1
|
Karkhane AA, Zargoosh S, Aliakbari M, Fatemi SSA, Aminzadeh S, Karkhaneh B. In Silico and Experimental Studies on the Effect of α3 and α5 Deletion on the Biochemical Properties of Bacillus thermocatenulatus Lipase. Mol Biotechnol 2024; 66:1894-1906. [PMID: 37479905 DOI: 10.1007/s12033-023-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023]
Abstract
To investigate the effect of α3 and α5 helices on the biochemical characterization of Bacillus thermocatenulatus lipase (BTL2), both helices were deleted from native BTL2 lipase. After structural modeling and characterization, the truncated btl2 gene (Δbtl2) was cloned into E. coli BL21 under the control of the T7 promoter. After cultivation and induction of the recombinant bacteria, the Δα3α5 lipase was purified by Ni-NTA column chromatography. Next, the biochemical properties of the Δα3α5 lipase were compared with the previously expressed and purified native lipase. In the presence of the substrate tributyrin (C4), the maximum activity of native and Δα3α5 lipase was 9360 and 5000 U/mg, respectively. The deletion changed the substrate specificity from tributyrin (C4) to tricaprylin (C8) substrate. Native and Δα3α5 lipase showed similar activity patterns at all temperatures and pH values, with the activity of Δα3α5 lipase being approximately 20% lower than native lipase. Triton X100 increased the activity of native and Δα3α5 lipases by 2.1- and 2.5-fold, respectively.
Collapse
Affiliation(s)
- Ali Asghar Karkhane
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.
| | - Soha Zargoosh
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Moein Aliakbari
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
2
|
Fogal S, Bergantino E, Motterle R. Enzymatic Resolution of
cis
‐Dimethyl‐1‐acetylpiperidine‐2,3‐dicarboxylate for the Preparation of a Moxifloxacin Building Block. ChemistrySelect 2022. [DOI: 10.1002/slct.202104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefano Fogal
- Fabbrica Italiana Sintetici S.p.A. Viale Milano 26 36075 Alte di Montecchio Maggiore Vicenza Italy
| | | | - Riccardo Motterle
- Fabbrica Italiana Sintetici S.p.A. Viale Milano 26 36075 Alte di Montecchio Maggiore Vicenza Italy
| |
Collapse
|
3
|
Liu S, Liu L, Zhou Y, Chen Y, Zhao J. Selective ring-opening polymerization of glycidyl ester: a versatile synthetic platform for glycerol-based (co)polyethers. Polym Chem 2022. [DOI: 10.1039/d2py00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear polyglycerol is highly valued for its excellent hydrophilicity and biocompatibility as well as its multihydroxy nature. We report here a convenient route for controlled synthesis of polyglycerol through ring-opening...
Collapse
|
4
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl Biochem Biotechnol 2021; 193:1187-1214. [PMID: 33411134 DOI: 10.1007/s12010-020-03483-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.1.1) represent a diverse group of hydrolases that catalyze the cleavage and formation of ester bonds. Although esterases are widely distributed among marine organisms, only microbial esterases are of paramount industrial importance. This article discusses the importance of marine microbial esterases, their biochemical and kinetic properties, and their stability under extreme conditions. Since culture-dependent techniques provide limited insights into microbial diversity of the marine ecosystem, therefore, genomics and metagenomics approaches have widely been adopted in search of novel esterases. Additionally, the article also explains industrial applications of marine bacterial esterases particularly for the synthesis of optically pure substances, the preparation of enantiomerically pure drugs, the degradation of human-made plastics and organophosphorus compounds, degradation of the lipophilic components of the ink, and production of short-chain flavor esters.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7931674576, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Sajjad Poormozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
5
|
Johnson AN, Barlow DE, Kelly AL, Varaljay VA, Crookes‐Goodson WJ, Biffinger JC. Current progress towards understanding the biodegradation of synthetic condensation polymers with active hydrolases. POLYM INT 2020. [DOI: 10.1002/pi.6131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Daniel E Barlow
- Chemistry Division Naval Research Laboratory Washington, DC USA
| | | | - Vanessa A Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate Air Force Research Laboratory Wright‐Patterson Air Force Base OH USA
| | - Wendy J Crookes‐Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate Air Force Research Laboratory Wright‐Patterson Air Force Base OH USA
| | | |
Collapse
|
6
|
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai DP, Ding W, Liu AQ, Cipparrone G, Sáenz JJ, Qiu CW. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. LIGHT, SCIENCE & APPLICATIONS 2020; 9:62. [PMID: 32337026 PMCID: PMC7160209 DOI: 10.1038/s41377-020-0293-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime. Here, we demonstrate, for the first time, the robust sorting of Mie (size ~ wavelength) chiral particles with different handedness at an air-water interface using optical lateral forces induced by a single linearly polarized laser beam. The nontrivial physical interactions underlying these chirality-dependent forces distinctly differ from those predicted for dipolar or geometrical-optics particles. The lateral forces emerge from a complex interplay between the light polarization, lateral momentum enhancement, and out-of-plane light refraction at the particle-water interface. The sign of the lateral force could be reversed by changing the particle size, incident angle, and polarization of the obliquely incident light.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Tongtong Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Tianhang Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Alfredo Mazzulla
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Din Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin, 150001 China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Gabriella Cipparrone
- CNR-NANOTEC, LiCryL and Centre of Excellence CEMIF. CAL, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
- Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 33B, 87036 Rende (CS), Italy
| | - Juan José Sáenz
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| |
Collapse
|
7
|
Puglia MK, Malhotra M, Kumar CV. Engineering functional inorganic nanobiomaterials: controlling interactions between 2D-nanosheets and enzymes. Dalton Trans 2020; 49:3917-3933. [PMID: 31799574 DOI: 10.1039/c9dt03893k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A better understanding of the enzyme-nanosheet interface is imperative for the design of functional, robust inorganic nanobiomaterials and biodevices, now more than ever, for use in a broad spectrum of applications. This feature article discusses recent advances in controlling the enzyme-nanosheet interface with regards to α-zirconium(iv) phosphate (α-ZrP), graphene oxide (GO), graphene, and MoS2 nanosheets. Specific focus will be placed on understanding the mechanisms with which these materials interact with enzymes and elaborate on particular ways to engineer and control these interactions. Our main discoveries include: (1) upon adsorption to the nanosheet surface, a decrease in the entropy of the enzyme's denatured state enhances stability; (2) proteins are used to create biophilic landing pads for increased enzyme stability on many different types of nanosheets; (3) proteins and enzymes are used as exfoliants by shear force to produce biofunctionalized nanosheet suspensions; and (4) bionfunctionalized nanosheets exhibit no acute toxicity. Recognizing proper methods to engineer the interface between enzymes and 2D-nanosheets, therefore, is an important step towards making green, sustainable, and environmentally conscious inorganic bionanomaterials for sensing, catalysis and drug delivery applications, as well as towards the successful manipulation of enzymes for advanced applications.
Collapse
Affiliation(s)
- Megan K Puglia
- University of Connecticut, Department of Chemistry, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
8
|
Isolation, Expression and Characterization of the Thermophilic Recombinant Esterase from Geobacillus thermodenitrificans PS01. Appl Biochem Biotechnol 2020; 191:112-124. [DOI: 10.1007/s12010-020-03225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
9
|
Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, Cui Y. Chiral covalent organic frameworks: design, synthesis and property. Chem Soc Rev 2020; 49:6248-6272. [DOI: 10.1039/d0cs00009d] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Owing to the unique structural features and facile tunability of the subcomponents and channels, chiral COFs show great potential in heterogeneous catalysis, enantioselective separation, and recognition.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chen Yuan
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bang Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lujia Liu
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6140
- New Zealand
- College of Biological
| | - Haiyang Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
10
|
Gupta V, Singh I, Kumar P, Rasool S, Verma V. A hydrolase with esterase activity expressed from a fosmid gene bank prepared from DNA of a North West Himalayan glacier frozen soil sample. 3 Biotech 2019; 9:107. [PMID: 30863691 DOI: 10.1007/s13205-019-1621-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/08/2019] [Indexed: 01/26/2023] Open
Abstract
Screening of 20,000 clones of a fosmid gene bank, constructed from DNA extracted from North West Himalaya (NWH) glacier soil sample, using functional approach identified 10 esterase/lipase-producing clones. Of these, a clone designated pFG43 with an insert size of 45 kb which produced the highest concentration of enzyme (467.43 U/mg) was sequenced. Clone pFG43 contained 61 open reading frames (ORF) and of these an ORF of 1155 bp designated ME-003, was found to be closely related to a hydrolase from Acidobacteria sps (77% sequence identity and E value = 1e-164) and subsequently identified as a putative cocaine esterase. ORF ME-003 was amplified and sub-cloned using a TA vector system into E. coli (DH5α). The purified recombinant enzyme with a molecular weight of 43 kDa had optimal activity at 40 °C, pH 6 and the highest activity with shorter chain fatty acids than with higher chain length fatty acids. There is insignificant effect of inhibitors on the enzyme activity of ME-003, except PMSF which completely inhibited its activity. ME-003 activity was also inhibited in the presence of copper oxide but remained stable in presence of other metal ions. The enzyme activity was also inhibited in the presence of organic solvents; however, in the presence of 10% isopropanol, 12% of enzymatic activity was retained. Among various detergents, SDS completely inhibited enzymatic activity. The recombinant enzyme also shows enantio-specific activity against the racemic drug intermediates/precursors and exhibited 90% ee against racemic 1-phenyl ethanol and fluoxetine.
Collapse
Affiliation(s)
- Verruchi Gupta
- 1School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India
| | - Inderpal Singh
- 1School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India.,2Bioinformatics Infrastructure Facility (BIF), School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India
| | - Paramdeep Kumar
- 3Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Shafaq Rasool
- 1School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India
| | - Vijeshwar Verma
- 1School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India.,2Bioinformatics Infrastructure Facility (BIF), School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320 India
| |
Collapse
|
11
|
Soni S, Dwivedee BP, Sharma VK, Patel G, Banerjee UC. Exploration of the expeditious potential of Pseudomonas fluorescens lipase in the kinetic resolution of racemic intermediates and its validation through molecular docking. Chirality 2017; 30:85-94. [PMID: 29064594 DOI: 10.1002/chir.22771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 11/05/2022]
Abstract
A profoundly time-efficient chemoenzymatic method for the synthesis of (S)-3-(4-chlorophenoxy)propan-1,2-diol and (S)-1-chloro-3-(2,5-dichlorophenoxy)propan-2-ol, two important pharmaceutical intermediates, was successfully developed using Pseudomonas fluorescens lipase (PFL). Kinetic resolution was successfully achieved using vinyl acetate as acylating agent, toluene/hexane as solvent, and reaction temperature of 30°C giving high enantioselectivity and conversion. Under optimized condition, PFL demonstrated 50.2% conversion, enantiomeric excess of 95.0%, enantioselectivity (E = 153) in an optimum time of 1 hour and 50.3% conversion, enantiomeric excess of 95.2%, enantioselectivity (E = 161) in an optimum time of 3 hours, for the two racemic alcohols, respectively. Docking of the R- and S-enantiomers of the intermediates demonstrated stronger H-bond interaction between the hydroxyl group of the R-enantiomer and the key binding residues of the catalytic site of the lipase, while the S-enantiomer demonstrated lesser interaction. Thus, docking study complemented the experimental outcome that PFL preferentially acylated the R form of the intermediates. The present study demonstrates a cost-effective and expeditious biocatalytic process that can be applied in the enantiopure synthesis of pharmaceutical intermediates and drugs.
Collapse
Affiliation(s)
- Surbhi Soni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Bharat P Dwivedee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Vishnu K Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
12
|
Zhang D, Wang H, Ji J, Nie L, Sun D. A quantification method for determination of racemate praziquantel and R-enantiomer in rat plasma for comparison of their pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:64-69. [DOI: 10.1016/j.jchromb.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 02/11/2017] [Indexed: 01/14/2023]
|
13
|
Bhardwaj KK, Gupta R. Synthesis of Chirally Pure Enantiomers by Lipase. J Oleo Sci 2017; 66:1073-1084. [DOI: 10.5650/jos.ess17114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|
14
|
|
15
|
Badgujar KC, Bhanage BM. Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 2015; 134:709-17. [DOI: 10.1016/j.carbpol.2015.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
|
16
|
Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197. Protein Expr Purif 2015; 116:90-7. [DOI: 10.1016/j.pep.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 11/20/2022]
|
17
|
Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting. PLoS One 2015; 10:e0131624. [PMID: 26111144 PMCID: PMC4482018 DOI: 10.1371/journal.pone.0131624] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
The great potential of lipases is known since 1930 when the work of J. B. S. Haldane was published. After eighty-five years of studies and developments, are lipases still important biocatalysts? For answering this question the present work investigated the technological development of four important industrial sectors where lipases are applied: production of detergent formulations; organic synthesis, focusing on kinetic resolution, production of biodiesel, and production of food and feed products. The analysis was made based on research publications and patent applications, working as scientific and technological indicators, respectively. Their evolution, interaction, the major players of each sector and the main subject matters disclosed in patent documents were discussed. Applying the concept of technology life cycle, S-curves were built by plotting cumulative patent data over time to monitor the attractiveness of each technology for investment. The results lead to a conclusion that the use of lipases as biocatalysts is still a relevant topic for the industrial sector, but developments are still needed for lipase biocatalysis to reach its full potential, which are expected to be achieved within the third, and present, wave of biocatalysis.
Collapse
|
18
|
Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases. Appl Microbiol Biotechnol 2015; 99:6293-301. [PMID: 25661815 DOI: 10.1007/s00253-015-6422-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/27/2014] [Accepted: 01/19/2015] [Indexed: 01/07/2023]
Abstract
Thermostable esterases have potential applications in various biotechnology industries because of their resistance to high temperature and organic solvents. In a previous study, we isolated an esterase from Archaeoglobus fulgidus DSM 4304 (Est-AF), which showed high thermostability but low enantioselectivity toward (S)-ketoprofen ethyl ester. (R)-ketoprofenor (S)-ketoprofenis produced by esterase hydrolysis of the ester bond of (R,S)-ketoprofen ethyl ester and (S)-ketoprofen has better pharmaceutical activity and lower side effects than (R)-ketoprofen. Therefore, we have generated mutants of Est-AF that retained high thermostability whilst improving enantioselectivity. A library of Est-AF mutants was created by error-prone polymerase chain reaction, and mutants with improved enantioselectivity were isolated by site-saturation mutagenesis. The regions of Est-AF containing amino acid mutations were analyzed by homology modeling of its three-dimensional structure, and structure-based explanations for the changes in enantioselectivity are proposed. Finally, we isolated two mutants showing improved enantioselectivity over Est-AF (ee% = -16.2 ± 0.2 and E = 0.7 ± 0.0): V138G (ee% = 35.9 ± 1.0 and E = 3.0 ± 0.1) and V138G/L200R (ee% = 89.2 ± 0.2 and E = 19.5 ± 0.5). We also investigated various characteristics of these mutants and found that the mutants showed similar thermostability and resistance to additives or organic solvents to Est-AF, without a significant trade-off between activity and stability.
Collapse
|
19
|
Hart-Cooper WM, Zhao C, Triano RM, Yaghoubi P, Ozores HL, Burford KN, Toste FD, Bergman RG, Raymond KN. The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chem Sci 2015; 6:1383-1393. [PMID: 29560226 PMCID: PMC5811099 DOI: 10.1039/c4sc02735c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022] Open
Abstract
The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K12Ga4L6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 105, which numbers among the largest magnitudes of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity.
Collapse
Affiliation(s)
- William M Hart-Cooper
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Chen Zhao
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Rebecca M Triano
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Parastou Yaghoubi
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Haxel Lionel Ozores
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Kristen N Burford
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - F Dean Toste
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Robert G Bergman
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Kenneth N Raymond
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| |
Collapse
|
20
|
Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 2014; 19:235-47. [PMID: 25472009 DOI: 10.1007/s00792-014-0710-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
Collapse
|
21
|
Hickling C, Toogood HS, Saiani A, Scrutton NS, Miller AF. Nanofibrillar Peptide hydrogels for the immobilization of biocatalysts for chemical transformations. Macromol Rapid Commun 2014; 35:868-74. [PMID: 24604676 PMCID: PMC4316184 DOI: 10.1002/marc.201400027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 01/12/2023]
Abstract
Enzymes are attractive, "green" alternatives to chemical catalysts within the industrial sector, but their robustness to environmental conditions needs optimizing. Here, an enzyme is tagged chemically and recombinantly with a self-assembling peptide that allows the conjugate to spontaneously assemble with pure peptide to form β-sheet-rich nanofibers decorated with tethered enzyme. Above a critical concentration, these fibers entangle and form a 3D hydrogel. The immobilized enzyme catalyzes chemical transformations and critically its stability is increased significantly where it retains activity after exposure to high temperatures (90 °C) and long storage times (up to 12 months).
Collapse
Affiliation(s)
- Christopher Hickling
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1, 7DN, UK
| | - Helen S Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences131 Princess Street, Manchester, M1, 7DN, UK
| | - Alberto Saiani
- Manchester Institute of Biotechnology, School of Materials, University of ManchesterManchester, M1, 3 9PL, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences131 Princess Street, Manchester, M1, 7DN, UK
| | - Aline F Miller
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1, 7DN, UK
| |
Collapse
|
22
|
Alsafadi D, Paradisi F. Covalent Immobilization of Alcohol Dehydrogenase (ADH2) from Haloferax volcanii: How to Maximize Activity and Optimize Performance of Halophilic Enzymes. Mol Biotechnol 2013; 56:240-7. [DOI: 10.1007/s12033-013-9701-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Li X, Zhou GJ, Chu GH, Lin XF, Wang JL, Shen K, Yin J. Fabrication of size-controllable mPEG-decorated microparticles conjugating optically active ketoprofen based on self-assembly of amphiphilic random copolymers. J Appl Polym Sci 2012. [DOI: 10.1002/app.37756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
|
26
|
Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer. Appl Biochem Biotechnol 2012; 166:1927-40. [PMID: 22383051 DOI: 10.1007/s12010-012-9621-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Candida rugosa lipase was encapsulated within a chemically inert sol-gel support prepared by polycondensation with tetraethoxysilane and octyltriethoxysilane in the presence of β-cyclodextrin-based polymer. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yield of the encapsulated lipase was 65 U/g, which is 7.5 times higher than that of the covalently immobilized lipase. The β-cyclodextrin-based encapsulated lipases had higher conversion and enantioselectivity compared with covalently immobilized lipase. The study confirms an excellent enantioselectivity (E >300) for the encapsulated lipase with an enantiomeric excess value of 98% for S-naproxen.
Collapse
|
27
|
|
28
|
Dutta J, Tripathi S, Dutta P. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. FOOD SCI TECHNOL INT 2011; 18:3-34. [DOI: 10.1177/1082013211399195] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.
Collapse
Affiliation(s)
- J. Dutta
- Department of Chemistry, Disha Institute of Management and Technology, Raipur 400701, India
| | - S. Tripathi
- Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - P.K. Dutta
- Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| |
Collapse
|
29
|
Chuang HH, Chen PT, Wang WN, Chen YT, Shaw JF. Functional proteomic analysis of rice bran esterases/lipases and characterization of a novel recombinant esterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2019-2025. [PMID: 21322560 DOI: 10.1021/jf103972h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An esterase from rice ( Oryza sativa ) bran was identified on two-dimensional gel using 4-methylumbelliferyl butyrate as a substrate. The esterase cDNA (870 bp) encoded a 289 amino acid protein (designated OsEST-b) and was expressed in Escherichia coli . The molecular weight of recombinant OsEST-b (rOsEST-b) was 27 kDa, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemical characterization demonstrated that rOsEST-b was active over a broad temperature range (optimum at 60 °C) and preferred alkaline conditions (optimum at pH 9.0). The rOsEST-b showed maximum activity toward p-nitrophenyl butyrate (C(4)) among various p-nitrophenyl esters (C(4)-C(18)), indicating that rOsEST-b is an esterase for short-chain fatty acids. The kinetic parameters under optimal conditions were K(m) = 27.03 μM, k(cat) = 49 s(-1), and k(cat)/K(m) = 1.81 s(-1) μM(-1). The activity of rOsEST-b was not influenced by ethylenediaminetetraacetic acid, suggesting that it is not a metalloenzyme. The amino acid sequence analysis revealed that OsEST-b had a conserved pentapeptide esterase/lipase motif but that the essential active site serine (GXSXG) was replaced by cysteine (C). These results suggest that OsEST-b is distinct from traditional esterases/lipases and is a novel lipolytic enzyme in rice bran.
Collapse
Affiliation(s)
- Hsu-Han Chuang
- Department of Food Science and Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Prita B, Chandrahas K, Venkata Ramana P, Ragini B, Swetha M. Immobilization and stabilization of Pseudomonas aeruginosa SRT9 lipase on tri(4-formyl phenoxy) cyanurate. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Dhakshinamoorthy A, Alvaro M, Corma A, Garcia H. Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Trans 2011; 40:6344-60. [DOI: 10.1039/c1dt10354g] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Molecular cloning, over expression and characterization of thermoalkalophilic esterases isolated from Geobacillus sp. Extremophiles 2010; 15:203-11. [PMID: 21181486 DOI: 10.1007/s00792-010-0344-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Due to potential use for variety of biotechnological applications, genes encoding thermoalkalophilic esterase from three different Geobacillus strains isolated from thermal environmental samples in Balçova (Agamemnon) geothermal site were cloned and respective proteins were expressed in Escherichia coli (E.coli) and characterized in detail. Three esterases (Est1, Est2, Est3) were cloned directly by PCR amplification using consensus degenerate primers from genomic DNA of the strains Est1, Est2 and Est3 which were from mud, reinjection water and uncontrolled thermal leak, respectively. The genes contained an open reading frame (ORF) consisting of 741 bp for Est1 and Est2, which encoded 246 amino acids and ORF of Est3 was 729 bp encoded 242 amino acids. The esterase genes were expressed in E. coli and purified using His-Select HF nickel affinity gel. The molecular mass of the recombinant enzyme for each esterase was approximately 27.5 kDa. The three esterases showed high specific activity toward short chain p-NP esters. Recombinant Est1, Est2, Est3 have exhibited similar activity and the highest esterase activity of 1,100 U/mg with p-nitrophenyl acetate (pNPC(2)) as substrate was observed with Est1. All three esterase were most active around 65°C and pH 9.5-10.0. The effect of organic solvents, several metal ions, inhibitors and detergents on enzyme activity for purified Est1, Est2, Est3 were determined separately and compared.
Collapse
|
33
|
Barbosa O, Ariza C, Ortiz C, Torres R. Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). N Biotechnol 2010; 27:844-50. [DOI: 10.1016/j.nbt.2010.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022]
|
34
|
Kyslíková E, Babiak P, Marešová H, Palyzová A, Hájíček J, Kyslík P. Diastereoselective reduction of 1-(4-fluorophenyl)-3(R)-[3-oxo-3-(4-fluorophenyl)-propyl]-4(S)-(4-hydroxyphenyl)azetidin-2-one to Ezetimibe by the whole cell catalyst Rhodococcus fascians MO22. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Shin JS, Kim BG. Kinetic resolution of alpha-methylbenzylamine with omicron-transaminase screened from soil microorganisms: application of a biphasic system to overcome product inhibition. Biotechnol Bioeng 2010; 55:348-58. [PMID: 18636493 DOI: 10.1002/(sici)1097-0290(19970720)55:2<348::aid-bit12>3.0.co;2-d] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two microorganisms showing high omicron-transaminase activity (Klebsiella pneumoniae JS2F and Bacillus thuringiensis JS64) were screened by the enrichment method using (S)-alpha-methylbenzylamine (alpha-MBA) as a sole nitrogen source. Optimal carbon and nitrogen sources for enzyme induction and the properties of omicron-transaminases were investigated. omicron-Transaminase from B. thuringiensis JS64 was highly enantioselective (E = 75.3) for (S)-enantiomer of alpha-MBA and showed remarkable stability. However, omicron-transaminase showed severe product inhibition by acetophenone. An aqueous/organic two-phase system was introduced to overcome this problem. Through solvent screening, cyclohexanone and ethyl acetate were selected as the best organic phases. The acetophenone-extracting capacity of the solvent and the biocompatibility of the solvent to the cell were important determinants in the reaction rate at high concentrations of alpha-MBA. The reaction rate of omicron-transamination was strongly influenced by the volume ratio of organic phase to aqueous phase as well as agitation speed in the biphasic mixture. Using the optimal volume ratio (Vorg:Vaq = 1:4) in the biphasic system with cyclohexanone, the reaction rate of omicron-transaminase under vigorous mixing conditions increased ninefold compared with that in the monophasic aqueous system. At the same optimal conditions, using whole cells, 500 mM alpha-MBA could be resolved successfully to above 95% enantiomeric excess of (R)-alpha-MBA with ca. 51% conversion. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 348-358, 1997.
Collapse
Affiliation(s)
- J S Shin
- Department of Chemical Technology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
36
|
Cloning, screening and characterization of enantioselective ester hydrolases from Escherichia coli K-12. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0437-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Enantioselective hydrolysis of rasemic naproxen methyl ester with sol–gel encapsulated lipase in the presence of sporopollenin. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. J Chromatogr A 2010; 1217:1063-74. [DOI: 10.1016/j.chroma.2009.10.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/22/2009] [Accepted: 10/27/2009] [Indexed: 11/20/2022]
|
39
|
Enantioselective transesterification of racemic phenyl ethanol and its derivatives in organic solvent and ionic liquid using Pseudomonas aeruginosa lipase. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
|
41
|
Wescott CR, Klibanov AM. Thermodynamic analysis of solvent effect on substrate specificity of lyophilized enzymes suspended in organic media. Biotechnol Bioeng 2009; 56:340-4. [PMID: 18636650 DOI: 10.1002/(sici)1097-0290(19971105)56:3<340::aid-bit12>3.0.co;2-k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A simple methodology has been successfully employed to explain the solvent dependence of the substrate specificity of enzymes in organic media. This methodology, which does not require the knowledge of the enzyme structure and is thus applicable to lyophilized and other noncrystalline enzyme preparations, predicts that the k(cat)/K(M) ratio for two substrates should be proportional to their Raoult's law activity coefficients. This approach has been validated for two enzymes, subtilisin Carlsberg and alpha-chymotrypsin, catalyzing the propanolysis of unnatural (in addition to natural) ester substrates in a variety of anhydrous solvents.
Collapse
Affiliation(s)
- C R Wescott
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Gotor V. Pharmaceuticals Through Enzymatic Transesterification and Enzymatic Aminolysis Reactions. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009015239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Krulewicz B, Tschaen D, Devine P, Lee SS, Roberge C, Greasham R, Chartrain M. Asymmetric Biosynthesis of Key Aromatic Intermediates in the Synthesis of an Endothelin Receptor Antagonist. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109003644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Maximo MF, Van Der Lugt JP. Kinetics of Lipase Catalyzed Resolution of Racemic Alcohols by Reversible Interesterification. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429408998215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M. F. Maximo
- TNO-Nutrition and Food Research, Department of Biochemistry and Physical-Chemistry, P. O. Box 360, 3700, AJ, Zeist, The Netherlands
- University of Murcia, Faculty of Chemistry, Department of Chemical Engineering, 30071, Murcia, Spain
| | - J. P. Van Der Lugt
- TNO-Nutrition and Food Research, Department of Biochemistry and Physical-Chemistry, P. O. Box 360, 3700, AJ, Zeist, The Netherlands
| |
Collapse
|
45
|
Sarma K, Goswami A, Goswami BC. Exploration of chiral induction on epoxides in lipase-catalyzed epoxidation of alkenes using (2R,3S,4R,5S)-(–)-2,3:4,6-di-O-isopropylidiene-2-keto-l-gulonic acid monohydrate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Characterization of a novel thermostable carboxylesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J Bacteriol 2009; 191:3076-85. [PMID: 19304850 DOI: 10.1128/jb.01060-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene GK3045 (741 bp) from Geobacillus kaustophilus HTA426 was cloned, sequenced, and overexpressed into Escherichia coli Rosetta (DE3). The deduced protein was a 30-kDa monomeric esterase with high homology to carboxylesterases from Geobacillus thermoleovorans NY (99% identity) and Geobacillus stearothermophilus (97% identity). This protein suffered a proteolytic cut in E. coli, and the problem was overcome by introducing a mutation in the gene (K212R) without affecting the activity. The resulting Est30 showed remarkable thermostability at 65 degrees C, above the optimum growth temperature of G. kaustophilus HTA426. The optimum pH of the enzyme was 8.0. In addition, the purified enzyme exhibited stability against denaturing agents, like organic solvents, detergents, and urea. The protein catalyzed the hydrolysis of p-nitrophenyl esters of different acyl chain lengths, confirming the esterase activity. The sequence analysis showed that the protein contains a catalytic triad formed by Ser93, Asp192, and His222, and the Ser of the active site is located in the conserved motif Gly91-X-Ser93-X-Gly95 included in most esterases and lipases. However, this carboxylesterase showed no more than 17% sequence identity with the closest members in the eight families of microbial carboxylesterases. The three-dimensional structure was modeled by sequence alignment and compared with others carboxylesterases. The topological differences suggested the classification of this enzyme and other Geobacillus-related carboxylesterases in a new alpha/beta hydrolase family different from IV and VI.
Collapse
|
47
|
Quezada MA, Carballeira JD, Sinisterra JV. Monascus kaoliang CBS 302.78 immobilized in polyurethane foam using iso-propanol as co-substrate: Optimized immobilization conditions of a fungus as biocatalyst for the reduction of ketones. BIORESOURCE TECHNOLOGY 2009; 100:2018-2025. [PMID: 19046879 DOI: 10.1016/j.biortech.2008.07.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 05/27/2023]
Abstract
Monascus kaoliang was selected after a microbial screening as a highly active and selective whole cell catalyst for the reduction of ketones. In the present paper we describe the optimum growing conditions and an interesting immobilization procedure by adsorption in polyurethane foams (PUFs). This methodology is easy to perform and the immobilized catalyst is active, stable and reusable. The use of different co-substrates for cofactor regeneration was also tested and iso-propanol (i-PrOH) was found as the best co-substrate, as it leads to a catalyst reusable for 17 cycles, displaying better NADH regeneration properties than others e.g., glucose (10 cycles) or saccharose (6 cycles). The reduction of different prochiral ketones showed that the ketone reductase activity of this mould follows the Prelog's rule and kinetic experiments demonstrated that the process follows a pseudo-first kinetic order.
Collapse
Affiliation(s)
- M A Quezada
- Department of Chemistry, Faculty of Chemical Engineering, University of Trujillo, Peru
| | | | | |
Collapse
|
48
|
Candida rugosa Lipase Supported on High Crystallinity Chitosan as Biocatalyst for the Synthesis of 1-Butyl Oleate. Catal Letters 2009. [DOI: 10.1007/s10562-009-9857-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Kazlauskas RJ, Bornscheuer UT. Biotransformations with Lipases. BIOTECHNOLOGY 2008:36-191. [PMID: 0 DOI: 10.1002/9783527620906.ch3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
50
|
Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 2008; 12:351-64. [PMID: 18330499 DOI: 10.1007/s00792-008-0139-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
Two genes encoding esterases EstA and EstB of Picrophilus torridus were identified by the means of genome analysis and were subsequently cloned in Escherichia coli. PTO 0988, which is encoding EstA, consists of 579 bp, whereas PTO 1141, encoding EstB, is composed of 696 bp, corresponding to 192 aa and 231 aa, respectively. Sequence comparison revealed that both biocatalysts have low sequence identities (14 and 16%) compared to previously characterized enzymes. Detailed analysis suggests that EstA and EstB are the first esterases from thermoacidophiles not classified as members of the HSL family. Furthermore, the subunits with an apparent molecular mass of 22 and 27 kDa of the homotrimeric EstA and EstB, respectively, represent the smallest esterase subunits from thermophilic microorganisms reported to date. The recombinant esterases were purified by Ni2+ affinity chromatography, and the activity of the purified esterases was measured over a wide pH (pH 4.5-8.5) and temperature range (10-90 degrees C). Highest activity of the esterases was measured at 70 degrees C (EstA) and 55 degrees C (EstB) with short pNP-esters as preferred substrates. In addition, esters of the non-steroidal anti-inflammatory drugs naproxen, ketoprofen, and ibuprofen are hydrolyzed by both EstA and EstB. Extreme thermostability was measured for both enzymes at temperatures as high as 90 degrees C. The determined half-life (t1/2) at 90 degrees C was 21 and 10 h for EstA and EstB, respectively. Remarkable preservation of esterase activity in the presence of detergents, urea, and commonly used organic solvents complete the exceptional phenotype of EstA and EstB.
Collapse
|