shore
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Mai T. Vuong
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Chao Yu
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Xueyong Zhu
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Selma Pereira-Lopes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Heather Brouwer
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Janet A. Fennelly
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Claire M. Jessup
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Edward J. Evans
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Ian A. Wilson
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Simon J. Davis
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| |
Collapse
|
29
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
30
|
Liu Z, Wang Y, Yedidi RS, Brunzelle JS, Kovari IA, Sohi J, Kamholz J, Kovari LC. Crystal structure of the extracellular domain of human myelin protein zero. Proteins 2011; 80:307-13. [PMID: 21971831 DOI: 10.1002/prot.23164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/07/2011] [Accepted: 06/13/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Zhigang Liu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mao B, Guan R, Montelione GT. Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Structure 2011; 19:757-66. [PMID: 21645849 DOI: 10.1016/j.str.2011.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/07/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Molecular replacement (MR) is widely used for addressing the phase problem in X-ray crystallography. Historically, crystallographers have had limited success using NMR structures as MR search models. Here, we report a comprehensive investigation of the utility of protein NMR ensembles as MR search models, using data for 25 pairs of X-ray and NMR structures solved and refined using modern NMR methods. Starting from NMR ensembles prepared by an improved protocol, FindCore, correct MR solutions were obtained for 22 targets. Based on these solutions, automatic model rebuilding could be done successfully. Rosetta refinement of NMR structures provided MR solutions for another two proteins. We also demonstrate that such properly prepared NMR ensembles and X-ray crystal structures have similar performance when used as MR search models for homologous structures, particularly for targets with sequence identity >40%.
Collapse
Affiliation(s)
- Binchen Mao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
32
|
Zhang N, Qi J, Pan X, Chen Z, Li X, Gao F, Xia C. Crystallization and preliminary X-ray crystallographic studies of swine CD8α. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:888-91. [PMID: 21821887 DOI: 10.1107/s1744309111020392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022]
Abstract
CD8αα homodimers or CD8αβ heterodimers form on the T-cell surface, where they are essential as co-receptors for MHC class I molecules in activation of the CTL response. To date, swine have been found to show the highest percentage of lymphocytes with surface expression of CD8α. Crystallographic analysis of swine CD8α (sCD8α) to 1.8 Å resolution revealed that the crystals belonged to space group P3(2)21, with unit-cell parameters a = 80.97, b = 80.97, c = 95.19 Å. The Matthews coefficient and the solvent content were calculated to be 3.23 Å(3) Da(-1) and 61.89%, respectively. These results may aid further structural and functional analyses of sCD8α.
Collapse
Affiliation(s)
- Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Hansen JD, Farrugia TJ, Woodson J, Laing KJ. Description of an elasmobranch TCR coreceptor: CD8α from Rhinobatos productus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:452-460. [PMID: 21110999 DOI: 10.1016/j.dci.2010.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
Cell-mediated immunity plays an essential role for the control and eradication of intracellular pathogens. To learn more about the evolutionary origins of the first signal (Signal 1) for T-cell activation, we cloned CD8α from an elasmobranch, Rhinobatos productus. Similar to full-length CD8α cDNAs from other vertebrates, Rhpr-CD8α (1800bp) encodes a 219 amino acid open reading frame composed of a signal peptide, an extracellular IgSF V domain and a stalk/hinge region followed by a well-conserved transmembrane domain and cytoplasmic tail. Overall, the mature Rhpr-CD8α protein (201 aa) displays ∼ 30% amino acid identity with mammalian CD8α including absolute conservation of cysteine residues involved in the IgSf V domain fold and dimerization of CD8αα and CD8αβ. One prominent feature is the absence of the LCK association motif (CXC) that is needed for achieving signal 1 in tetrapods. Both elasmobranch and teleost CD8α protein sequences possess a similar but distinctly different motif (CXH) in the cytoplasmic tail. The overall genomic structure of CD8α has been conserved during the course of vertebrate evolution both for the number of exons and phase of splicing. Finally, quantitative RTPCR demonstrated that elasmobranch CD8α is expressed in lymphoid-rich tissues similar to CD8 in other vertebrates. The results from this study indicate the existence of CD8 prior to the emergence of the gnathostomes (>450 MYA) while providing evidence that the canonical LCK association motif in mammals is likely a derived characteristic of tetrapod CD8α, suggesting potential differences for T-cell education and activation in the various gnathostomes.
Collapse
Affiliation(s)
- John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA.
| | | | | | | |
Collapse
|
34
|
Moulaei T, Stuchlik O, Reed M, Yuan W, Pohl J, Lu W, Haugh-Krumpe L, O'Keefe BR, Wlodawer A. Topology of the disulfide bonds in the antiviral lectin scytovirin. Protein Sci 2011; 19:1649-61. [PMID: 20572021 DOI: 10.1002/pro.445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antiviral lectin scytovirin (SVN) contains a total of five disulfide bonds in two structurally similar domains. Previous reports provided contradictory results on the disulfide pairing in each individual domain, and we have now re-examined the disulfide topology. N-terminal sequencing and mass spectrometry were used to analyze proteolytic fragments of native SVN obtained at acidic pH, yielding the assignment as Cys7-Cys55, Cys20-Cys32, Cys26-Cys38, Cys68-Cys80, and Cys74-Cys86. We also analyzed the N-terminal domain of SVN (SD1, residues 1-48) prepared by expression/oxidative folding of the recombinant protein and by chemical synthesis. The disulfide pairing in the chemically synthesized SD1 was forced into predetermined topologies: SD1A (Cys20-Cys26, Cys32-Cys38) or SD1B (Cys20-Cys32, Cys26-Cys38). The topology of native SVN was found to be in agreement with the SD1B and the one determined for the recombinant SD1 domain. Although the two synthetic forms of SD1 were distinct when subjected to chromatography, their antiviral properties were indistinguishable, having low nM activity against HIV. Tryptic fragments, the "cystine clusters" [Cys20-Cys32/Cys26-Cys38; SD1] and [Cys68-Cys80/Cys74-C-86; SD2], were found to undergo rapid disulfide interchange at pH 8. This interchange resulted in accumulation of artifactual fragments in alkaline pH digests that are structurally unrelated to the original topology, providing a rational explanation for the differences between the topology reported herein and the one reported earlier (Bokesh et al., Biochemistry 2003;42:2578-2584). Our observations emphasize the fact that proteins such as SVN, with disulfide bonds in close proximity, require considerable precautions when being fragmented for the purpose of disulfide assignment.
Collapse
Affiliation(s)
- Tinoush Moulaei
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Quiniou SMA, Sahoo M, Edholm ES, Bengten E, Wilson M. Channel catfish CD8α and CD8β co-receptors: characterization, expression and polymorphism. FISH & SHELLFISH IMMUNOLOGY 2011; 30:894-901. [PMID: 21272650 DOI: 10.1016/j.fsi.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
In this study we report the identification and characterization of channel catfish, Ictalurus punctatus CD8α and CD8β genes. Both genes encode predicted proteins containing a leader, a immunoglobulin superfamily V domain, a stalk/hinge region, a transmembrane region and a positively charged cytoplasmic tail (CYT) containing the conserved teleost C-X-H motif. Catfish CD8α and CD8β are encoded as single copy genes and as in other vertebrates exhibit a conserved head to tail synteny; the CD8β gene is found 14.1kb upstream of the CD8α gene. Both CD8α and CD8β transcripts showed a low degree of polymorphism. Finally, as determined by q-PCR both CD8α and CD8β are expressed in various catfish lymphoid tissues with the highest expression observed in thymus from 2 month old catfish-fry. In the future these results will provide the basis for evaluating the role of CD8(+) CTL and other CD8-bearing cells in response to immunization or infection in the catfish.
Collapse
|
36
|
Xu SW, Wu JY, Hu KS, Ping HL, Duan ZG, Zhang HF. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8α and CD8β genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:600-608. [PMID: 21193050 DOI: 10.1016/j.fsi.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and β chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8β genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8β proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.
Collapse
Affiliation(s)
- Sheng-wei Xu
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Yu C, Sonnen AFP, George R, Dessailly BH, Stagg LJ, Evans EJ, Orengo CA, Stuart DI, Ladbury JE, Ikemizu S, Gilbert RJC, Davis SJ. Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 2010; 286:6685-96. [PMID: 21156796 PMCID: PMC3057841 DOI: 10.1074/jbc.m110.182394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced "triggering" of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s).
Collapse
Affiliation(s)
- Chao Yu
- Nuffield Department of Clinical Medicine and MRC Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
TL and CD8αα: Enigmatic partners in mucosal immunity. Immunol Lett 2010; 134:1-6. [PMID: 20850477 DOI: 10.1016/j.imlet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
The intestinal mucosa represents a large surface area that is in contact with an immense antigenic load. The immune system associated with the intestinal mucosa needs to distinguish between innocuous food antigens, commensal microorganisms, and pathogenic microorganisms, without triggering an exaggerated immune response that may lead to excessive inflammation and/or development of inflammatory bowel disease. The thymus leukemia (TL) antigen and CD8αα are interacting surface molecules that are expressed at the frontline of the mucosal immune system: TL is expressed in intestinal epithelial cells (IEC) whereas CD8αα is expressed in lymphocytes, known as intraepithelial lymphocytes, that reside in between the IEC. In this review we discuss the significance of the interaction between TL and CD8αα in mucosal immunity during health and disease.
Collapse
|
39
|
Radaev S, Zou Z, Tolar P, Nguyen K, Nguyen A, Krueger PD, Stutzman N, Pierce S, Sun PD. Structural and functional studies of Igalphabeta and its assembly with the B cell antigen receptor. Structure 2010; 18:934-43. [PMID: 20696394 PMCID: PMC2921123 DOI: 10.1016/j.str.2010.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/23/2022]
Abstract
The B cell antigen receptor (BCR) plays an essential role in all phases of B cell development. Here we show that the extracellular domains of murine and human Igbeta form an I-set immunoglobulin-like structure with an interchain disulfide between cysteines on their G strands. Structural and sequence analysis suggests that Igalpha displays a similar fold as Igbeta. An Igalphabeta heterodimer model was generated based on the unique disulfide-bonded Igbeta dimer. Solution binding studies showed that the extracellular domains of Igalphabeta preferentially recognize the constant region of BCR with mu chain specificity, suggesting a role for Igalphabeta to enhance BCRmu chain signaling. Cluster mutations on Igalpha, Igbeta, and a membrane-bound form of immunoglobulin (mIgM) based on the structural model identified distinct areas of potential contacts involving charged residues on both subunits of the coreceptor and the Cmu4 domain of mIgM. These studies provide the first structural model for understanding BCR function.
Collapse
Affiliation(s)
- Sergei Radaev
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Zhongcheng Zou
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Pavel Tolar
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Khanh Nguyen
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - AnhThao Nguyen
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Peter D. Krueger
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Nicole Stutzman
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Susan Pierce
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| | - Peter D. Sun
- Structural Immunology Section, 12441 Parklawn Drive, Rockville, Maryland 20852, USA
| |
Collapse
|
40
|
The Antithesis of Entropy: Biosemiotic Communication from Genetics to Human Language with Special Emphasis on the Immune Systems. ENTROPY 2010. [DOI: 10.3390/e12040631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Taurog JD, Dorris ML, Satumtira N, Tran TM, Sharma R, Dressel R, van den Brandt J, Reichardt HM. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. ACTA ACUST UNITED AC 2009; 60:1977-84. [DOI: 10.1002/art.24599] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 2009; 11:32-51. [PMID: 19495910 PMCID: PMC3055910 DOI: 10.1007/s12575-009-9008-x] [Citation(s) in RCA: 942] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022] Open
Abstract
An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful.
Collapse
|
43
|
Rettig L, McNeill L, Sarner N, Guillaume P, Luescher I, Tolaini M, Kioussis D, Zamoyska R. An essential role for the stalk region of CD8 beta in the coreceptor function of CD8. THE JOURNAL OF IMMUNOLOGY 2009; 182:121-9. [PMID: 19109142 DOI: 10.4049/jimmunol.182.1.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.
Collapse
Affiliation(s)
- Lorna Rettig
- Molecular Immunology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The marsupial CD8 gene locus: molecular cloning and expression analysis of the alpha and beta sequences in the gray short-tailed opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol 2008; 129:14-27. [PMID: 19135263 DOI: 10.1016/j.vetimm.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022]
Abstract
In eutherian mammals, CD8 is a key receptor of cytotoxic T cells and plays a pivotal role in the recognition and elimination of infected host cells by cell-mediated cytotoxicity. Here, we report the molecular cloning and expression analysis of CD8alpha and CD8beta cDNAs in two marsupial species, the gray short-tailed opossum and the tammar wallaby. The opossum and tammar CD8 sequences share a high degree of amino acid identity of 63% (CD8alpha) and 57% (CD8beta) to each other as well as 36-45% (CD8alpha) and 38-41% (CD8beta) with their eutherian counterparts. In addition, many of the signature features of eutherian CD8alpha and CD8beta are preserved in both marsupials including the two invariant cysteines that form the intra-chain disulphide bond in the extracellular IgSfV domain and the two hinge region cysteines involved in dimerisation between the two subunits. The p56(lck) binding motif in the cytoplasmic tail of the CD8alpha subunit is also conserved. Interestingly, the opossum CD8alpha and the tammar CD8beta sequences have a truncated cytoplasmic tail. RT-PCR analysis of CD8alpha and CD8beta transcripts in the tissues of the adult opossum and tammar showed broad tissue expression with a high level of expression observed in the lymphoid tissues of both marsupials. Furthermore, RT-PCR analysis of CD8alpha and CD8beta transcripts in the immune tissues of tammar young over the first 120 days of pouch life revealed a pattern of expression analogous to the maturation of the lymphoid tissues. This is the first report confirming the presence of CD8 in the tissues of a marsupial and will provide the tools to further analyse T cell subsets in this unique group of mammals.
Collapse
|
45
|
Costantini S, Buonocore F, Facchiano AM. Molecular modelling of co-receptor CD8 alpha alpha and its complex with MHC class I and T-cell receptor in sea bream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2008; 25:782-790. [PMID: 18951040 DOI: 10.1016/j.fsi.2008.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/19/2008] [Accepted: 03/30/2008] [Indexed: 05/27/2023]
Abstract
T-cells are the main actors of cell-mediated immune defence; they recognize and respond to peptide antigens associated with MHC class I and class II molecules. In this paper, we investigated by molecular modelling methods in the teleost sea bream (Sparus aurata) the interaction among the molecules of the tertiary complex CD8/MHC-I/TCR, which determines the T-cell-mediated immunological response to foreign molecules. First, we predicted the three-dimensional structure of CD8 alpha alpha dimer and MHC-I, and, successively, we simulated the CD8 alpha alpha/MHC-I complex. Finally, the 3D structure of the CD8/MHC-I/TCR complex was simulated in order to investigate the possible changes that can influence TCR signalling events.
Collapse
Affiliation(s)
- Susan Costantini
- Laboratorio di Bioinformatica e Biologia Computazionale, Istituto di Scienze dell'Alimentazione - CNR, via Roma 52 A/C, 83100 Avellino, Italy
| | | | | |
Collapse
|
46
|
Shore DA, Issafras H, Landais E, Teyton L, Wilson IA. The crystal structure of CD8 in complex with YTS156.7.7 Fab and interaction with other CD8 antibodies define the binding mode of CD8 alphabeta to MHC class I. J Mol Biol 2008; 384:1190-202. [PMID: 18929574 DOI: 10.1016/j.jmb.2008.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 11/18/2022]
Abstract
The CD8alphabeta heterodimer interacts with class I pMHC on antigen-presenting cells as a co-receptor for TCR-mediated activation of cytotoxic T cells. To characterize this immunologically important interaction, we used monoclonal antibodies (mAbs) specific to either CD8alpha or CD8beta to probe the mechanism of CD8alphabeta binding to pMHCI. The YTS156.7 mAb inhibits this interaction and blocks T cell activation. To elucidate the molecular basis for this inhibition, the crystal structure of the CD8alphabeta immunoglobulin-like ectodomains were determined in complex with mAb YTS156.7 Fab at 2.7 A resolution. The YTS156.7 epitope on CD8beta was identified and implies that residues in the CDR1 and CDR2-equivalent loops of CD8beta are occluded upon binding to class I pMHC. To further characterize the pMHCI/CD8alphabeta interaction, binding of class I tetramers to CD8alphabeta on the surface of T cells was assessed in the presence of anti-CD8 mAbs. In contrast to YTS156.7, mAb YTS105.18, which is specific for CD8alpha, does not inhibit binding of CD8alphabeta to class I tetramers, indicating the YTS105.18 epitope is not occluded in the pMHCI/CD8alphabeta complex. Together, these data indicate a model for the pMHCI/CD8alphabeta interaction similar to that observed for CD8alphaalpha in the CD8alphaalpha/pMHCI complex, but in which CD8alpha occupies the lower orientation (membrane proximal to the antigen presenting cell), and CD8beta occupies the upper position (membrane distal). The implication of this molecular assembly for the function of CD8alphabeta in T cell activation is discussed.
Collapse
Affiliation(s)
- D A Shore
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Bandyopadhyay D, Mehler EL. Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment. Proteins 2008; 72:646-59. [PMID: 18247345 DOI: 10.1002/prot.21958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A general method has been developed to characterize the hydrophobicity or hydrophilicity of the microenvironment (MENV), in which a given amino acid side chain is immersed, by calculating a quantitative property descriptor (QPD) based on the relative (to water) hydrophobicity of the MENV. Values of the QPD were calculated for a test set of 733 proteins to analyze the modulating effects on amino acid residue properties by the MENV in which they are imbedded. The QPD values and solvent accessibility were used to derive a partitioning of residues based on the MENV hydrophobicities. From this partitioning, a new hydrophobicity scale was developed, entirely in the context of protein structure, where amino acid residues are immersed in one or more "MENVpockets." Thus, the partitioning is based on the residues "sampling" a large number of "solvents" (MENVs) that represent a very large range of hydrophobicity values. It was found that the hydrophobicity of around 80% of amino acid side chains and their MENV are complementary to each other, but for about 20%, the MENV and their imbedded residue can be considered as mismatched. Many of these mismatches could be rationalized in terms of the structural stability of the protein and/or the involvement of the imbedded residue in function. The analysis also indicated a remarkable conservation of local environments around highly conserved active site residues that have similar functions across protein families, but where members have relatively low sequence homology. Thus, quantitative evaluation of this QPD is suggested, here, as a tool for structure-function prediction, analysis, and parameter development for the calculation of properties in proteins.
Collapse
Affiliation(s)
- Debashree Bandyopadhyay
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
48
|
Kohu K, Yamabe E, Matsuzawa A, Onda D, Suemizu H, Sasaki E, Tanioka Y, Yagita H, Suzuki D, Kametani Y, Takai T, Toyoda A, Habu S, Satake M. Comparison of 30 immunity-related genes from the common marmoset with orthologues from human and mouse. TOHOKU J EXP MED 2008; 215:167-80. [PMID: 18577846 DOI: 10.1620/tjem.215.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the evolution of primates, the common marmoset belongs to the new world monkey family and is distinct from the great ape family (which includes humans). In this study, we predicted the amino acid sequences of 30 immunity-related genes from the common marmoset and compared them with those from human and mouse. The domain composition of each orthologous protein was analyzed by the SMART tool and was found to be the same among the three species. A BLAST search revealed that the common marmoset and human proteins were 86% identical on average, whereas the conservation between the common marmoset and mouse or between the human and mouse was only 60%. This indicates that the common marmoset and human proteins are closely related and are similarly divergent from the mouse. We divided the 30 proteins into two categories based on the degree of conservation between the common marmoset and mouse amino acid sequences. One group included 19 proteins and had a relatively high level of conservation (68% identical), whereas the other 11 proteins were less conserved (45% identical). This suggests that these immunity-related genes do not evolve at a uniform rate. Interestingly, however, ligand/receptor pairs such as interleukin-6 and interleukin-6 receptor appear to have evolved simultaneously.
Collapse
Affiliation(s)
- Kazuyoshi Kohu
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun PD, Boyington JC. Overview of protein folds in the immune system. ACTA ACUST UNITED AC 2008; Appendix 1:Appendix 1N. [PMID: 18432648 DOI: 10.1002/0471142735.ima01ns44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rapid advancement of X-ray crystallography and nuclear magnetic resonance techniques in recent years has resulted in the solution of macromolecular structures at an unprecedented rate. This review aims at providing a comprehensive description of structures and folds related to the function of the immune system. Focus is placed on immunologically relevant proteins such as immunoreceptors and major histocompatibility complexes. Information is also provided regarding protein structure data banks.
Collapse
Affiliation(s)
- P D Sun
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | |
Collapse
|
50
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|