1
|
Chang J, Liu A, Zhang J, Chu L, Hou X, Huang X, Xing Q, Bao Z. Transcriptomic analysis reveals PC4's participation in thermotolerance of scallop Argopecten irradians irradians by regulating myocardial bioelectric activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101295. [PMID: 39053238 DOI: 10.1016/j.cbd.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Rising ocean temperatures due to global warming pose a significant threat to the bay scallop aquaculture industry. Understanding the mechanisms of thermotolerance in bay scallops is crucial for developing thermotolerant breeds. Our prior research identified Arg0230340.1, part of the positive cofactor 4 (PC4) family, as a key gene associated with the thermotolerance index Arrhenius break temperature (ABT) in bay scallops. Further validation through RNA interference (RNAi) reinforced PC4's role in thermotolerance, offering a solid basis for investigating thermal response mechanisms in these scallops. In this study, we performed a comparative transcriptomic analysis on the temperature-sensitive hearts of bay scallops after siRNA-mediated RNAi targeting Arg0230340.1, to delve into the detailed molecular mechanism of PC4's participation in thermotolerance regulation. The analysis revealed that silencing Arg0230340.1 significantly reduced the expression of mitochondrial tRNA and rRNA, potentially affecting mitochondrial function and the heart's blood supply capacity. Conversely, the up-regulation of genes involved in energy metabolism, RNA polymerase II (RNAPII)-mediated basal transcription, and aminoacyl-tRNA synthesis pathways points to an intrinsic protective response, providing energy and substrates for damage repair and maintenance of essential functions under stress. GO and KEGG enrichment analyses indicated that the up-regulated genes were primarily associated with energy metabolism and spliceosome pathways, likely contributing to myocardial remodeling post-Arg0230340.1 knockdown. Down-regulated genes were enriched in ion channel pathways, particularly those for Na+, K+, and Ca2+ channels, whose dysfunction could disrupt normal myocardial bioelectric activity. The impaired cardiac performance resulting from RNAi targeting Arg0230340.1 reduced the cardiac workload in scallop hearts, thus affecting myocardial oxygen consumption and thermotolerance. We propose a hypothetical mechanism where PC4 down-regulation impairs cardiac bioelectric activity, leading to decreased thermotolerance in bay scallops, providing theoretical guidance for breeding thermotolerant scallop varieties and developing strategies for sustainable aquaculture in the face of long-term environmental changes.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Pan Q, Luo P, Hu K, Qiu Y, Liu G, Dai S, Cui B, Yin D, Shi C. Periodic changes of cyclin D1 mRNA stability are regulated by PC4 modifications in the cell cycle. J Cell Biol 2024; 223:e202308066. [PMID: 38349334 PMCID: PMC10864110 DOI: 10.1083/jcb.202308066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The cell cycle is a highly regulated process in which proteins involved in cell cycle progression exhibit periodic expression patterns, controlled by specific mechanisms such as transcription, translation, and degradation. However, the precise mechanisms underlying the oscillations of mRNA levels in cell cycle regulators are not fully understood. In this study, we observed that the stability of cyclin D1 (CCND1) mRNA fluctuates during the cell cycle, with increased stability during interphase and decreased stability during the M phase. Additionally, we identified a key RNA binding protein, positive coactivator 4 (PC4), which plays a crucial role in stabilizing CCND1 mRNA and regulating its periodic expression. Moreover, the binding affinity of PC4 to CCND1 mRNA is modulated by two cell cycle-specific posttranslational modifications: ubiquitination of K68 enhances binding and stabilizes the CCND1 transcript during interphase, while phosphorylation of S17 inhibits binding during the M phase, leading to degradation of CCND1 mRNA. Remarkably, PC4 promotes the transition from G1 to S phase in the cell cycle, and depletion of PC4 enhances the efficacy of CDK4/6 inhibitors in hepatocellular carcinoma, suggesting that PC4 could serve as a potential therapeutic target. These findings provide valuable insights into the intricate regulation of cell cycle dynamics.
Collapse
Affiliation(s)
- Qimei Pan
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gaoyu Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Shijie Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Bokang Cui
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Pan Q, Luo P, Shi C. PC4-mediated Ku complex PARylation facilitates NHEJ-dependent DNA damage repair. J Biol Chem 2023; 299:105032. [PMID: 37437887 PMCID: PMC10406618 DOI: 10.1016/j.jbc.2023.105032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.
Collapse
Affiliation(s)
- Qimei Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Ma L, Gong Q, Chen Y, Luo P, Chen J, Shi C. Targeting positive cofactor 4 induces autophagic cell death in MYC-expressing diffuse large B-cell lymphoma. Exp Hematol 2023; 119-120:42-57.e4. [PMID: 36642374 DOI: 10.1016/j.exphem.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
MYC-expressing diffuse large B-cell lymphoma (DLBCL) is one of the refractory lymphomas. Currently, the pathogenesis of MYC-expressing DLBCL is still unclear, and there is a lack of effective therapy. We characterized positive cofactor 4 (PC4) as an upstream regulator of c-Myc, and PC4 is overexpressed in DLBCL and is closely related to clinical staging, prognosis, and c-Myc expression. Furthermore, our in vivo and in vitro studies revealed that PC4 knockdown can induce autophagic cell death and enhance the therapeutic effect of doxorubicin in MYC-expressing DLBCL. Inhibition of c-Myc-mediated aerobic glycolysis and activation of the AMPK/mTOR signaling pathway are responsible for the autophagic cell death induced by PC4 knockdown in MYC-expressing DLBCL. Using dual-luciferase reporter assay and electrophoretic mobility shift assay assays, we also found that PC4 exerts its oncogenic functions by directly binding to c-Myc promoters. To sum up, our study provides novel insights into the functions and mechanisms of PC4 in MYC-expressing DLBCL and suggests that PC4 may be a promising therapeutic target for MYC-expressing DLBCL.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
5
|
Liu J, Li B, Yang L, Ren N, Xu M, Huang Q. Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator. CRISPR J 2022; 5:854-867. [PMID: 36374245 DOI: 10.1089/crispr.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The CRISPR-Cas9 system shows diverse levels of genome editing activities on eukaryotic chromatin, and high-efficiency sgRNA targets are usually desired in application. In this study, we show that chromatin open status is a pivotal determinant of the Cas9 editing activity in mammalian cells, and increasing chromatin accessibility can efficiently improve Cas9 genome editing. However, the strategy that increases chromatin openness by fusing the VP64 transcriptional activation domain at the C-terminus of Cas9 can only promote genome editing activity slightly at most tested CRISPR-Cas9 targets in Lenti-X 293T cells. Under the enlightenment that histone acetylation increases eukaryotic chromatin accessibility, we developed a composite strategy to further improve genome editing by activating histone acetylation. We demonstrate that promoting histone acetylation using the histone acetyltransferase activator YF-2 can improve the genome editing by Cas9 and, more robustly, by the Cas9 transcriptional activator (Cas9-AD). This strategy holds great potential to enhance CRISPR-Cas9 genome editing and to enable broader CRISPR gRNA target choices for experiments in eukaryotes.
Collapse
Affiliation(s)
- Junhao Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lele Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Naixia Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Meichen Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Rojas DA, Urbina F, Solari A, Maldonado E. The Catalytic Subunit of Schizosaccharomyces pombe CK2 (Cka1) Negatively Regulates RNA Polymerase II Transcription through Phosphorylation of Positive Cofactor 4 (PC4). Int J Mol Sci 2022; 23:ijms23169499. [PMID: 36012759 PMCID: PMC9409219 DOI: 10.3390/ijms23169499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023] Open
Abstract
Positive cofactor 4 (PC4) is a transcriptional coactivator that plays important roles in transcription and DNA replication. In mammals, PC4 is phosphorylated by CK2, and this event downregulates its RNA polymerase II (RNAPII) coactivator function. This work describes the effect of fission yeast PC4 phosphorylation on RNAPII transcription in a cell extract, which closely resembles the cellular context. We found that fission yeast PC4 is strongly phosphorylated by the catalytic subunit of CK2 (Cka1), while the regulatory subunit (Ckb1) downregulates the PC4 phosphorylation. The addition of Cka1 to an in vitro transcription assay can diminish the basal transcription from the Ad-MLP promoter; however, the addition of recombinant fission yeast PC4 or Ckb1 can stimulate the basal transcription in a cell extract. Fission yeast PC4 is phosphorylated in a domain which has consensus phosphorylation sites for CK2, and two serine residues were identified as critical for CK2 phosphorylation. Mutation of one of the serine residues in PC4 does not completely abolish the phosphorylation; however, when the two serine residues are mutated, CK2 is no longer able to phosphorylate PC4. The mutant which is not phosphorylated is able to stimulate transcription even though it is previously phosphorylated by Cka1, while the wild type and the point mutant are inactivated by Cka1 phosphorylation, and they cannot stimulate transcription by RNAPII in cell extracts. Those results demonstrate that CK2 can regulate the coactivator function of fission yeast PC4 and suggests that this event could be important in vivo as well.
Collapse
Affiliation(s)
- Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Correspondence: (D.A.R.); (E.M.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (D.A.R.); (E.M.)
| |
Collapse
|
7
|
Chatterjee C, Singh SK. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Org Biomol Chem 2022; 20:5500-5509. [PMID: 35786742 PMCID: PMC10112546 DOI: 10.1039/d2ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor suppressor and master gene regulator protein p53 has been the subject of intense investigation for several decades due to its mutation in about half of all human cancers. However, mechanistic studies of p53 in cells are complicated by its many dynamic binding partners and heterogeneous post-translational modifications. The design of therapeutics that rescue p53 functions in cells requires a mechanistic understanding of its protein-protein interactions in specific protein complexes and identifying changes in p53 activity by diverse post-translational modifications. This review highlights the important roles that peptide and protein chemistry have played in biophysical and biochemical studies aimed at elucidating p53 regulation by several key binding partners. The design of various peptide inhibitors that rescue p53 function in cells and new opportunities in targeting p53-protein interactions are discussed. In addition, the review highlights the importance of a protein semisynthesis approach to comprehend the role of site-specific PTMs in p53 regulation.
Collapse
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Mustafi P, Hu M, Kumari S, Das C, Li G, Kundu T. Phosphorylation-dependent association of human chromatin protein PC4 to linker histone H1 regulates genome organization and transcription. Nucleic Acids Res 2022; 50:6116-6136. [PMID: 35670677 PMCID: PMC9226532 DOI: 10.1093/nar/gkac450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.
Collapse
Affiliation(s)
- Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Mingli Hu
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandrima Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Guohong Li
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
9
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Molecular allocation of PC4s provides implications for deciphering thermal response in Zhikong scallop (Chlamys farreri). Gene 2022; 818:146216. [PMID: 35093447 DOI: 10.1016/j.gene.2022.146216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
The increasing sea temperature caused by global warming has led to serious death of Zhikong scallop (Chlamys farreri) and improving its thermal tolerance has become an active research area in scallop aquaculture industry. Gene transcriptional coactivator p15 (PC4) plays pivotally multi-faced roles in most vertebrates and some invertebrates, but the systematic identification and characterization of PC4 genes have less been reported in scallops. In this study, 15 PC4 genes (CfPC4s) were identified in Zhikong scallop through whole-genome scanning, including two pairs of tandem duplicate genes located in the same scaffold (CF-19495.9 and CF-19495.10, CF-6819.1 and CF-6819.2). Protein structural and phylogenetic analyses were performed to verify identities and evolutionary relationships of these genes. Spatiotemporal expression patterns were determined at different development stages and in healthy adult tissues, as well as expression regulations in selected tissues (mantles, gills, hemocytes and hearts) after high temperatures challenge (27 °C) with different durations (3 h, 6 h, 12 h, 24 h, 3 d, 6 d, 15 d and 30 d). Spatiotemporal expressions of CfPC4s were ubiquitous but exhibited different patterns, suggesting the functional roles of CfPC4s in all stages of growth and development of the scallop. Expression regulations of CfPC4s and their functional related factors (TFIIA, TFIID, TFIIH and RNAPII) in pre-initiation complex (PIC) in various tissues displayed up- and/or down-regulated responses at different time points, showing time- and/or tissue-dependent expression patterns with function allocation upon different thermal durations. Collectively, this study demonstrated that gene allocation of CfPC4s provided implications for deciphering thermal response in Zhikong scallop and potentially helped in developing strategies for long-term healthy sustainable Zhikong scallop culture.
Collapse
|
11
|
Zhang J, Liao H, Xun X, Hou X, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Identification, characterization and expression analyses of PC4 genes in Yesso scallop (Patinopecten yessoensis) reveal functional differentiations in response to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106099. [PMID: 35114458 DOI: 10.1016/j.aquatox.2022.106099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional coactivator p15 (PC4), considered a multifunctional chromosome associated protein, is actively involved in transcription regulation, DNA replication, damage repair and chromosome formation. Although studies have reported significant effects of PC4 in most vertebrates and some invertebrates, the complete PC4 gene members are less systematically identified and characterized in scallops. In this study, seven PC4 genes (PyPC4s) were identified in the Yesso scallop Patinopecten yessoensis using whole-genome scanning via bioinformatic analyses. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the seven genes. Expression profiles of PyPC4s were further investigated in embryos/larvae at all developmental stages, healthy adult tissues, and mantles that were exposed to low pH stress (pH 6.5 and 7.5) with different time durations (3, 6, 12 and 24 h). Spatiotemporal expression patterns indicated the functional roles of PyPC4s at all development stages and in healthy adult tissues, with PY-3235.33 demonstrating remarkably high constitutive expressions. Expression regulations (up- and down-regulation) of PyPC4s under low pH stress levels demonstrated a time-dependent pattern with functional complementation and/or enhancement, revealing that PyPC4s exhibited differentiated functions in response to ocean acidification (OA). Collectively, our data offer a novel perspective stating that low pH is a potential inducer leading to functional differentiation of PyPC4s in scallops. The results provide preliminary information on the versatile roles of PC4(s) in bivalves in response to OA.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Qilu University of Technology (Shandong Academy of Sciences), China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
12
|
Ma L, Gong Q, Liu G, Chen J, Wang Y, luo P, Shi C. Positive Cofactor 4 as a Potential Radiation Biodosimeter for Early Assessment. Dose Response 2022; 20:15593258221081317. [PMID: 35221823 PMCID: PMC8874181 DOI: 10.1177/15593258221081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During a major radiation event, a large number of people need to be rapidly assessed for radiation damage to ensure effective medical treatment and efficient use of medical resources. However, current techniques cannot meet the requirement of rapid detection of large quantities of samples in an emergency. It is essential to develop rapid and accurate radiation biodosimeters in peripheral blood. Here, we identified radiation sensitive genes in mice by RNA sequencing and evaluated their utility as radiation biodosimeters in human cell lines. Mice were subjected to gamma-irradiation with different doses (0–8 Gy, .85 Gy/min), and the tail venous blood was analyzed by RNA sequencing. We have identified 5 genes with significantly differential expression after radiation exposure. We found that positive cofactor 4(PC4) had well correlation with radiation dose in human lymphoblastoid cell line after irradiation. The relative expression of PC4 gene showed a good linear correlation with the radiation dose after 1–5 Gy irradiation (.85 Gy/min). PC4 gene can be rapidly recruited to the DNA damage sites faster than γ-H2AX after radiation in immunofluorescence detection. In conclusion, PC4 may be represented as new radiation biological dosimeter for early assessment.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
The Human Positive Cofactor 4 is a Promising Chemotherapeutic Target in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2021; 2021:9958483. [PMID: 34899911 PMCID: PMC8664520 DOI: 10.1155/2021/9958483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
Reduced sensitivity to chemotherapeutic drugs is almost inevitable in lung adenocarcinoma patients. Thus, understanding the relevant mechanisms is urgent. Positive cofactor 4 (PC4) was at first revealed to be a coactivator of basal transcription. Previous research has shown that PC4 participates in various cellular processes in normal and malignant cells. However, it is still unknown whether PC4 participates in altering the lung adenocarcinoma cell sensitivity to chemotherapy, and the relevant mechanisms remain to be explained. In this study, we discovered that PC4 was overexpressed in cisplatin-resistant lung adenocarcinoma cells. PC4 decreased cisplatin's cytotoxic effects on lung adenocarcinoma in vivo and in vitro. Furthermore, PC4 positively correlated with SOX9 in multiple cancers. PC4 was an upstream regulator of SOX9 in lung adenocarcinoma. Furthermore, PC4 mediated lung adenocarcinoma cell sensitivity to the HIF-PH inhibitor DMOG and the mTOR inhibitor rapamycin, and PC4 mediated the synergistic effect of DMOG and cisplatin. Finally, PC4 destabilized HIF-1α upon cisplatin treatment. Our research showed that PC4 participates in mediating lung adenocarcinoma cell sensitivity to multiple drugs. Mechanistically, PC4 governs multiple downstream pathways associated with chemotherapy resistance, including the SOX9 and HIF-1α pathways. Thus, PC4 is a promising chemotherapeutic target in lung adenocarcinoma.
Collapse
|
14
|
Wang Q, Ma L, Chen L, Chen H, Luo M, Yang W, Liao F, Gong Q, Wang Y, Yang Z, Wu J, Zhang C, Zheng J, Han S, Leng Y, Luo P, Shi C. Knockdown of PC4 increases chemosensitivity of Oxaliplatin in triple negative breast cancer by suppressing mTOR pathway. Biochem Biophys Res Commun 2021; 544:65-72. [PMID: 33524870 DOI: 10.1016/j.bbrc.2021.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
As a multifunctional nuclear protein, the human positive cofactor 4 (PC4) is highly expressed in various tumors including breast cancer and has potential roles in cancer development and progression. However, the functional signatures and molecular mechanisms of PC4 in triple negative breast cancer (TNBC) progression and chemotherapeutic response are still unknown. In this study, we found that PC4 is significantly upregulated in TNBC cells compared with non-TNBC cells, implying its potential role in TNBC. Then, in vivo and in vitro studies revealed that knockdown of PC4 increased chemosensitivity of Oxaliplation (Oxa) in TNBC by suppressing mTOR pathway. Therefore, our findings demonstrated the signatures and molecular mechanisms of PC4 in TNBC chemotherapeutic response, and indicated that PC4 might be a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Wei Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shiqian Han
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yu Leng
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
15
|
Sikder S, Kaypee S, Kundu TK. Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. J Biosci 2020. [DOI: 10.1007/s12038-019-9974-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Su X, Yang Y, Ma L, Luo P, Shen K, Dai H, Jiang Y, Shuai L, Liu Z, You J, Min K, Shi C, Chen Z. Human Positive Coactivator 4 Affects the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma via the mTOR/P70s6k Signaling Pathway. Onco Targets Ther 2020; 13:12213-12223. [PMID: 33273827 PMCID: PMC7705283 DOI: 10.2147/ott.s284219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Pancreatic cancer is one of the deadliest cancers in the world, and pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all cases. Human positive coactivator 4 (PC4) is a transcriptional coactivator that has been associated with the development and progression of several tumors. However, no studies investigated the potential role of PC4 in PDAC. Methods We investigated PC4 expression in 81 PDAC tissue samples using immunohistochemistry and studied the impact of PC4 expression and the molecular mechanisms of this altered expression on PDAC tumorigenesis and proliferation both in vitro and in vivo. Results PC4 overexpression was correlated with a poor outcome in PDAC patients. The RNAi-mediated knockdown of PC4 expression in CFPAC-1 and AsPC-1 cell lines reduced cell proliferation and tumor growth. The loss of PC4 in PDAC inhibits cell growth by inducing cell cycle arrest at the G1/S transition and suppressing the mTOR/p70s6k pathway. Discussion/Conclusion Our findings reveal for the first time that PC4 exerts oncogenic functions by activating mTOR/p70s6k signaling pathway-mediated cell proliferation, implying that PC4 is a promising therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Kaicheng Shen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ling Shuai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Zhipeng Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jinshan You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ke Min
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
17
|
Liao F, Chen L, Luo P, Jiang Z, Chen Z, Wang Z, Zhang C, Wang Y, He J, Wang Q, Wang Y, Liu L, Huang Y, Wang H, Jiang Q, Luo M, Gan Y, Liu Y, Wang Y, Wu J, Xie W, Cheng Z, Dai Y, Li J, Liu Z, Yang F, Shi C. PC4 serves as a negative regulator of skin wound healing in mice. BURNS & TRAUMA 2020; 8:tkaa010. [PMID: 32373645 PMCID: PMC7198317 DOI: 10.1093/burnst/tkaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 01/13/2023]
Abstract
Background Human positive cofactor 4 (PC4) was initially characterized as a multifunctional transcriptional cofactor, but its role in skin wound healing is still unclear. The purpose of this study was to explore the role of PC4 in skin wound healing through PC4 knock-in mouse model. Methods A PC4 knock-in mouse model (PC4+/+) with a dorsal full-thickness wound was used to investigate the biological functions of PC4 in skin wound healing. Quantitative PCR, Western blot analysis and immunohistochemistry were performed to evaluate the expression of PC4; Sirius red staining and immunofluorescence were performed to explore the change of collagen deposition and angiogenesis. Proliferation and apoptosis were detected using Ki67 staining and TUNEL assay. Primary dermal fibroblasts were isolated from mouse skin to perform cell scratch experiments, cck-8 assay and colony formation assay. Results The PC4+/+ mice were fertile and did not display overt abnormalities but showed an obvious delay in cutaneous healing of dorsal skin. Histological staining showed insufficient re-epithelialization, decreased angiogenesis and collagen deposition, increased apoptosis and decreased cell proliferation in PC4+/+ skin. Our data also showed decreased migration rate and proliferation ability in cultured primary fibroblasts from PC4+/+ mice in vitro. Conclusions This study suggests that PC4 might serve as a negative regulator of skin wound healing in mice.
Collapse
Affiliation(s)
- Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jintao He
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lang Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Yu Huang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Yibo Gan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wentao Xie
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yali Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jialun Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zujuan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
18
|
Efficacy of a small molecule inhibitor of the transcriptional cofactor PC4 in prevention and treatment of non-small cell lung cancer. PLoS One 2020; 15:e0230670. [PMID: 32231397 PMCID: PMC7108703 DOI: 10.1371/journal.pone.0230670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The human positive coactivator 4 (PC4) was originally identified as a multi-functional cofactor capable of mediating transcription activation by diverse gene- and tissue-specific activators. Recent studies suggest that PC4 might also function as a novel cancer biomarker and therapeutic target for different types of cancers. siRNA knockdown studies indicated that down-regulation of PC4 expression could inhibit tumorigeneicity of A549 non-small cell lung cancer tumor model in nude mice. Here we show that AG-1031, a small molecule identified by high throughput screening, can inhibit the double-stranded DNA binding activity of PC4, more effectively than its single-stranded DNA binding activity. AG-1031 also specifically inhibited PC4-dependent transcriptional activation in vitro using purified transcription factors. AG-1031 inhibited proliferation of several cultured cell lines derived from non-small cell lung cancers (NSCLC) and growth of tumors that formed from A549 cell xenografts in immuno-compromised mice. Moreover, pre-injection of AG-1031 in these mice not only reduced tumor size, but also prevented tumor formation in 20% of the animals. AG-1031 treated A549 cells and tumors from AG-1031 treated animals showed a significant decrease in the levels of both PC4 and VEGFC, a key mediator of angiogenesis in cancer. On the other hand, all tested mice remained constant weight during animal trials. These results demonstrated that AG-1031 could be a potential therapy for PC4-positive NSCLC.
Collapse
|
19
|
Bradley T, Kuraoka M, Yeh CH, Tian M, Chen H, Cain DW, Chen X, Cheng C, Ellebedy AH, Parks R, Barr M, Sutherland LL, Scearce RM, Bowman CM, Bouton-Verville H, Santra S, Wiehe K, Lewis MG, Ogbe A, Borrow P, Montefiori D, Bonsignori M, Anthony Moody M, Verkoczy L, Saunders KO, Ahmed R, Mascola JR, Kelsoe G, Alt FW, Haynes BF. Immune checkpoint modulation enhances HIV-1 antibody induction. Nat Commun 2020; 11:948. [PMID: 32075963 PMCID: PMC7031230 DOI: 10.1038/s41467-020-14670-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Eliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses. Elucidation of broadly neutralizing antibodies (bnAb) is a goal in HIV vaccine development. Here, Bradley et al. show that administration of CTLA-4 blocking antibody with vaccine antigens increases HIV-1 envelope antibody responses in macaques and a bnAb precursor mouse model.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
| | - Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Ali H Ellebedy
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hilary Bouton-Verville
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Ane Ogbe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Sikder S, Kumari S, Kumar M, Sen S, Singhal NB, Chellappan S, Godbole M, Chandrani P, Dutt A, Gopinath KS, Kundu TK. Chromatin protein PC4 is downregulated in breast cancer to promote disease progression: Implications of miR-29a. Oncotarget 2019; 10:6855-6869. [PMID: 31839879 PMCID: PMC6901337 DOI: 10.18632/oncotarget.27325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023] Open
Abstract
The human transcriptional coactivator PC4 has numerous roles to play in the cell. Other than its transcriptional coactivation function, it facilitates chromatin organization, DNA damage repair, viral DNA replication, etc. Although it was found to be an essential protein in vivo, the importance of this multifunctional protein in the regulation of different cellular pathways has not been investigated in details, particularly in oncogenesis. In this study, PC4 downregulation was observed in a significant proportion of mammary tissues obtained from Breast cancer patient samples as well as in a subset of highly invasive and metastatic Breast cancer patient-derived cell lines. We have identified a miRNA, miR-29a which potentially reduce the expression of PC4 both in RNA and protein level. This miR-29a was found to be indeed overexpressed in a substantial number of Breast cancer patient samples and cell lines as well, suggesting one of the key mechanisms of PC4 downregulation. Stable Knockdown of PC4 in MCF7 cells induced its migratory as well as invasive properties. Furthermore, in an orthotopic breast cancer mice model system; we have shown that reduced expression of PC4 enhances the tumorigenic potential substantially. Absence of PC4 led to the upregulation of several genes involved in Epithelial to Mesenchymal Transition (EMT), indicating the possible mechanism of uniform tumour progression in the orthotropic mice. Collectively these data establish the role of PC4 in tumour suppression.
Collapse
Affiliation(s)
- Sweta Sikder
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sujata Kumari
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manoj Kumar
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shrinka Sen
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Mukul Godbole
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Pratik Chandrani
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Amit Dutt
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | | | - Tapas K. Kundu
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
21
|
Luo P, Tan X, Luo S, Wang Z, Long L, Wang Y, Liao F, Chen L, Zhang C, He J, Huang Y, Liu Z, Gan Y, Chen Z, Wang Y, Liu Y, Wang Y, Shi C. An NIR‐Fluorophore‐Based Inhibitor of SOD1 Induces Apoptosis by Targeting Transcription Cofactor PC4. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Shenglin Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Ziwen Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yawei Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Fengying Liao
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Long Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chi Zhang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Jintao He
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yinghui Huang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zujuan Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yibo Gan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yang Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yunsheng Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| |
Collapse
|
22
|
Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal 2019; 17:36. [PMID: 30992017 PMCID: PMC6469038 DOI: 10.1186/s12964-019-0348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background The human positive cofactor 4 (PC4) is initially identified as a transcriptional cofactor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of PC4 in breast cancer development and progression are still unknown. Methods We investigated PC4 expression in 114 cases of primary breast cancer and matched normal breast tissue specimens, and studied the impact of PC4 expression as well as the molecular mechanisms of this altered expression on breast cancer growth and metastasis both in vitro and in vivo. Results PC4 was significantly upregulated in breast cancer and high PC4 expression was positively correlated with metastasis and poor prognosis of patients. Gene set enrichment analysis (GSEA) demonstrated that the gene sets of cell proliferation and Epithelial-Mesenchymal Transition (EMT) were positively correlated with elevated PC4 expression. Consistently, loss of PC4 markedly inhibited the growth and metastasis of breast cancer both in vitro and in vivo. Mechanistically, PC4 exerted its oncogenic functions by directly binding to c-Myc promoters and inducing Warburg effect. Conclusions Our study reveals for the first time that PC4 promotes breast cancer progression by directly regulating c-Myc transcription to promote Warburg effect, implying a novel therapeutic target for breast cancer. Electronic supplementary material The online version of this article (10.1186/s12964-019-0348-0) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Wang F, Yu Z, Wang W, Li Y, Lu G, Qu C, Wang H, Lu M, Wang L, Song L. A novel caspase-associated recruitment domain (CARD) containing protein (CgCARDCP-1) involved in LPS recognition and NF-κB activation in oyster (Crassostrea gigas). FISH & SHELLFISH IMMUNOLOGY 2018; 79:120-129. [PMID: 29751033 DOI: 10.1016/j.fsi.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Caspase-associated recruitment domain (CARD) containing proteins play critical roles in molecular interaction and regulation of various signaling pathways, such as the activation of caspase and NF-κB singling pathway in the process of apoptosis or inflammation. In the present study, a novel CARD containing protein (designed CgCARDCP-1) was identified and characterized from oyster Crassostrea gigas. Molecular feature analysis revealed that, the open reading frame (ORF) of CgCARDCP-1 gene was 759 bp encoding a polypeptide of 253 amino acids with a conserved N-terminal CARD domain and two transcriptional coactivator p15 (PC4) domains in C-terminus. Homologous alignment showed that the amino acid sequence of CgCARDCP-1 shared 30%-46% identity with that of caspase-2. By RT-PCR detection, the mRNA transcripts of CgCARDCP-1 were found to be widely distributed in various tissues of oyster with the highest expression level in hemocytes and mantle. And CgCARDCP-1 protein was mostly distributed in the cytoplasm of oyster hemocytes as shown by immunohistochemistry. Moreover, the CgCARDCP-1 mRNA expression level in hemocytes was significantly up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The recombinant CgCARDCP-1 displayed strong binding activity with LPS in vitro. In addition, after transfected into the HEK-293T cell with luciferase reporter system, CgCARDCP-1 could significantly promote the NF-κB activation (1.29-fold, p < 0.05) compared to that in the control group. These results collectively demonstrated that the CgCARDCP-1 might serve as a recognition molecule for LPS and a regulator of NF-κB activation in the immune response of oyster.
Collapse
Affiliation(s)
- Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Prevention and Control for Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
24
|
Positive cofactor 4 (PC4) contributes to the regulation of replication-dependent canonical histone gene expression. BMC Mol Biol 2018; 19:9. [PMID: 30053800 PMCID: PMC6062981 DOI: 10.1186/s12867-018-0110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/18/2018] [Indexed: 12/04/2022] Open
Abstract
Background Core canonical histones are required in the S phase of the cell cycle to pack newly synthetized DNA, therefore the expression of their genes is highly activated during DNA replication. In mammalian cells, this increment is achieved by both enhanced transcription and 3′ end processing. In this paper, we described positive cofactor 4 (PC4) as a protein that contributes to the regulation of replication-dependent histone gene expression. Results We showed that PC4 influences RNA polymerase II recruitment to histone gene loci in a cell cycle-dependent manner. The most important effect was observed in S phase where PC4 knockdown leads to the elevated level of RNA polymerase II on histone genes, which corresponds to the increased total level of those gene transcripts. The opposite effect was caused by PC4 overexpression. Moreover, we found that PC4 has a negative effect on the unique 3′ end processing of histone pre-mRNAs that can be based on the interaction of PC4 with U7 snRNP and CstF64. Interestingly, this effect does not depend on the cell cycle. Conclusions We conclude that PC4 might repress RNA polymerase II recruitment and transcription of replication-dependent histone genes in order to maintain the very delicate balance between histone gene expression and DNA synthesis. It guards the cell from excess of histones in S phase. Moreover, PC4 might promote the interaction of cleavage and polyadenylation complex with histone pre-mRNAs, that might impede with the recruitment of histone cleavage complex. This in turn decreases the 3′ end processing efficiency of histone gene transcripts. Electronic supplementary material The online version of this article (10.1186/s12867-018-0110-y) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Singh DK, Gholamalamdari O, Jadaliha M, Ling Li X, Lin YC, Zhang Y, Guang S, Hashemikhabir S, Tiwari S, Zhu YJ, Khan A, Thomas A, Chakraborty A, Macias V, Balla AK, Bhargava R, Janga SC, Ma J, Prasanth SG, Lal A, Prasanth KV. PSIP1/p75 promotes tumorigenicity in breast cancer cells by promoting the transcription of cell cycle genes. Carcinogenesis 2017. [PMID: 28633434 DOI: 10.1093/carcin/bgx062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.
Collapse
Affiliation(s)
- Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mahdieh Jadaliha
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xiao Ling Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Zhang
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Shuomeng Guang
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Seyedsasan Hashemikhabir
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202,USA
| | - Saumya Tiwari
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Yuelin J Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Virgilia Macias
- Department of Pathology, College of Medicine, University of Illinois at Chicago,Chicago, IL 60612, USA
| | - Andre K Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago,Chicago, IL 60612, USA
| | - Rohit Bhargava
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA.,Departments of Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering and Chemistry, UIUC, Urbana, IL, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202,USA
| | - Jian Ma
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA.,School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ashish Lal
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Garavís M, González-Polo N, Allepuz-Fuster P, Louro JA, Fernández-Tornero C, Calvo O. Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Nucleic Acids Res 2017; 45:2458-2471. [PMID: 27924005 PMCID: PMC5389574 DOI: 10.1093/nar/gkw1206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII stalk, promote phosphatase functions and Sub1 globally influences CTD phosphorylation, though its mechanism remains mostly unknown. Here, we show that Sub1 physically interacts with the RNAPII stalk domain, Rpb4/7, likely through its C-terminal region, and associates with Fcp1. While Rpb4 is not required for Sub1 interaction with RNAPII complex, a fully functional heterodimer is required for Sub1 association to promoters. We also demonstrate that a complete CTD is necessary for proper association of Sub1 to chromatin and to the RNAPII. Finally, genetic data show a functional relationship between Sub1 and the RNAPII clamp domain. Altogether, our results indicate that Sub1, Rpb4/7 and Fcp1 interaction modulates CTD phosphorylation. In addition, Sub1 interaction with Rpb4/7 can also modulate transcription start site selection and transcription elongation rate likely by influencing the clamp function.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Noelia González-Polo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Jaime Alegrio Louro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Olga Calvo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
27
|
Swaminathan A, Delage H, Chatterjee S, Belgarbi-Dutron L, Cassel R, Martinez N, Cosquer B, Kumari S, Mongelard F, Lannes B, Cassel JC, Boutillier AL, Bouvet P, Kundu TK. Transcriptional Coactivator and Chromatin Protein PC4 Is Involved in Hippocampal Neurogenesis and Spatial Memory Extinction. J Biol Chem 2016; 291:20303-14. [PMID: 27471272 DOI: 10.1074/jbc.m116.744169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/12/2023] Open
Abstract
Although the elaborate combination of histone and non-histone protein complexes defines chromatin organization and hence regulates numerous nuclear processes, the role of chromatin organizing proteins remains unexplored at the organismal level. The highly abundant, multifunctional, chromatin-associated protein and transcriptional coactivator positive coactivator 4 (PC4/Sub1) is absolutely critical for life, because its absence leads to embryonic lethality. Here, we report results obtained with conditional PC4 knock-out (PC4(f/f) Nestin-Cre) mice where PC4 is knocked out specifically in the brain. Compared with the control (PC4(+/+) Nestin-Cre) mice, PC4(f/f) Nestin-Cre mice are smaller with decreased nocturnal activity but are fertile and show no motor dysfunction. Neurons in different areas of the brains of these mice show sensitivity to hypoxia/anoxia, and decreased adult neurogenesis was observed in the dentate gyrus. Interestingly, PC4(f/f) Nestin-Cre mice exhibit a severe deficit in spatial memory extinction, whereas acquisition and long term retention were unaffected. Gene expression analysis of the dorsal hippocampus of PC4(f/f) Nestin-Cre mice revealed dysregulated expression of several neural function-associated genes, and PC4 was consistently found to localize on the promoters of these genes, indicating that PC4 regulates their expression. These observations indicate that non-histone chromatin-associated proteins like PC4 play a significant role in neuronal plasticity.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Hélène Delage
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Snehajyoti Chatterjee
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | | | - Raphaelle Cassel
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Nicole Martinez
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Brigitte Cosquer
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France
| | - Sujata Kumari
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Fabien Mongelard
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Béatrice Lannes
- the Département de Pathologie, Hôpital de Hautepierre, Université de Strasbourg, 67081 Strasbourg, France
| | - Jean-Christophe Cassel
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Anne-Laurence Boutillier
- the Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, Université de Strasbourg, F-67000, Strasbourg, France, the UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, F-67000, Strasbourg, France, and
| | - Philippe Bouvet
- the Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France,
| | - Tapas K Kundu
- From the Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India,
| |
Collapse
|
28
|
Caldwell RB, Braselmann H, Schoetz U, Heuer S, Scherthan H, Zitzelsberger H. Positive Cofactor 4 (PC4) is critical for DNA repair pathway re-routing in DT40 cells. Sci Rep 2016; 6:28890. [PMID: 27374870 PMCID: PMC4931448 DOI: 10.1038/srep28890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
PC4 is an abundant single-strand DNA binding protein that has been implicated in transcription and DNA repair. Here, we show that PC4 is involved in the cellular DNA damage response. To elucidate the role, we used the DT40 chicken B cell model, which produces clustered DNA lesions at Ig loci via the action of activation-induced deaminase. Our results help resolve key aspects of immunoglobulin diversification and suggest an essential role of PC4 in repair pathway choice. We show that PC4 ablation in gene conversion (GC)-active cells significantly disrupts GC but has little to no effect on targeted homologous recombination. In agreement, the global double-strand break repair response, as measured by γH2AX foci analysis, is unperturbed 16 hours post irradiation. In cells with the pseudo-genes removed (GC inactive), PC4 ablation reduced the overall mutation rate while simultaneously increasing the transversion mutation ratio. By tagging the N-terminus of PC4, gene conversion and somatic hypermutation are all but abolished even when native non-tagged PC4 is present, indicating a dominant negative effect. Our data point to a very early and deterministic role for PC4 in DNA repair pathway re-routing.
Collapse
Affiliation(s)
- Randolph B Caldwell
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Herbert Braselmann
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ulrike Schoetz
- Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Helmholtz Zentrum München, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany.,Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Steffen Heuer
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm. Neuherbergstr. 11, 80937 Muenchen, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Helmholtz Zentrum München, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| |
Collapse
|
29
|
Chakravarthi BVSK, Goswami MT, Pathi SS, Robinson AD, Cieślik M, Chandrashekar DS, Agarwal S, Siddiqui J, Daignault S, Carskadon SL, Jing X, Chinnaiyan AM, Kunju LP, Palanisamy N, Varambally S. MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene 2016; 35:6330-6340. [PMID: 27270442 PMCID: PMC5140777 DOI: 10.1038/onc.2016.164] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes. Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1), C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus, our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate cancer.
Collapse
Affiliation(s)
- B V S K Chakravarthi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M T Goswami
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - S S Pathi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - A D Robinson
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - D S Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Agarwal
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - S Daignault
- Center for Cancer Biostatistics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - S L Carskadon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - X Jing
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - A M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - L P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - N Palanisamy
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - S Varambally
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Dhanasekaran K, Kumari S, Boopathi R, Shima H, Swaminathan A, Bachu M, Ranga U, Igarashi K, Kundu TK. Multifunctional human transcriptional coactivator protein PC4 is a substrate of Aurora kinases and activates the Aurora enzymes. FEBS J 2016; 283:968-85. [DOI: 10.1111/febs.13653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Karthigeyan Dhanasekaran
- Transcription and Disease Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Sujata Kumari
- Transcription and Disease Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Hiroki Shima
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- Center for Regulatory Epigenome and Diseases; Tohoku University; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Mahesh Bachu
- Molecular Virology Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Udaykumar Ranga
- Molecular Virology Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| | - Kazuhiko Igarashi
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- Center for Regulatory Epigenome and Diseases; Tohoku University; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| | - Tapas K. Kundu
- Transcription and Disease Laboratory; Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore Karnataka India
| |
Collapse
|
31
|
Structural analysis and knock-out of a Burkholderia pseudomallei homolog of the eukaryotic transcription coactivator PC4. Gene 2016; 577:140-7. [DOI: 10.1016/j.gene.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
|
32
|
The Sub1 nuclear protein protects DNA from oxidative damage. Mol Cell Biochem 2015; 412:165-71. [PMID: 26708217 DOI: 10.1007/s11010-015-2621-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species are a by-product of aerobic metabolism that can damage lipid, proteins, and nucleic acids. Oxidative damage to DNA is especially critical, because it can lead to cell death or mutagenesis. Previously we reported that the yeast sub1 deletion mutant is sensitive to hydrogen peroxide treatment and that the human SUB1 can complement the sensitivity of the yeast sub1 mutant. In this study, we find that Sub1 protects DNA from oxidative damage in vivo and in vitro. We demonstrate that transcription of SUB1 mRNA is induced by oxidative stress and that the sub1Δ mutant has an increased number of chromosomal DNA strand breaks after peroxide treatment. We further demonstrate that purified Sub1 protein can protect DNA from oxidative damage in vitro, using the metal ion catalyzed oxidation assay.
Collapse
|
33
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
34
|
PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene 2015; 35:761-70. [DOI: 10.1038/onc.2015.135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 01/07/2023]
|
35
|
Identification and characterization of nonhistone chromatin proteins: human positive coactivator 4 as a candidate. Methods Mol Biol 2015; 1288:245-72. [PMID: 25827884 DOI: 10.1007/978-1-4939-2474-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The highly dynamic nucleoprotein structure of eukaryotic genome is organized in an ordered fashion, the unit of which is the nucleosome. The nucleosome is composed of core histones and DNA of variable size wrapped around it. Apart from the histone proteins, several nonhistone proteins also interact with the complex consisting of the DNA, the core and linker histones conferring highly regulated fluidity on the chromatin and permitting fine tuning of its functions. The nonhistone proteins are multifunctional and accentuate diverse cellular outcomes. In spite of the technical challenges, the architectural role of the nonhistone proteins altering the topology of the chromatin has been studied extensively. To appreciate the significance of the chromatin for genome function, it is essential to examine the role of the nonhistone proteins in different physiological conditions. Here, taking the example of a highly abundant chromatin protein, PC4 (Positive coactivator 4), we describe strategies for the identification of the chromatin-associated proteins and their structural and functional characterization.
Collapse
|
36
|
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2014; 517:583-8. [PMID: 25494202 DOI: 10.1038/nature14136] [Citation(s) in RCA: 1946] [Impact Index Per Article: 194.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
Abstract
Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.
Collapse
|
37
|
Fujita T, Fujii H. Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One 2014; 9:e103084. [PMID: 25051498 PMCID: PMC4106880 DOI: 10.1371/journal.pone.0103084] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/27/2014] [Indexed: 12/26/2022] Open
Abstract
Isolation of specific genomic regions retaining molecular interactions is essential for comprehensive identification of molecules associated with the genomic regions. Recently, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology for purification of specific genomic regions. Here, we developed a retroviral expression system for enChIP using CRISPR. We showed that the target genomic locus can be purified with high efficiency by using this system. We also showed that contamination of potential off-target sites is negligible by using this system if the guide RNA (gRNA) for the target site has a sufficiently long unique sequence in its seed sequence. enChIP combined with stable isotope labeling using amino acids in cell culture (SILAC) analysis identified proteins whose association with the interferon (IFN) regulatory factor-1 (IRF-1) promoter region increases in response to IFNγ stimulation. The list of the associated proteins contained many novel proteins in the context of IFNγ-induced gene expression as well as proteins related to histone deacetylase complexes whose involvement has been suggested in IFNγ-mediated gene expression. Finally, we confirmed IFNγ-induced increased association of the identified proteins with the IRF-1 promoter by ChIP. Thus, our results showed that the retroviral enChIP system using CRISPR would be useful for biochemical analysis of genome functions including transcription and epigenetic regulation.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hodaka Fujii
- Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
38
|
Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi JH, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. ACTA ACUST UNITED AC 2013; 217:507-17. [PMID: 24198265 DOI: 10.1242/jeb.089813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Males and females can be highly dimorphic in metabolism and physiology despite sharing nearly identical genomes, and both sexes respond phenotypically to elevated testosterone, a steroid hormone that alters gene expression. Only recently has it become possible to learn how a hormone such as testosterone affects global gene expression in non-model systems, and whether it affects the same genes in males and females. To investigate the transcriptional mechanisms by which testosterone exerts its metabolic and physiological effects on the periphery, we compared gene expression by sex and in response to experimentally elevated testosterone in a well-studied bird species, the dark-eyed junco (Junco hyemalis). We identified 291 genes in the liver and 658 in the pectoralis muscle that were differentially expressed between males and females. In addition, we identified 1727 genes that were differentially expressed between testosterone-treated and control individuals in at least one tissue and sex. Testosterone treatment altered the expression of only 128 genes in both males and females in the same tissue, and 847 genes were affected significantly differently by testosterone treatment in the two sexes. These substantial differences in transcriptional response to testosterone suggest that males and females may employ different pathways when responding to elevated testosterone, despite the fact that many phenotypic effects of experimentally elevated testosterone are similar in both sexes. In contrast, of the 121 genes that were affected by testosterone treatment in both sexes, 78% were regulated in the same direction (e.g. either higher or lower in testosterone-treated than control individuals) in both males and females. Thus, it appears that testosterone acts through both unique and shared transcriptional pathways in males and females, suggesting multiple mechanisms by which sexual conflict can be mediated.
Collapse
Affiliation(s)
- Mark P Peterson
- Department of Biology, Center for Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Steigemann B, Schulz A, Werten S. Bacteriophage T5 Encodes a Homolog of the Eukaryotic Transcription Coactivator PC4 Implicated in Recombination-Dependent DNA Replication. J Mol Biol 2013; 425:4125-33. [DOI: 10.1016/j.jmb.2013.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
40
|
Wagner LM, DeLuca NA. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One 2013; 8:e78242. [PMID: 24147125 PMCID: PMC3795685 DOI: 10.1371/journal.pone.0078242] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate early protein, ICP4, participates in the regulation of viral gene expression by both activating and repressing RNA polII transcription. We used affinity purification of ICP4 expressed in infected cells followed by mass spectrometry and western blot analysis to determine the composition of cellular complexes associated with ICP4 throughout infection. ICP4 was associated with TFIID complexes containing a distinct set of TAFs. These complexes were most abundant early, but were detected throughout infection, whereas Mediator was found in ICP4 containing complexes later in infection, indicating a temporal pattern for the utilization of these complexes for the transcription of the viral genome. The form of Mediator copurifying with ICP4 was enriched for the kinase domain and also lacked the activator-specific component, Med26, suggesting that Mediator-ICP4 interactions may be involved in repression of viral transcription. The N-terminal 774 amino acids of ICP4, which retains partial function, were sufficient to form complexes with TFIID and Mediator, although these interactions were not as strong as with full-length ICP4. Additionally, components involved in transcription elongation, chromatin remodeling, and mRNA processing were isolated with ICP4. Together our data indicate that ICP4 plays a more integrated role in mediating HSV transcription, possibly affecting multiple steps in transcription and gene expression.
Collapse
Affiliation(s)
- Lauren M. Wagner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neal A. DeLuca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair. PLoS One 2013; 8:e58015. [PMID: 23554872 PMCID: PMC3595253 DOI: 10.1371/journal.pone.0058015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Non homologous end joining (NHEJ) is an important process that repairs double strand DNA breaks (DSBs) in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s) that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.
Collapse
|
42
|
Solubility-based genetic screen identifies RING finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2012; 110:1029-34. [PMID: 23277564 DOI: 10.1073/pnas.1214538110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions are typically identified by either biochemical purification coupled to mass spectrometry or genetic approaches exemplified by the yeast two-hybrid assay; however, neither assay works well for the identification of cofactors for poorly soluble proteins. Solubility of a poorly soluble protein is thought to increase upon cofactor binding, possibly by masking otherwise exposed hydrophobic domains. We have exploited this notion to develop a high-throughput genetic screen to identify interacting partners of an insoluble protein fused to chloramphenicol acetyltransferase by monitoring the survival of bacteria in the presence of a drug. In addition to presenting proof-of-principle experiments, we apply this screen to activation-induced cytidine deaminase (AID), a poorly soluble protein that is essential for antibody diversification. We identify a unique cofactor, RING finger protein 126 (RNF126), verify its interaction by traditional techniques, and show that it has functional consequences as RNF126 is able to ubiquitylate AID. Our results underpin the value of this screening technique and suggest a unique form of AID regulation involving RNF126 and ubiquitylation.
Collapse
|
43
|
Sub1 and RPA associate with RNA polymerase II at different stages of transcription. Mol Cell 2011; 44:397-409. [PMID: 22055186 DOI: 10.1016/j.molcel.2011.09.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/06/2011] [Accepted: 09/30/2011] [Indexed: 01/24/2023]
Abstract
Single-stranded DNA-binding proteins play many roles in nucleic acid metabolism, but their importance during transcription remains unclear. Quantitative proteomic analysis of RNA polymerase II (RNApII) preinitiation complexes (PICs) identified Sub1 and the replication protein A complex (RPA), both of which bind single-stranded DNA (ssDNA). Sub1, homolog of mammalian coactivator PC4, exhibits strong genetic interactions with factors necessary for promoter melting. Sub1 localizes near the transcription bubble in vitro and binds to promoters in vivo dependent upon PIC assembly. In contrast, RPA localizes to transcribed regions of active genes, strongly correlated with transcribing RNApII but independently of replication. RFA1 interacts genetically with transcription elongation factor genes. Interestingly, RPA levels increase at active promoters in cells carrying a Sub1 deletion or ssDNA-binding mutant, suggesting competition for a common binding site. We propose that Sub1 and RPA interact with the nontemplate strand of RNApII complexes during initiation and elongation, respectively.
Collapse
|
44
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
45
|
Debnath S, Chatterjee S, Arif M, Kundu TK, Roy S. Peptide-protein interactions suggest that acetylation of lysines 381 and 382 of p53 is important for positive coactivator 4-p53 interaction. J Biol Chem 2011; 286:25076-87. [PMID: 21586571 DOI: 10.1074/jbc.m110.205328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transcriptional positive coactivator 4 (PC4) activates several p53-dependent genes. It has been demonstrated that this is a consequence of direct interaction with p53. Previously, we have concluded that PC4 interacts mainly with the C-terminal negative regulatory domain of p53 through its DNA binding C-terminal half. NMR chemical shift perturbation studies with peptide fragments indicated that amino acids 380-386 of p53 are crucial for interaction with PC4. This was verified by fluorescence anisotropy and sedimentation velocity studies. A peptide consisting of p53-(380-386) sequence, when attached to a cell penetration tag and nuclear localization signal, localizes to the nucleus and inhibits luciferase gene expression from a transfected plasmid carrying a Luc gene under a p53-dependent promoter. Acetylation of lysine 382/381 enhanced the binding of this peptide to PC4 by about an order of magnitude. NMR and mutagenesis studies indicated that serine 73 of PC4 is an important residue for recognition of p53. Intermolecular nuclear Overhauser effect placed aspartate 76 in the vicinity of lysine 381, indicating that the region around residues 73-76 of PC4 is important for p53 recognition. We conclude that the 380-386 region of p53 interacts with the region around residues 73-76 of PC4, and acetylation of lysine 382/381 of p53 may play an important role in modulating p53-PC4 interaction and as a consequence PC4 mediated activation of p53 target genes.
Collapse
Affiliation(s)
- Subrata Debnath
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (India), 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
46
|
Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol 2011; 18:410-5. [PMID: 21378963 PMCID: PMC3076674 DOI: 10.1038/nsmb.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/03/2010] [Indexed: 11/09/2022]
Abstract
The human Activator-Recruited Cofactor (ARC)/Mediator co-activator complex interacts with many transcriptional activators and facilitates recruitment of RNA polymerase II to promote target gene transcription. The MED25 (ARC92) subunit is a critical target of the potent Herpes simplex 1 viral transcriptional activator VP16. Here, we determine the solution structure of the MED25 VP16-binding domain (VBD), and define its binding site for the N-terminal portion of the VP16 transactivation domain (TADn). A hydrophobic furrow, formed by a β-barrel and two α-helices in MED25 VBD, interacts tightly with VP16 TADn. Mutations in this furrow prevent binding of VP16 TAD to MED25 VBD and interfere with the ability of over-expressed MED25 VBD to inhibit VP16-dependent transcriptional activation in vivo. This detailed molecular understanding of transactivation by the benchmark activator VP16 could provide important insights into viral and cellular gene activation mechanisms.
Collapse
|
47
|
Liao M, Zhang Y, Kang JH, Dufau ML. Coactivator function of positive cofactor 4 (PC4) in Sp1-directed luteinizing hormone receptor (LHR) gene transcription. J Biol Chem 2010; 286:7681-91. [PMID: 21193408 DOI: 10.1074/jbc.m110.188532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22-91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.
Collapse
Affiliation(s)
- Mingjuan Liao
- Molecular Endocrinology Section, Program of Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
48
|
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180-93. [PMID: 20823273 DOI: 10.1128/mcb.00819-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Collapse
|
49
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
50
|
Das C, Gadad SS, Kundu TK. Human Positive Coactivator 4 Controls Heterochromatinization and Silencing of Neural Gene Expression by Interacting with REST/NRSF and CoREST. J Mol Biol 2010; 397:1-12. [DOI: 10.1016/j.jmb.2009.12.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
|