1
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
3
|
Thermostable alpha-glucan phosphorylases: characteristics and industrial applications. Appl Microbiol Biotechnol 2018; 102:8187-8202. [PMID: 30043268 DOI: 10.1007/s00253-018-9233-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
α-Glucan phosphorylases (α-GPs) catalyze the reversible phosphorolysis of α-1,4-linked polysaccharides such as glycogen, starch, and maltodextrins, therefore playing a central role in the usage of storage polysaccharides. The discovery of these enzymes and their role in the course of catalytic conversion of glycogen was rewarded with the Nobel Prize in Physiology or Medicine in 1947. Nowadays, however, thermostable representatives attract special attention due to their vast potential in the enzymatic production of diverse carbohydrates and derivatives such as (functional) oligo- and (non-natural) polysaccharides, artificial starch, glycosides, and nucleotide sugars. One of the most recently explored utilizations of α-GPs is their role in the multi-enzymatic process of energy production stored in carbohydrate biobatteries. Regardless of their use, thermostable α-GPs offer significant advantages and facilitated bioprocess design due to their high operational temperatures. Here, we present an overview and comparison of up-to-date characterized thermostable α-GPs with a special focus on their reported biotechnological applications.
Collapse
|
4
|
Zhou W, You C, Ma H, Ma Y, Zhang YHP. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1777-1783. [PMID: 26832825 DOI: 10.1021/acs.jafc.5b05648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.
Collapse
Affiliation(s)
- Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Chun You
- Cell Free Bioinnovations Inc. , 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, United States
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Y-H Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Cell Free Bioinnovations Inc. , 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, United States
- Biological Systems Engineering Department, Virginia Tech , 304 Seitz Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry 2012; 18:10786-801. [PMID: 22887462 DOI: 10.1002/chem.201103069] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycosylation can significantly improve the physicochemical and biological properties of small molecules like vitamins, antibiotics, flavors, and fragrances. The chemical synthesis of glycosides is, however, far from trivial and involves multistep routes that generate lots of waste. In this review, biocatalytic alternatives are presented that offer both stricter specificities and higher yields. The advantages and disadvantages of different enzyme classes are discussed and illustrated with a number of recent examples. Progress in the field of enzyme engineering and screening are expected to result in new applications of biocatalytic glycosylation reactions in various industrial sectors.
Collapse
Affiliation(s)
- Tom Desmet
- University of Ghent, Centre for Industrial Biotechnology and Biocatalysis, Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Van der Borght J, Desmet T, Soetaert W. Enzymatic production of β-D-glucose-1-phosphate from trehalose. Biotechnol J 2010; 5:986-93. [PMID: 20799297 DOI: 10.1002/biot.201000203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
β-D-Glucose-1-phosphate (βGlc1P) is an efficient glucosyl donor for both enzymatic and chemical glycosylation reactions but is currently very costly and not available in large amounts. This article provides an efficient production method of βGlc1P from trehalose and phosphate using the thermostable trehalose phosphorylase from Thermoanaerobacter brockii. At the process temperature of 60 °C, Escherichia coli expression host cells are lysed and cell treatment prior to the reaction is, therefore, not required. In this way, the theoretical maximum yield of 26% could be easily achieved. Two different purification strategies have been compared, anion exchange chromatography or carbohydrate removal by treatment with trehalase and yeast, followed by chemical phosphate precipitation. In a next step, βGlc1P was precipitated with ethanol but this did not induce crystallization, in contrast to what is observed with other glycosylphosphates. After conversion of the product to its cyclohexylammonium salt, however, crystals could be readily obtained. Although both purification methods were quantitative (>99% recovery), a large amount of product (50%) was lost during crystallization. Nevertheless, a production process for crystalline βGlc1P is now available from the cheap substrates trehalose and inorganic phosphate.
Collapse
Affiliation(s)
- Jef Van der Borght
- Center of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
8
|
Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate. J Ind Microbiol Biotechnol 2007; 35:219-23. [PMID: 18087736 DOI: 10.1007/s10295-007-0287-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Maltodextrin phosphorylase from Pyrococcus furiosus (PF1535) was fused with the cellulose-binding domain of Clostridium cellulovorans serving as an aggregation module. After molecular cloning of the corresponding gene fusion construct and controlled expression in Escherichia coli BL21, 83% of total maltodextrin phosphorylase activity (0.24 U/mg of dry cell weight) was displayed in active inclusion bodies. These active inclusion bodies were easily isolated by nonionic detergent treatment and directly used for maltodextrin conversion to alpha-D-glucose-1-phosphate in a repetitive batch mode. Only 10% of enzyme activity was lost after ten conversion cycles at optimum conditions.
Collapse
|
9
|
Sakata M, Kawai T, Kayane S, Ooshima H. Kinetic Study of Phosphorolysis of Dextrin by Potato Phosphorylase. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2007. [DOI: 10.1252/jcej.40.441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masaru Sakata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
- Processing Development Research Laboratories, Kao Corp
| | - Takashi Kawai
- Processing Development Research Laboratories, Kao Corp
| | | | - Hiroshi Ooshima
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| |
Collapse
|
10
|
Koda A, Bogaki T, Minetoki T, Hirotsune M. High expression of a synthetic gene encoding potato alpha-glucan phosphorylase in Aspergillus niger. J Biosci Bioeng 2006; 100:531-7. [PMID: 16384792 DOI: 10.1263/jbb.100.531] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/25/2005] [Indexed: 11/17/2022]
Abstract
We describe the successful heterologous expression of the Solanum tuberosum alpha-glucan phosphorylase (GP) gene in Aspergillus niger. Special attention was paid to the influence of different codon usage and A+T content in the coding region on GP protein expression. Use of A. niger-preferred codon usage and lower A+T content in a synthetic gene (GP-syn) resulted in a significant improvement in the level of the GP mRNA and a dramatic increase in the quantity of GP protein produced such that it accounted for approximately 10% of the total soluble protein. We suggest that redesigning the primary DNA sequence encoding a desired protein product can be an extremely effective method for improving heterologous protein production in filamentous fungi.
Collapse
Affiliation(s)
- Akio Koda
- General Research Laboratory, Ozeki Co., Ltd., 4-9 Imazu, Nishinomiya-shi, Hyogo 663-8227, Japan.
| | | | | | | |
Collapse
|
11
|
|
12
|
Characterization of a hyperthermostable glycogen phosphorylase from Aquifex aeolicus expressed in Escherichia coli. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00029-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Takata H, Takaha T, Okada S, Takagi M, Imanaka T. Purification and characterization of α-glucan phosphorylase from Bacillus stearothermophilus. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86760-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Eis C, Griessler R, Maier M, Weinhäusel A, Bock B, Kulbe KD, Haltrich D, Schinzel R, Nidetzky B. Efficient downstream processing of maltodextrin phosphorylase from Escherichia coli and stabilization of the enzyme by immobilization onto hydroxyapatite. J Biotechnol 1997; 58:157-66. [PMID: 9470221 DOI: 10.1016/s0168-1656(97)00145-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Downstream processing by biospecific chromatography of maltodextrin phosphorylase from Escherichia coli, overexpressed in E. coli, was substantially improved by a novel approach using ceramic hydroxyapatite. Wild-type and a less active mutant enzyme were purified from crude bacterial cell extracts in one efficient separation step that yielded phosphorylase in purity > 95% in at least 90% recoveries. At pH 6.9 and 25 degrees C, wild-type and mutant phosphorylases eluted from the hydroxyapatite column at a phosphate concentration of 0.4 M whereas calcium ions failed to displace the enzymes. The dynamic capacity for phosphorylase binding in the presence of bulk proteins was approximately 3 mg enzyme ml-1 matrix. The interaction of E. coli phosphorylase with hydroxyapatite seems to be mediated by surface amino groups, so that the bound enzyme retained almost full catalytic activity. Compared to the soluble enzyme, immobilization onto hydroxyapatite resulted in a more than 30-fold stabilization of wild-type phosphorylase against thermal and proteolytic inactivation and thus could improve the operational stability of phosphorylase during conversion of polysaccharide to glucose 1-phosphate.
Collapse
Affiliation(s)
- C Eis
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien (BOKU), Wein, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nidetzky B, Griessler R, Weinhausel A, Haltrich D, Kulbe KD. Reaction Engineering Aspects of α-l,4-D-Glucan Phosphorylase Catalysis. Appl Biochem Biotechnol 1997; 63-65:159-72. [DOI: 10.1007/bf02920422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
GRIESSLER RICHARD, WEINHÄUSEL ANDREAS, HALTRICH DIETMAR, KULBE KLAUSD, NIDETZKY BERND. Optimization of Glucose-l-Phosphate Production Employing Glucan-Phosphorylases in Continuous Enzyme Membrane Reactors. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb33245.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Nidetzky B, Weinhäusel A, Haltrich D, Kulbe KD, Schinzel R. Maltodextrin phosphorylase from Escherichia coli: production and application for the synthesis of alpha-glucose-1-phosphate. Ann N Y Acad Sci 1996; 782:208-18. [PMID: 8659898 DOI: 10.1111/j.1749-6632.1996.tb40562.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- B Nidetzky
- Division of Biochemical Engineering, University of Agriculture, Vienna, Austria
| | | | | | | | | |
Collapse
|