1
|
Inocencio da Luz R, Tablado Alonso S, Büscher P, Verlé P, De Weggheleire A, Mumba Ngoyi D, Pyana PP, Hasker E. Two-Year Follow-Up of Trypanosoma brucei gambiense Serology after Successful Treatment of Human African Trypanosomiasis: Results of Four Different Sero-Diagnostic Tests. Diagnostics (Basel) 2022; 12:246. [PMID: 35204337 PMCID: PMC8871350 DOI: 10.3390/diagnostics12020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
Gambiense human African trypanosomiasis (gHAT), also known as gambiense sleeping sickness, is a parasitic infection caused by Trypanosoma brucei gambiense. During the last decades, gHAT incidence has been brought to an all-time low. Newly developed serological tools and drugs for its diagnosis and treatment put the WHO goal of interruption of transmission by 2030 within reach. However, further research is needed to efficiently adapt these new advances to new control strategies. We assessed the serological evolution of cured gHAT patients over a two-year period using four different tests: the rapid diagnostic test (RDT) HAT Sero K-SeT, ELISA/T.b. gambiense, Trypanosoma brucei gambiense inhibition ELISA (iELISA), and the immune trypanolysis test. High seropositive rates were observed in all the tests, although sero-reversion rates were different in each test: ELISA/T.b. gambiense was the test most likely to become negative two years after treatment, whereas RDT HAT Sero-K-SeT was the least likely. iELISA and trypanolysis showed intermediate and comparable probabilities to become negative. Stage 1 patients were also noted to be more likely to become negative than Stage 2 patients in all four serological tests. Our results confirm previous findings that trypanosome-specific antibody concentrations in blood may persist for up to two years, implying that HAT control programs should continue to take the history of past HAT episodes into consideration.
Collapse
Affiliation(s)
- Raquel Inocencio da Luz
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Sara Tablado Alonso
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Philippe Büscher
- Unit of Diagnostic Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Paul Verlé
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Anja De Weggheleire
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherce Biomédicale, Département de Parasitologie, Kinshasa 834, Congo; (D.M.N.); (P.P.P.)
| | - Pati Patient Pyana
- Institut National de Recherce Biomédicale, Département de Parasitologie, Kinshasa 834, Congo; (D.M.N.); (P.P.P.)
| | - Epco Hasker
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| |
Collapse
|
2
|
Hayashida K, Nambala P, Reet NV, Büscher P, Kawai N, Mutengo MM, Musaya J, Namangala B, Sugimoto C, Yamagishi J. Development of a bio-inkjet printed LAMP test kit for detecting human African trypanosomiasis. PLoS Negl Trop Dis 2020; 14:e0008753. [PMID: 33091922 PMCID: PMC7608988 DOI: 10.1371/journal.pntd.0008753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Human African trypanosomiasis (HAT) is one of the neglected tropical diseases in sub-Saharan Africa. Early diagnosis and treatment prior to disease progression are crucial for the survival of HAT patients. We had previously established a loop-mediated isothermal amplification (LAMP) method for HAT diagnosis in which the reagents were dried for field-use purposes. In this study, we used a semi-automated process to produce the test tubes using a bio-inkjet printer to achieve an accurate production. The performance of the inkjet printer-produced dried LAMP test (CZC-LAMP) was found to be stable after storage for up to 180 days at 30 °C. The diagnostic accuracy of CZC-LAMP HAT was evaluated using DNA samples that were extracted from 116 Trypanosoma brucei gambiense patients and 66 T. b. rhodesiense patients. The sensitivity was 72% for T. b. gambiense (95%CI: 63%-80%) and 80% for T. b. rhodesiense (95%CI: 69%-89%). The specificity determined using DNA from 116 endemic control DNA samples was 95% (95%CI: 89%-98%). The performance of the CZC-LAMP HAT and CZC-LAMP rHAT were also evaluated using 14 crude blood lysate samples obtained from T. b. rhodesiense patients and endemic control samples collected from Rumphi District in Malawi. The sensitivity and specificity were both 100% (95%CI: 77%-100%). As the developed CZC-LAMP test does not require a cold chain or a sophisticated laboratory, it holds promise for use as a routine simple molecular tool for point-of-care HAT diagnosis in endemic areas.
Collapse
Affiliation(s)
- Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Peter Nambala
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Naoko Kawai
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
| | - Mable Mwale Mutengo
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Janelisa Musaya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Gambiense Human African Trypanosomiasis Sequelae after Treatment: A Follow-Up Study 12 Years after Treatment. Trop Med Infect Dis 2020; 5:tropicalmed5010010. [PMID: 31940846 PMCID: PMC7157708 DOI: 10.3390/tropicalmed5010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
The clinical presentation of Human African Trypanosomiasis (HAT) due to Trypanosoma brucei gambiense is well known, but knowledge on long-term sequelae is limited. In the frame of studies conducted between 2004 and 2005 in the Democratic Republic of the Congo (DRC), the prevalence of HAT related signs and symptoms were evaluated before the start of treatment and at the end of treatment. To explore possible long-term sequelae, the same clinical parameters were assessed in 2017 in 51 first stage and 18 second stage HAT patients. Signs and symptoms 12–13 years after treatment were compared to before and immediately after treatment and to controls matched for sex and age (±5 years). In first stage HAT patients, the prevalence of all signs and symptoms decreased compared to before treatment but were still higher after 12–13 years than immediately at the end of treatment and in the control group. In second stage HAT patients, all HAT-specific findings had continuously decreased to the point where they were in the range of the healthy control group. In a selection of oligosymptomatic first stage HAT patients, no trypanosomes were detected in the blood by microscopic examination or PCR. An oligosymptomatic presentation of HAT due to the persistence of parasites in compartments, where first stage HAT medications do not penetrate, could not be ruled out.
Collapse
|
4
|
Sullivan L, Wall SJ, Carrington M, Ferguson MAJ. Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a prototype lateral flow immunodiagnostic device. PLoS Negl Trop Dis 2013; 7:e2087. [PMID: 23469310 PMCID: PMC3584999 DOI: 10.1371/journal.pntd.0002087] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/17/2013] [Indexed: 11/30/2022] Open
Abstract
Background The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens. Methodology/Principal Findings We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device. Conclusions/Significance Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use. Human African Trypanosomiasis is caused by infection with Trypanosoma brucei gambiense or T. b. rhodesiense. Preliminary diagnosis of T. b. gambiense infection relies mainly on a Card Agglutination Test for Trypanosomiasis (CATT), which has acknowledged limitations. New approaches are needed, first to identify new diagnostic antigens and, second, to find a more suitable platform for field-based immunodiagnostic tests. We took an unbiased approach to identify candidate diagnostic antigens by asking which parasite proteins bind to the antibodies of infected patients and not to the antibodies of uninfected patients. From this list of twenty-four candidate antigens, we selected four and from these we selected the one that worked the best in conventional immunodiagnostic tests. This antigen, ISG65, was used to make lateral flow devices, where a small sample of patient serum is added to a pad and thirty minutes later infection can be inferred by simple optical read out. This simple prototype device works as well as the CATT test and may be developed and optimized for clinical use in the field.
Collapse
Affiliation(s)
- Lauren Sullivan
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
5
|
Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, Solano P, Garcia A, Courtin D, Laveissière C, Lingue K, Büscher P, Bucheton B. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis 2012; 6:e1691. [PMID: 22720107 PMCID: PMC3373650 DOI: 10.1371/journal.pntd.0001691] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/30/2012] [Indexed: 02/04/2023] Open
Abstract
The final outcome of infection by Trypanosoma brucei gambiense, the main agent of sleeping sickness, has always been considered as invariably fatal. While scarce and old reports have mentioned cases of self-cure in untreated patients, these studies suffered from the lack of accurate diagnostic tools available at that time. Here, using the most specific and sensitive tools available to date, we report on a long-term follow-up (15 years) of a cohort of 50 human African trypanosomiasis (HAT) patients from the Ivory Coast among whom 11 refused treatment after their initial diagnosis. In 10 out of 11 subjects who continued to refuse treatment despite repeated visits, parasite clearance was observed using both microscopy and polymerase chain reaction (PCR). Most of these subjects (7/10) also displayed decreasing serological responses, becoming progressively negative to trypanosome variable antigens (LiTat 1.3, 1.5 and 1.6). Hence, in addition to the “classic” lethal outcome of HAT, we show that alternative natural progressions of HAT may occur: progression to an apparently aparasitaemic and asymptomatic infection associated with strong long-lasting serological responses and progression to an apparently spontaneous resolution of infection (with negative results in parasitological tests and PCR) associated with a progressive drop in antibody titres as observed in treated cases. While this study does not precisely estimate the frequency of the alternative courses for this infection, it is noteworthy that in the field national control programs encounter a significant proportion of subjects displaying positive serologic test results but negative results in parasitological testing. These findings demonstrate that a number of these subjects display such infection courses. From our point of view, recognising that trypanotolerance exists in humans, as is now widely accepted for animals, is a major step forward for future research in the field of HAT. The existence of a diversity of infection outcomes – ranging from self-cure to asymptomatic, severe or fatal cases – is now widely recognised for most parasitic and infectious diseases. The dogma concerning sleeping sickness, however, is still that infection is 100% fatal. Here we describe a 15-year follow-up of patients diagnosed with human African trypanosomiasis (HAT) in the Ivory Coast but who refused treatment. Our results, based on clinical, serological, molecular, and parasitological investigations, combining diagnostic tools for the field and highly specific and sensitive laboratory tests, constitute the most comprehensive study on the natural evolution of Trypanosoma brucei gambiense infection in its human host. At least two alternative natural progressions of HAT to the “classic” fatal disease were identified: a progression to an apparently aparasitaemic and asymptomatic infection and a progression to an apparently spontaneous resolution of infection. We believe that recognising that trypanotolerance exists in humans is a major step forward for future research aimed at identifying human-specific defence and immune mechanisms involved in the control of T.b. gambiense infection and thus new candidate therapeutic or prophylactic targets.
Collapse
Affiliation(s)
- Vincent Jamonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wastling SL, Welburn SC. Diagnosis of human sleeping sickness: sense and sensitivity. Trends Parasitol 2011; 27:394-402. [DOI: 10.1016/j.pt.2011.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/25/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
|
7
|
Latent Trypanosoma brucei gambiense foci in Uganda: a silent epidemic in children and adults? Parasitology 2011; 138:1480-7. [PMID: 21554841 DOI: 10.1017/s0031182011000230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trypanosoma brucei gambiense sleeping sickness follows a long asymptomatic phase and persists in ancient foci from which epidemic clinical disease arises. A putative focus of T. b. gambiense infections has been identified, initially in mothers and young children, on the Lake Albert shoreline of Western Uganda leading to mass screening of 6207 individuals in September 2008. T. b. gambiense infections were identified by Card Agglutination Test for Trypanosomiasis (CATT) and sub-species-specific PCR although parasitological methods failed to confirm any patent trypanosome infections. In April 2009, CATT positives were re-visited; diagnosis of individuals by CATT and PCR was unstable over the two time points and parasites remained undetected, even using mini Anion Exchange Centrifugation Technique (mAECT). These observations suggest the possibility of a silent focus of disease, where all infected individuals are in a latent stage, and highlight our limited understanding of the local natural history and disease progression of T. b. gambiense in children and adults.
Collapse
|
8
|
Abstract
SUMMARYHuman African trypanosomiasis (HAT) or sleeping sickness is caused by protozoan parasitesTrypanosoma brucei gambienseandT. b. rhodesiense. Despite the enormous technological progress in molecular parasitology in recent years, the diagnosis of HAT is still problematic due to the lack of specific tools. To date, there are two realities when it comes to HAT; the first one being the world of modern experimental laboratories, equipped with the latest state-of-the-art technology, and the second being the world of HAT diagnosis, where the latest semi-commercial test was introduced 30 years ago (Magnuset al.1978). Hence, it appears that the lack of progress in HAT diagnosis is not primarily due to a lack of scientific interest or a lack of research funds, but mainly results from the many obstacles encountered in the translation of basic research into field-applicable diagnostics. This review will provide an overview of current diagnostic methods and highlight specific difficulties in solving the shortcomings of these methods. Future perspectives for accurate, robust, affordable diagnostics will be discussed as well.
Collapse
|
9
|
Lejon V, Ngoyi DM, Boelaert M, Büscher P. A CATT negative result after treatment for human African trypanosomiasis is no indication for cure. PLoS Negl Trop Dis 2010; 4:e590. [PMID: 20126270 PMCID: PMC2811173 DOI: 10.1371/journal.pntd.0000590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cure after treatment for human African trypanosomiasis (HAT) is assessed by examination of the cerebrospinal fluid every 6 months, for a total period of 2 years. So far, no markers for cure or treatment failure have been identified in blood. Trypanosome-specific antibodies are detectable in blood by the Card Agglutination Test for Trypanosomiasis (CATT). We studied the value of a normalising, negative post-treatment CATT result in treated Trypanosoma brucei (T.b.) gambiense sleeping sickness patients as a marker of cure. METHODOLOGY/PRINCIPAL FINDINGS The CATT/T.b. gambiense was performed on serum of a cohort of 360 T.b. gambiense patients, consisting of 242 primary and 118 retreatment cases. The CATT results during 2 years of post-treatment follow-up were studied in function of cure or treatment failure. At inclusion, sensitivity of CATT was 98% (234/238) in primary cases and only 78% (91/117) in retreatment cases. After treatment, the CATT titre decreased both in cured patients and in patients experiencing treatment failure. CONCLUSIONS/SIGNIFICANCE Though CATT is a good test to detect HAT in primary cases, a normalising or negative CATT result after treatment for HAT does not indicate cure, therefore CATT cannot be used to monitor treatment outcome.
Collapse
Affiliation(s)
- Veerle Lejon
- Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | |
Collapse
|
10
|
Checchi F, Filipe JAN, Haydon DT, Chandramohan D, Chappuis F. Estimates of the duration of the early and late stage of gambiense sleeping sickness. BMC Infect Dis 2008; 8:16. [PMID: 18261232 PMCID: PMC2259357 DOI: 10.1186/1471-2334-8-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 02/08/2008] [Indexed: 11/17/2022] Open
Abstract
Background The durations of untreated stage 1 (early stage, haemo-lymphatic) and stage 2 (late stage, meningo-encephalitic) human African trypanosomiasis (sleeping sickness) due to Trypanosoma brucei gambiense are poorly quantified, but key to predicting the impact of screening on transmission. Here, we outline a method to estimate these parameters. Methods We first model the duration of stage 1 through survival analysis of untreated serological suspects detected during Médecins Sans Frontières interventions in Uganda and Sudan. We then deduce the duration of stage 2 based on the stage 1 to stage 2 ratio observed during active case detection in villages within the same sites. Results Survival in stage 1 appears to decay exponentially (daily rate = 0.0019; mean stage 1 duration = 526 days [95%CI 357 to 833]), possibly explaining past reports of abnormally long duration. Assuming epidemiological equilibrium, we estimate a similar duration of stage 2 (500 days [95%CI 345 to 769]), for a total of nearly three years in the absence of treatment. Conclusion Robust estimates of these basic epidemiological parameters are essential to formulating a quantitative understanding of sleeping sickness dynamics, and will facilitate the evaluation of different possible control strategies.
Collapse
Affiliation(s)
- Francesco Checchi
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK.
| | | | | | | | | |
Collapse
|
11
|
Chappuis F, Loutan L, Simarro P, Lejon V, Büscher P. Options for field diagnosis of human african trypanosomiasis. Clin Microbiol Rev 2005; 18:133-46. [PMID: 15653823 PMCID: PMC544181 DOI: 10.1128/cmr.18.1.133-146.2005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human African trypanosomiasis (HAT) due to Trypanosoma brucei gambiense or T. b. rhodesiense remains highly prevalent in several rural areas of sub-Saharan Africa and is lethal if left untreated. Therefore, accurate tools are absolutely required for field diagnosis. For T. b. gambiense HAT, highly sensitive tests are available for serological screening but the sensitivity of parasitological confirmatory tests remains insufficient and needs to be improved. Screening for T. b. rhodesiense infection still relies on clinical features in the absence of serological tests available for field use. Ongoing research is opening perspectives for a new generation of field diagnostics. Also essential for both forms of HAT is accurate determination of the disease stage because of the high toxicity of melarsoprol, the drug most widely used during the neurological stage of the illness. Recent studies have confirmed the high accuracy of raised immunoglobulin M levels in the cerebrospinal fluid for the staging of T. b. gambiense HAT, and a promising simple assay (LATEX/IgM) is being tested in the field. Apart from the urgent need for better tools for the field diagnosis of this neglected disease, improved access to diagnosis and treatment for the population at risk remains the greatest challenge for the coming years.
Collapse
Affiliation(s)
- François Chappuis
- Travel and Migration Medicine Unit, Geneva University Hospital, 24 rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
12
|
Becker S, Franco JR, Simarro PP, Stich A, Abel PM, Steverding D. Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 2004; 50:193-9. [PMID: 15541605 DOI: 10.1016/j.diagmicrobio.2004.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/07/2004] [Indexed: 11/17/2022]
Abstract
We have developed a real-time PCR assay for detection of Trypanosoma brucei DNA in human blood samples. The PCR was conducted with newly designed primers targeting the 177-bp repeat satellite DNA in T. brucei and with Sybr Green to monitor the amplicon accumulation. DNA purification using Chelex 100 resin was performed on blood samples collected on Whatman FTA cards and was shown to be a simple and quantitative method as revealed by real-time PCR. The detection limit of the assay was 100 trypanosomes per mL blood, corresponding to an analytical sensitivity of 0.1 genome equivalents. Trypanosome DNA was detected in all blood samples from sleeping sickness patients and, furthermore, the identity of the amplicon was confirmed in all assays by dissociation analysis. Although template DNA from blood samples was amplified with significantly lower efficiency than genomic DNA, similar efficiency between all assays ensured quantitative results. No amplicon product was obtained with samples from uninfected individuals. The results indicate that the real-time PCR assay described is a rapid and sensitive method suitable for the detection of T. brucei in human blood samples in routine clinical laboratory practice.
Collapse
Affiliation(s)
- Sven Becker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Kashiwazaki Y, Kanitpun R, Suteeraparp P, Boonchit S. A preliminary comparative study of a dipstick colloidal dye immunoassay and two antigen-detection ELISAs for diagnosis of Trypanosoma evansi infection in cattle. Vet Res Commun 2000; 24:533-44. [PMID: 11305745 DOI: 10.1023/a:1006439902072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A dipstick colloidal dye immunoassay (DIA) was developed for the field diagnosis of Trypanosoma evansi infection using affinity-purified polyclonal antibodies (PcAbs) and the monoclonal antibody (McAb) 8B9. PcAbs were adsorbed onto Palanil Red dye particles and used as dye reagents. Dipsticks were dotted with four different antibodies; normal rabbit and mouse IgGs as negative controls, and anti-T. evansi PcAb and McAb 8B9, which capture trypanosome antigens in the tested samples. Since the dye reagent bound to the captured antigens, the presence of coloured dots on the dipstick identified trypanosome infections. The sensitivity of the DIA was compared with two antigen detection ELISAs (Ag-ELISA); one was PcAb-based and the other was based on a combination of the same Mc- and PcAbs as were employed for the DIA. With a positive serum, the DIA detected trypanosomal antigen up to a dilution of 1:500 for both the PcAb and McAb dots, at which dilution the PcAb- and combination-based Ag-ELISA gave positive OD readings of 0.13 and 0.36, respectively. When 124 field sera were tested, circulating antigens were detected in 51 (41%) samples by the DIA, and 76 (61%) and 49 (40%) samples by the PcAb- and combination-based Ag-ELISAs respectively, of which 48 (63%) and 34 (69%) were also positive by the DIA.
Collapse
Affiliation(s)
- Y Kashiwazaki
- National Institute of Animal Health, Bangkhen, Bangkok, Thailand.
| | | | | | | |
Collapse
|