1
|
van Minnen BS, van Tienen TG. The Current State of Meniscus Replacements. Curr Rev Musculoskelet Med 2024; 17:293-302. [PMID: 38744802 PMCID: PMC11219664 DOI: 10.1007/s12178-024-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW The field of meniscus replacement is changing continuously, with new devices emerging and others disappearing from the market. With the current tendency to preserve the knee joint, meniscus implants may become more relevant than ever. The purpose of this review is to provide an overview of the current state of partial and total meniscus replacements that have been developed beyond the academic phase. The available clinical and pre-clinical data is evaluated, and omissions are identified. RECENT FINDINGS Recent systematic reviews have shown a lack of homogenous clinical data on the CMI and Actifit meniscal scaffolds, especially regarding long-term performance without concomitant surgical interventions. Clinical studies on the medial total meniscus prostheses NUsurface and Artimis are ongoing, with the NUsurface being several years ahead. New techniques for meniscus replacement are rapidly developing, including the Artimis lateral meniscus prosthesis and the MeniscoFix 3D-printed scaffold. All evaluated clinical studies point towards improved clinical outcomes after implantation of partial and total meniscus replacements. Long-term data on survival and performance is of low quality for CMI and Actifit and is unavailable yet for NUsurface and Artimis. It is of major importance that future research focuses on optimizing fixation methods and identifying the optimal treatment strategy for each patient group. New techniques for total and partial replacement of the medial and lateral meniscus will be followed with interest.
Collapse
Affiliation(s)
- B S van Minnen
- Orthopaedic Research Lab, Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- ATRO Medical BV, Liessentstraat 9A, 5405 AH, Uden, The Netherlands.
| | - T G van Tienen
- Orthopaedic Research Lab, Radboud University Medical Centre, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- ATRO Medical BV, Liessentstraat 9A, 5405 AH, Uden, The Netherlands
| |
Collapse
|
2
|
Shi Y, Li D, Hill C, Yang L, Sheerin ED, Pilliadugula R, Wang JJ, Boland J, Xiao L. Micro and nano plastics release from a single absorbable suture into simulated body fluid. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133559. [PMID: 38301437 DOI: 10.1016/j.jhazmat.2024.133559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Synthetic polymers are widely used in medical devices and implants where biocompatibility and mechanical strength are key enablers of emerging technologies. One concern that has not been widely studied is the potential of their microplastics (MPs) release. Here we studied the levels of MP debris released following 8-week in vitro tests on three typical polyglycolic acid (PGA) based absorbable sutures (PGA 100, PGA 90 and PGA 75) and two nonabsorbable sutures (polypropylene-PP and polyamide-PA) in simulated body fluid. The MP release levels ranked from PGA 100 > > PGA 90 > PGA 75 > > PP ∼ PA. A typical PGA 100 suture released 0.63 ± 0.087 million micro (MPs > 1 µm) and 1.96 ± 0.04 million nano (NPs, 200-1000 nm) plastic particles per centimeter. In contrast, no MPs were released from the nonabsorbable sutures under the same conditions. PGA that was co-blended with 10-25% L-lactide or epsilon-caprolactone resulted in a two orders of magnitude lower level of MP release. These results underscore the need to assess the release of nano- and microplastics from medical polymers while applied in the human body and to evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Dunzhu Li
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China.
| | - Christopher Hill
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Emmet D Sheerin
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Rekha Pilliadugula
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Jing Jing Wang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - John Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| |
Collapse
|
3
|
Three-dimensional gradient porous polymeric composites for osteochondral regeneration. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Grogan SP, Baek J, D'Lima DD. Meniscal tissue repair with nanofibers: future perspectives. Nanomedicine (Lond) 2020; 15:2517-2538. [PMID: 32975146 DOI: 10.2217/nnm-2020-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The knee menisci are critical to the long-term health of the knee joint. Because of the high incidence of injury and degeneration, replacing damaged or lost meniscal tissue is extremely clinically relevant. The multiscale architecture of the meniscus results in unique biomechanical properties. Nanofibrous scaffolds are extremely attractive to replicate the biochemical composition and ultrastructural features in engineered meniscus tissue. We review recent advances in electrospinning to generate nanofibrous scaffolds and the current state-of-the-art of electrospun materials for meniscal regeneration. We discuss the importance of cellular function for meniscal tissue engineering and the application of cells derived from multiple sources. We compare experimental models necessary for proof of concept and to support translation. Finally, we discuss future directions and potential for technological innovations.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Jihye Baek
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
6
|
Novel controllable degradation behavior and biocompatibility of segmented poly–ε–caprolactone in rats. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Qian G, Fan P, He F, Ye J. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite. Adv Healthc Mater 2019; 8:e1801325. [PMID: 30901163 DOI: 10.1002/adhm.201801325] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/26/2019] [Indexed: 11/08/2022]
Abstract
Inefficient bone regeneration of self-hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis-stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic-co-glycolic acid) (PLGA) network to fabricate plastic CPC-based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon its degradation. The addition of WS is helpful to improve the attachment, proliferation, and osteogenic differentiation of mouse bone marrow stromal cells in vitro. The in vivo experimental results indicate that PLGA/WS/CPC promotes rapid angiogenesis and bone formation. Therefore, the plastic CPC-based composite cement with a 3D PLGA network and wollastonite shows an obviously improved efficiency for repairing bone defects and is expected to facilitate the wider application of CPC in the clinic.
Collapse
Affiliation(s)
- Guowen Qian
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Peirong Fan
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Fupo He
- School of Electromechanical EngineeringGuangdong University of Technology Guangzhou 510006 China
| | - Jiandong Ye
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| |
Collapse
|
8
|
Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019; 143:97-114. [PMID: 31255595 DOI: 10.1016/j.addr.2019.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Nanocarriers (NCs) are a type of drug delivery system commonly used to regulate the pharmacokinetic and pharmacodynamic properties of drugs. Although a wide variety of NCs has been developed, relatively few have been registered for clinical trials and even fewer are clinically approved. Overt or potential toxicity, indistinct mechanisms of drug release and unsatisfactory pharmacokinetic behavior all contribute to their high failure rate during preclinical and clinical testing. These negative characteristics are not only due to the NCs themselves but also to the materials of the drug nanocarrier system (MDNS) that are released in vivo. In this article, we review the main analytical techniques used for bioassay of NCs and MDNS and their pharmacokinetics after administration by various routes. We anticipate our review will serve to improve the understanding of MDNS pharmacokinetics and facilitate the development of NC drug delivery systems.
Collapse
|
9
|
Zhang S, Li H, Yuan M, Yuan M, Chen H. Poly(Lactic Acid) Blends with Poly(Trimethylene Carbonate) as Biodegradable Medical Adhesive Material. Int J Mol Sci 2017; 18:ijms18102041. [PMID: 28956808 PMCID: PMC5666723 DOI: 10.3390/ijms18102041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023] Open
Abstract
A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The water vapor transmission rate (WVTR) of this material was measured to be 7.13 g·cm−2·24 h−1. Its degree of comfortability was confirmed by the extensibility (E) and the permanent set (PS), which were approximately 7.83 N·cm−2 and 18.83%, respectively. In vivo tests regarding rabbit immunoglobulin M (IgM), rabbit immunoglobulin G (IgG), rabbit bone alkaline phosphatase (BALP), rabbit interleukin 6 (IL-6), rabbit interleukin 10 (IL-10), rabbit tumor necrosis factor α(TNFα), glutamic-oxaloacetic transaminase (AST/GOT), glutamic-pyruvic transaminase (ALT/GPT), alkaline phosphatase (AKP), blood urea nitrogen (BUN) and creatinine (Cr) indicated that the PLA-PTMC medical adhesive was not harmful to the liver and kidneys. Finally, pathological sections indicated that PLA-PTMC was more effective than the control group. These data suggest that in addition to having a positive effect on hemostasis and no sensibility to wounds, PLA-PTMC can efficiently prevent infections and has great potential as a medical adhesive.
Collapse
Affiliation(s)
- Shuang Zhang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Hongli Li
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Mingwei Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Haiyun Chen
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| |
Collapse
|
10
|
Nagasaki Y, Mizukoshi Y, Gao Z, Feliciano CP, Chang K, Sekiyama H, Kimura H. Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management. Acta Biomater 2017; 57:127-135. [PMID: 28457963 DOI: 10.1016/j.actbio.2017.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 12/15/2022]
Abstract
Although local anesthesia is commonly applied for pain relief, there are several issues such as its short duration of action and low effectiveness at the areas of inflammation due to the acidic pH. The presence of excessive amount of reactive oxygen species (ROS) is known to induce inflammation and aggravate pain. To resolve these issues, we developed a redox-active injectable gel (RIG) with ROS-scavenging activity. RIG was prepared by mixing polyamine-b-poly(ethylene glycol)-b-polyamine with nitroxide radical moieties as side chains on the polyamine segments (PMNT-b-PEG-b-PMNT) with a polyanion, which formed a flower-type micelle via electrostatic complexation. Lidocaine could be stably incorporated in its core. When the temperature of the solution was increased to 37°C, the PIC-type flower micelle transformed to gel. The continuous release of lidocaine from the gel was observed for more than three days, without remarkable initial burst, which is probably owing to the stable entrapment of lidocaine in the PIC core of the gel. We evaluated the analgesic effect of RIG in carrageenan-induced arthritis mouse model. Results showed that lidocaine-loaded RIG has stronger and longer analgesic effect when administered in inflamed areas. In contrast, while the use of non-complexed lidocaine did not show analgesic effect one day after its administration. Note that no effect was observed when PIC-type flower micelle without ROS-scavenging ability was used. These findings suggest that local anesthetic-loaded RIG can effectively reduce the number of injection times and limit the side effects associated with the use of anti-inflammatory drugs for postoperative pain management. STATEMENT OF SIGNIFICANCE 1. We have been working on nanomaterials, which effectively eliminate ROS, avoiding dysfunction of mitochondria in healthy cells. 2. We designed redox injectable gel using polyion complexed flower type micelle, which can eliminates ROS locally. 3. We could prepare local anesthesia-loaded redox injectable gel (lido@RIG). 4. Drug release could be extended by local administration of lido@RIG. 5. Deprotonation of lidocaine improved anesthetic effect because ROS were eliminated locally by RIG. 6. Local inflammation could be also suppressed by lido@RIG.
Collapse
Affiliation(s)
- Yukio Nagasaki
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Satellite Laboratory, International Center of Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yutaro Mizukoshi
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Zhenyu Gao
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Chitho P Feliciano
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Kyungho Chang
- Department of Medical Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Sekiyama
- Department of Anesthesiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan
| |
Collapse
|
11
|
Costa JB, Oliveira JM, Reis RL. Biomaterials in Meniscus Tissue Engineering. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus. Osteoarthritis Cartilage 2016; 24:1330-9. [PMID: 27063441 PMCID: PMC5298218 DOI: 10.1016/j.joca.2016.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients.
Collapse
|
13
|
Uzun N, Martins TD, Teixeira GM, Cunha NL, Oliveira RB, Nassar EJ, dos Santos RA. Poly(l-lactic acid) membranes: Absence of genotoxic hazard and potential for drug delivery. Toxicol Lett 2015; 232:513-8. [DOI: 10.1016/j.toxlet.2014.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
|
14
|
Awadallah-F A. Five years in vitro
study of (poly vinyl alcohol/poly vinyl pyrrolidone/poly acrylic acid) hydrogel to mimic the knee joint meniscus. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmed Awadallah-F
- National Center for Radiation Research and Technology; P.O. Box 29 Nasr City Cairo Egypt
| |
Collapse
|
15
|
Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials 2014; 35:3527-40. [DOI: 10.1016/j.biomaterials.2014.01.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
|
16
|
Ha HJ, Song JE, Kang Y, Kim EY, Yoon SJ, Yang YI, Lee D, Khang G. PORCINE SMALL INTESTINAL SUBMUCOSA REDUCES THE INFLAMMATORY REACTION OF POLY(LACTIDE-CO-GLYCOLIDE) FILMS. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2014. [DOI: 10.4015/s101623721450032x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA), a well-known synthetic polymer comprised of PLA and PGA, is used commonly as a scaffold for soft and hard tissue engineering purposes; however, the appropriate strategies for reducing its host tissue inflammatory response remain obscure. Porcine small intestinal submucosa (SIS) has been applied as a natural, biodegradable matrix for dressing materials, tendon graft substitutes and scaffolds. We hypothesized that the host tissue reaction of PLGA might occur but could be reduced by impregnating SIS into PLGA. We manufactured PLGA/SIS hybrid films with 0, 10, 20, 40 and 80 wt.% SIS of PLGA. The inflammatory potential of PLGA was evaluated using mRNA expression of TNF-α, IL-1β and IL-6 in the surrounding tissue of implanted scaffolds. The response of subcutaneously implanted PLGA/SIS films were compared to PLGA film; the local inflammatory response was observed by histology. PLGA/SIS films, especially PLGA/SIS films containing 20, 40 and 80 wt.% SIS, elicited a significantly lower expression of IL-1β, TNF-α and IL-6 than PLGA film. PLGA/SIS films demonstrated a favorable tissue response profile compared to PLGA film, with significant less inflammation and fibrous capsule formation as below only 20 wt.% of PLGA/SIS film during implantation. This study demonstrates reduced inflammatory response of PLGA by different amounts of SIS and PLGA/SIS scaffolds being used for tissue engineering constructs.
Collapse
Affiliation(s)
- Hyun Jung Ha
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Jeong Eun Song
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Yunmi Kang
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Eun Young Kim
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Sun Jung Yoon
- Department of Orthopedic Surgery, Chonbuk National University Hospital, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Young Il Yang
- Department of Pathology, School of Medicine, Inje University, Paik Inje Clinical Research, Pusan 614–735, Korea
| | - Dongwon Lee
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| | - Gilson Khang
- Department of BIN Fusion Tech and Department of Advanced Organic Materials Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, 561–756, Korea
| |
Collapse
|
17
|
In vivo biocompatibility evaluation of electrospun composite scaffolds by subcutaneous implantation in rat. Drug Deliv Transl Res 2013; 3:504-17. [DOI: 10.1007/s13346-013-0153-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
|
19
|
Li Y, Thouas GA, Chen QZ. Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Adv 2012. [DOI: 10.1039/c2ra20736b] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Khang G. Importance of inflammation reaction of scaffold for the application of regenerative medicine. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Félix Lanao RP, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials 2011; 32:8839-47. [PMID: 21871661 DOI: 10.1016/j.biomaterials.2011.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
Collapse
Affiliation(s)
- Rosa P Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
22
|
The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011; 32:7411-31. [PMID: 21764438 DOI: 10.1016/j.biomaterials.2011.06.037] [Citation(s) in RCA: 659] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023]
Abstract
Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest toward the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest toward new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions.
Collapse
|
23
|
Abstract
The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists.
Collapse
Affiliation(s)
- Henning Madry
- Saarland University, Homburg, Germany,Henning Madry, Saarland University, Kirrbergerstrasse 1, Homburg, 66424 Germany
| | | | | |
Collapse
|
24
|
Lee H, Fisher S, Kallos MS, Hunter CJ. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 98:238-45. [PMID: 21604364 DOI: 10.1002/jbm.b.31845] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 11/11/2022]
Abstract
Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications.
Collapse
Affiliation(s)
- Haeyeon Lee
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Takeda K, Sakai N, Shiba H, Nagahara T, Fujita T, Kajiya M, Iwata T, Matsuda S, Kawahara K, Kawaguchi H, Kurihara H. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng Part A 2011; 17:955-67. [PMID: 21091323 DOI: 10.1089/ten.tea.2010.0070] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), for which bovine collagen-derived atelocollagen is used as a scaffold, enhances periodontal tissue regeneration. However, a scaffold that does not contain unknown ingredients is preferable. Since the synthesized high-molecular-weight (HMW)-hyaluronic acid (HA) is safe and inexpensive, we evaluated the efficacy of HMW-HA as a BDNF scaffold. CD44, a major receptor of HA, was expressed in cultures of human periodontal ligament cells, and HMW-HA promoted the adhesion and proliferation of human periodontal ligament cells, although it did not influence the mRNA expression of bone (cementum)-related proteins. The in vitro release kinetics of BDNF from HMW-HA showed that BDNF release was sustained for 14 days. Subsequently, we examined the effect of BDNF/HMW-HA complex on periodontal tissue regeneration in dogs. A greater volume of newly formed alveolar bone and a longer newly formed cementum were observed in the BDNF/HMW-HA group than in the HMW-HA group, suggesting that HMW-HA assists the regenerative capacity of BDNF, although HMW-HA itself does not enhance periodontal tissue regeneration. Neither the poly (lactic-co-glycolic acid) group nor the BDNF/poly (lactic-co-glycolic acid) group enhanced periodontal tissue regeneration. In conclusion, HMW-HA is an adequate scaffold for the clinical application of BDNF.
Collapse
Affiliation(s)
- Katsuhiro Takeda
- Division of Frontier Medical Science, Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gleghorn JP, Doty SB, Warren RF, Wright TM, Maher SA, Bonassar LJ. Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams. J Orthop Res 2010; 28:1292-9. [PMID: 20309861 DOI: 10.1002/jor.21136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Porous polyurethane foams (PUR) have been extensively evaluated as meniscal replacement materials and show great promise enabling infiltration of cells and fibrocartilage formation in vivo. Similar to most materials, PUR demonstrates progressive degeneration of opposing cartilage; however, the damage mechanism is impossible to determine because no information exists on the frictional properties of PUR-cartilage interfaces. The goals of this study were to characterize the frictional behavior of a cartilage-PUR interface across a range of articulating conditions and assess the resulting morphological changes to the cartilage surface following articulation. Articular cartilage was oscillated against PUR or stainless steel using phosphate-buffered saline (PBS) and synovial fluid as lubricants. Following friction testing, cartilage and PUR samples were analyzed with environmental scanning electron microscopy and histological staining to determine changes in tissue morphology. Stribeck-surface analysis demonstrated distinct lubrication modes; however, boundary mode lubrication was dominant in cartilage-PUR interfaces and the low-friction pressure-borne lubrication mechanism present in native joints was absent. Microscopy noted obvious wear, with disruption of the collagen architecture and concomitant proteoglycan loss in cartilage articulated against PUR. These data collectively point to the importance of frictional properties as design parameters for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Jason P Gleghorn
- Department of Biomedical Engineering, Cornell University, 149 Weill Hall, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Woźniak P, Bil M, Ryszkowska J, Wychowański P, Wróbel E, Ratajska A, Hoser G, Przybylski J, Kurzydłowski KJ, Lewandowska-Szumieł M. Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Acta Biomater 2010; 6:2484-93. [PMID: 19837193 DOI: 10.1016/j.actbio.2009.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 01/30/2023]
Abstract
Biodegradable polyurethanes (PURs) have recently been investigated as candidate materials for bone regenerative medicine. There are promising reports documenting the biocompatibility of selected PURs in vivo and the tolerance of certain cells toward PURs in vitro - potentially to be used as scaffolds for tissue-engineered products (TEPs). The aim of the present study was to take a step forward and create a TEP using human osteogenic cells and a polyurethane scaffold, and to evaluate the quality of the obtained TEP in vivo. Human-bone-derived cells (HBDCs) were seeded and cultured on polyurethane scaffolds in a bioreactor for 14 days. The TEP examination in vitro was based on the evaluation of cell number, cell phenotype and cell distribution within the scaffold. TEPs and control samples (scaffolds without cells) were implanted subcutaneously into SCID mice for 4 and 13 weeks. Explants harvested from the animals were examined using histological and immunohistochemical methods. They were also tested in mechanical trials. It was found that dynamic conditions for cell seeding and culture enable homogeneous distribution, maintaining the proliferative potential and osteogenic phenotype of the HBDCs cultured on polyurethane scaffolds. It was also found that HBDCs implanted as a component of TEP survived and kept their ability to produce the specific human bone extracellular matrix, which resulted in higher mechanical properties of the harvested explants when preseeded with HBDCs. The whole system, including the investigated PUR scaffold and the method of human cell seeding and culture, is recommended as a candidate bone TEP.
Collapse
Affiliation(s)
- Piotr Woźniak
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim IA, Rhee SH. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics. J Biomed Mater Res B Appl Biomater 2010; 93:218-26. [PMID: 20091921 DOI: 10.1002/jbm.b.31578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming ability of electrospun PLGA/SiO(2)-CaO gel composite fabric. Two PLGA copolymer compositions with low and high degradability were used in experiments. A nonwoven polymer/ceramic composite fabric composed of randomly mixed microsized biodegradable PLGA fibers and nanosized bioactive SiO(2)-CaO gel fibers was prepared using a simultaneous electrospinning method. A 17 wt.% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent, while the SiO(2)-CaO gel solution was prepared via a condensation reaction following hydrolysis of tetraethyl orthosilicate under acidic conditions. PLGA and SiO(2)-CaO gel solutions were spun simultaneously with two separate nozzles under electric fields of 1 and 2 kV/cm using two syringe pumps with flow rates of 7.5 and 5 mL/h, respectively. As controls, low and high degradable PLGA and SiO(2)-CaO gel nonwoven fabrics were also made by the same methods. The five nonwoven fabrics that were produced were exposed to simulated body fluid (SBF) for 1 week. SBF exposure resulted in the deposition of a layer of apatite crystals on the surfaces of both the SiO(2)-CaO gel and the low degradable PLGA/SiO(2)-CaO gel composite fabrics, but not on the low and high degradable PLGA or the high degradable PLGA/SiO(2)-CaO gel composite fabrics. The results are explained in terms of the acidity of the PLGA degradation products, which could have a direct influence on apatite dissolution.
Collapse
Affiliation(s)
- In Ae Kim
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 HLS, School of Dentistry, Graduate School, Seoul National University, Seoul 110-749, Korea
| | | |
Collapse
|
29
|
Sandmann GH, Eichhorn S, Vogt S, Adamczyk C, Aryee S, Hoberg M, Milz S, Imhoff AB, Tischer T. Generation and characterization of a human acellular meniscus scaffold for tissue engineering. J Biomed Mater Res A 2010; 91:567-74. [PMID: 18985757 DOI: 10.1002/jbm.a.32269] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Meniscus tears are frequent indications for arthroscopic evaluation which can result in partial or total meniscectomy. Allografts or synthetic meniscus scaffolds have been used with varying success to prevent early degenerative joint disease in these cases. Problems related to reduced initial and long-term stability, as well as immunological reactions prevent widespread clinical use so far. Therefore, the aim of this study was to develop a new construct for tissue engineering of the human meniscus based on an acellular meniscus allograft. Human menisci (n = 16) were collected and acellularized using the detergent sodium dodecyl sulfate as the main ingredient or left untreated as control group. These acellularized menisci were characterized biomechanically using a repetitive ball indentation test (Stiffness N/mm, residual force N, relative compression force N) and by histological (hematoxylin-eosin, phase-contrast) as well as immunohistochemical (collagen I, II, VI) investigation. The processed menisci histologically appeared cell-free and had biomechanical properties similar to the intact meniscus samples (p > 0.05). The collagen fiber arrangement was not altered, according to phase-contrast microscopy and immunohistochemical labeling. The removal of the immunogenic cell components combined with the preservation of the mechanically relevant parts of the extracellular matrix could make these scaffolds ideal implants for future tissue engineering of the meniscus.
Collapse
Affiliation(s)
- G H Sandmann
- Department of Orthopaedic Sport Surgery, Technical University Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bedi A, Foo LF, Williams RJ, Potter HG. The Maturation of Synthetic Scaffolds for Osteochondral Donor Sites of the Knee: An MRI and T2-Mapping Analysis. Cartilage 2010; 1:20-8. [PMID: 26069533 PMCID: PMC4440610 DOI: 10.1177/1947603509355970] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The purpose of this study was to analyze the morphological imaging characteristics and incorporation of TruFit bone graft substitute (BGS) plugs using cartilage-sensitive magnetic resonance imaging (MRI) and quantitative T2 mapping. DESIGN Twenty-six patients (mean age, 28.72 years; range, 11-56 years) underwent osteochondral autologous transplantation (OATS) for chondral defects with filling of the knee joint donor sites using Trufit BGS plugs. The mean follow-up interval between implantation and MRI analysis was 21.3 months (range, 6-39 months). During this period, 43 cartilage-sensitive and 25 quantitative T2-mapping MRI studies were performed. The donor sites were assessed for plug and interface morphology, displacement, hypertrophy, subchondral edema, presence of bony overgrowth, percentage fill, and degree of incorporation. T2 relaxation times were measured for the superficial and deep layers of the repair tissue. A linear regression and correlational analysis was performed with Bonferroni correction, and P < 0.05 was defined as significant. RESULTS Longitudinal analysis revealed favorable plug appearance at early follow-up (≤6 months), with 75% of plugs demonstrating flush morphology and 78% demonstrating near complete to complete fill. Plug appearance deteriorated at intermediate follow-up (~12 months), with only 26% of plugs demonstrating flush morphology and 52% with near complete or complete fill. Plug appearance substantially improved with longer follow-up (≥16 months), with 70% of plugs demonstrating flush morphology and 90% demonstrating near complete or complete fill. Interface resorption was common at ~12 months (P < 0.0001) and was associated with older age (P = 0.01) or a single-plug configuration (P = 0.04). T2 values for the repair cartilage approached that of normal cartilage with increasing duration after surgery (P < 0.004), more so for single- compared with multiple-plug configurations (P = 0.03). CONCLUSIONS The Trufit BGS plug demonstrates a predictable pattern of postoperative maturation on MRI images that parallels its biological incorporation. An intermediate postoperative interval can be associated with unfavorable MRI findings. However, the plug appearance significantly improves with greater postoperative duration and has mean T2 relaxation times that approach those of normal articular cartilage.
Collapse
Affiliation(s)
- Asheesh Bedi
- Asheesh Bedi, MD, Sports Medicine & Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | | | | | | | | |
Collapse
|
31
|
Levy-Mishali M, Zoldan J, Levenberg S. Effect of Scaffold Stiffness on Myoblast Differentiation. Tissue Eng Part A 2009; 15:935-44. [DOI: 10.1089/ten.tea.2008.0111] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meital Levy-Mishali
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Janet Zoldan
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
|
33
|
Heijkants RGJC, van Calck RV, van Tienen TG, de Groot JH, Pennings AJ, Buma P, Veth RPH, Schouten AJ. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation. J Biomed Mater Res A 2008; 87:921-32. [DOI: 10.1002/jbm.a.31829] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Kitahara S, Nakagawa K, Sah RL, Wada Y, Ogawa T, Moriya H, Masuda K. In VivoMaturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite. Tissue Eng Part A 2008; 14:1905-13. [DOI: 10.1089/ten.tea.2006.0419] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sota Kitahara
- Department of Orthopedic Surgery, Rush Medical College, Rush University Medical Center, Chicago, Illinois
- Department of Orthopedic Surgery, Chiba Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Nakagawa
- Department of Orthopedic Surgery, Chiba Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Yuichi Wada
- Department of Orthopedic Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | | | - Hideshige Moriya
- Department of Orthopedic Surgery, Chiba Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Masuda
- Department of Orthopedic Surgery, Rush Medical College, Rush University Medical Center, Chicago, Illinois
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, Chicago, Illinois
- Current affiliation: Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
35
|
De Wit MA, Wang Z, Atkins KM, Mequanint K, Gillies ER. Syntheses, characterization, and functionalization of poly(ester amide)s with pendant amine functional groups. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22915] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 2008; 85:445-55. [PMID: 17729255 DOI: 10.1002/jbm.a.31480] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Defects of the meniscus greatly alter knee function and predispose the joint to degenerative changes. The purpose of this study was to test a recently developed cell-scaffold combination for the repair of a critical-size defect of the rabbit medial meniscus. A bilateral, complete resection of the pars intermedia of the medial meniscus was performed in 18 New Zealand White rabbits. A hyaluronan/gelatin composite scaffold was implanted into the defect of one knee of 6 rabbits and the contralateral defect was left untreated. Scaffolds loaded with autologous marrow-derived mesenchymal stem cells and cultured in a chondrogenic medium for 14 days were implanted in a second series of 12 rabbits. Empty scaffolds were implanted in the contralateral knees. Meniscii were harvested at 12 weeks. Untreated defects had a muted fibrous healing response. Defects treated with cell-free implants showed also predominantly fibrous tissue whereas fibrocartilage was present in some scaffolds. The cross-sectional width of the repair tissue after treatment with cell-free scaffolds was significantly greater than controls (p < 0.05). Pre-cultured implants integrated with the host tissue and 8 of 11 contained meniscus-like fibrocartilage, compared with 2 of 11 controls (p < 0.03). The mean cross-sectional width of the pre-cultured implant repair tissue was greater than controls (p < 0.004). This study demonstrates the repair of a critical size meniscal defect with a stem cell and scaffold based tissue engineering approach.
Collapse
Affiliation(s)
- Peter Angele
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yoon SJ, Kim SH, Ha HJ, Ko YK, So JW, Kim MS, Yang YI, Khang G, Rhee JM, Lee HB. Reduction of Inflammatory Reaction of Poly(D,L-Lactic-Co-Glycolic Acid) Using Demineralized Bone Particles. Tissue Eng Part A 2008; 14:539-47. [DOI: 10.1089/tea.2007.0129] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sun Jung Yoon
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Soon Hee Kim
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Hyun Jung Ha
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Youn Kyung Ko
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Jung Won So
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Moon Suk Kim
- NanoBiomaterials Lab, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Young Il Yang
- Department of Pathology, College of Medicine, Inje University, Busan, Korea
| | - Gilson Khang
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - John M. Rhee
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Hai Bang Lee
- NanoBiomaterials Lab, Korea Research Institute of Chemical Technology, Daejeon, Korea
| |
Collapse
|
38
|
Santos Jr AR, Wada MLF. Polímeros biorreabsorvíveis como substrato para cultura de células e engenharia tecidual. POLIMEROS 2007. [DOI: 10.1590/s0104-14282007000400010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomateriais poliméricos são desenvolvidos para uso como substitutos de tecidos danificados e/ou estimular sua regeneração. Uma classe de biomateriais poliméricos são os biorreabsorvíveis, compostos que se decompõem tanto in vitro quanto in vivo. São empregados em tecidos que necessitam de um suporte temporário para sua recomposição tecidual. Dentre os vários polímeros biorreabsorvíveis, destacam-se os alfa-hidróxi ácidos, entre eles, diferentes composições do poli(ácido lático) (PLA), como o poli(L-ácido lático) (PLLA), poli(D-ácido lático) (PDLA), poli(DL-ácido lático) (PDLLA), além do poli(ácido glicólico) (PGA) e da policaprolactona (PCL). Estes polímeros são considerados biorreabsorvíveis por apresentarem boa biocompatibilidade e os produtos de sua decomposição serem eliminados do corpo por vias metabólicas. Diversas linhas de pesquisa mostram que os diferentes substratos à base de PLA estudados não apresentam toxicidade, uma vez que as células são capazes de crescer e proliferar sobre eles. Além disso, diversos tipos de células cultivadas sobre diferentes formas de PLA são capazes de se diferenciarem sobre os diferentes polímeros e passar a produzir componentes de matriz extracelular. Neste trabalho, é revisada a utilização de substratos à base de alfa-hidróxi ácidos, com destaque para diferentes formas de PLA, utilizados como substratos para cultura de células, bem como suas aplicações.
Collapse
|
39
|
Mesiha M, Zurakowski D, Soriano J, Nielson JH, Zarins B, Murray MM. Pathologic characteristics of the torn human meniscus. Am J Sports Med 2007; 35:103-12. [PMID: 17092929 DOI: 10.1177/0363546506293700] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acellular meniscus tissue is at a high risk for degeneration and retear. Information that would help surgeons predict, preoperatively, or intraoperatively which torn menisci had few viable cells could be useful in deciding which patients might be at increased risk for retear and failure of surgical repair. HYPOTHESIS Patient age, length of time since injury, and tear type are predictors of the cellularity of meniscus tissue. STUDY DESIGN Descriptive laboratory study. METHODS Gross and histologic evaluation of torn meniscus tissue from 44 patients and 10 control menisci was performed. RESULTS The patient factors of age, time since injury, and tear type all had significant effects on the pathologic characteristics of the torn meniscus. Patients older than 40 years had lower cellularity in the torn menisci than did patients younger than 40 years (P < .01). As time since injury increased, so did the rates of DNA fragmentation in the midsubstance of the meniscus and rates of Outerbridge II changes in the adjacent cartilage. Worse meniscal histologic scores were found in menisci with degenerative and radial tear types. CONCLUSION Patient age had a significant effect on the cellularity of the torn meniscus, with patients older than 40 years having significantly fewer meniscus cells than did those younger than 40 years. Further studies are needed to define the relative importance of the individual histologic findings in the clinical setting of meniscus tear and repair. CLINICAL RELEVANCE In light of their decreased cellularity, menisci from patients older than 40 years may be more vulnerable to degeneration and retear after repair than are menisci of younger patients.
Collapse
Affiliation(s)
- Mena Mesiha
- Department of Orthopaedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Li WJ, Jiang YJ, Tuan RS. Chondrocyte Phenotype in Engineered Fibrous Matrix Is Regulated by Fiber Size. ACTA ACUST UNITED AC 2006; 12:1775-85. [PMID: 16889508 DOI: 10.1089/ten.2006.12.1775] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A biomaterial scaffold acting as a functional substitute for the native extracellular matrix provides space for cell accommodation. In this study, we seeded chondrocytes, isolated from 4- to 6-month-old calves, in 2 types of poly(L-lactide) scaffolds, composed of micro- and nanofibers, and compared the effects on cellular activities. Scanning electron microscopy revealed a well-spread morphology for chondrocytes grown on microfibers. In contrast, chondrocytes on the nanofibers were found to have a rounded morphology and displayed a disorganized actin cytoskeletal structure compared to the organized cytoskeleton seen in well-spread chondrocytes culture on the microfibrous scaffold. Both scaffolds supported chondrocyte proliferation, with a higher rate seen in cultures in nanofibrous scaffold. Quantitative reverse transcription-polymerase chain reaction analysis showed that both cultures supported expression of collagen types I and II and aggrecan. Biochemical analysis showed a higher level of sulfated glycosaminoglycan in the nanofiber culture, confirmed by more intense alcian blue histologic staining. The nanofiber cultures also showed higher immunostaining for collagen types II and IX, aggrecan, and cartilage proteoglycan link protein. Based on these results, we conclude that chondrocytes respond differently to fibrous scaffolds of varying diameters, and that the scaffolds made of nanofibrous biomaterial promote efficient cell-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Wan-Ju Li
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-8022, USA
| | | | | |
Collapse
|
41
|
Tienen TG, Heijkants RGJC, de Groot JH, Schouten AJ, Pennings AJ, Veth RPH, Buma P. Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 2006; 76:389-96. [PMID: 16211565 DOI: 10.1002/jbm.b.30406] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In earlier studies, meniscal replacement with a porous polymer implant led to regeneration of neo-meniscal tissue. To evaluate the influence of the chemical properties on the tissue regeneration in the implant, in the present study, the meniscus in the dog's knee was replaced with either an aromatic 4,4-diphenylmethanediisocyanate based polyesterurethane implant (Estane) (n = 6) or with an aliphatic 1,4-butanediisocyanate based polyesterurethane implant (PCLPU) (n = 6). After 6 months, the knee joints were resected and the tissue behavior in the two different prostheses was evaluated microscopically. In both prostheses, a meniscus-like distribution of the tissue phenotype was found with collagen type I in the peripheral fibrous zones and collagen type II in the central, more cartilaginous zones. The compression-stress behavior of the implant-tissue construct remained in between the stiffness of the polymer material and that of the native meniscus. The PCLPU implant seemed to provoke less synovial tissue reaction. After meniscectomy solely, in 5 out of 6 cases, a meniscus-like regenerate was formed. Furthermore, the articular cartilage degeneration after placing a PCLPU implant did also not exceed the degeneration after the Estane implant or after meniscectomy. The differences between these two implants did not seem to influence the tissue regeneration in the implant. However, PCLPU seemed to evoke less tissue reaction and, therefore, is thought to be less or even nontoxic as compared with the Estane implant. Therefore, for studies in the future, the authors prefer the PCLPU prostheses for replacement of the meniscus.
Collapse
Affiliation(s)
- T G Tienen
- Orthopaedic Research Laboratory, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Martinek V, Ueblacker P, Bräun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 2006; 126:228-34. [PMID: 16215722 DOI: 10.1007/s00402-005-0025-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The options available after meniscus loss offer only limited chances for a long-term success. In the following experimental study, we investigated the effect of meniscus tissue engineering on properties of the collagen meniscus implant (CMI). METHODS Autologous fibrochondrocytes, obtained per biopsy from adult Merino sheep (n=25), were released from the matrix, cultured in-vitro and seeded into CMI scaffolds (n=10, group 1). Following a 3-week in-vitro culture, the tissue engineered menisci were used for autologous transplantation. Macroscopical and histological evaluation were performed in comparison with non-seeded CMI controls (n=10, group 2) and with meniscus-resected controls (n=5, group 3) after 3 weeks (each 1 animal group 1 and 2) and 3 months. RESULTS The lameness score did not show any difference between the groups. Meniscus tissue was found in seven knee joints (group 1), in five knee joints (group 2) and in two knee joints (group 3). The size of the transplants reduced from 25.9+/-4.5 to 20.1+/-10.8 mm (group 1) and from 25.9+/-1.5 to 14.4+/-12.5 mm (group 2). Histologically, enhanced vascularisation, accelerated scaffold re-modelling, higher content of extra-cellular matrix and lower cell number were noted in the pre-seeded menisci in comparison with non-seeded controls. Dense high-cellular fibrous scar tissue was found in two of five cases in the resection control group. CONCLUSION Tissue engineering of meniscus with autologous fibrochondrocytes demonstrates a macroscopic and histological improvement of the transplants. However, further development of the methods, especially of the scaffold and of the cell-seeding procedure must prove the feasibility of this procedure for human applications.
Collapse
Affiliation(s)
- V Martinek
- Department of Orthopaedic Sports Medicine, Technical University Munich, Connollystr. 32, 80809 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ha CS, Gardella JA. Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems. Chem Rev 2005; 105:4205-32. [PMID: 16277374 DOI: 10.1021/cr040419y] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Pusan 609-735, Korea
| | | |
Collapse
|
44
|
Heijkants RGJC, van Calck RV, van Tienen TG, de Groot JH, Buma P, Pennings AJ, Veth RPH, Schouten AJ. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(ε-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials 2005; 26:4219-28. [PMID: 15683644 DOI: 10.1016/j.biomaterials.2004.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/10/2004] [Indexed: 10/26/2022]
Abstract
Polyurethanes based on poly(epsilon-caprolactone) (PCL) (750-2800 g/mol) and 1,4-butane diisocyanate (BDI) with different soft segment lengths and constant uniform hard segment length were synthesized in absence of catalysts for the production of a degradable meniscus scaffold. First the polyesterdiols were endcapped with BDI yielding a macrodiisocyanate with a minimal amount of side reactions and a functionality of 2.0. Subsequently, the macrodiisocyanates were extended with 1,4-butanediol in order to obtain the corresponding polyurethane. The polyurethanes had molecular weights between 78 and 160 kg/mol. Above molar masses of 1900 g/mol of the polyesterdiol crystalline PCL was found while the hard segment showed an increase in melting point from 78 to 122 degrees C with increasing hard segment content. It was estimated that the percentage crystallinity of the hard segment varied between 92 and 26%. The Young's modulus varied between 30 and 264 MPa, the strain at break varied between 870 and 1200% and tear strengths varied between 97 and 237 kJ/m2.
Collapse
Affiliation(s)
- Ralf G J C Heijkants
- Department of Polymer Chemistry, Faculty of Mathematics & Natural Sciences, University Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 2005; 26:3243-8. [PMID: 15603819 DOI: 10.1016/j.biomaterials.2004.08.028] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
For the recognized importance of knee meniscus function, the treatment of meniscus injury has been changing from resection to repair. However, depending on the type of injury, meniscectomy sometimes cannot be avoided. In such a case, it is important to anticipate the future problem of degenerative change or osteoarthrosis in the knee joint. In consideration of the prognosis and circumstances in such patients, we have developed an artificial meniscus using polyvinyl alcohol-hydrogel (PVA-H) for salvage. We have already reported the results up to 1 year after animal operation. The present study investigated the results in postoperative 2.0 years to assess further the use of artificial meniscus. In the results, the articular cartilage state of knee joint implanted PVA-H meniscus was good even after 2 years, while Osteoarthrosis (OA) change progressed in meniscectomy knee joint. In addition, neither wear, dislocation nor breakage of PVA-H was observed. These results proved that an artificial meniscus using PVA-H can compensate for meniscal function and might be clinically applicable.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Orthopedic Surgery Department, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8688, Japan.
| | | | | |
Collapse
|
46
|
Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 2004; 24:5163-71. [PMID: 14568433 DOI: 10.1016/s0142-9612(03)00462-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to evaluate the capability of novel biodegradable polyurethane scaffolds to support attachment, growth and maintenance of differentiated chondrocytes in vitro for up to 42 days. After an initial decrease, although not significant, the DNA content of the constructs remained constant over the culture time. A progressive increase in glycosaminoglycans and collagen was observed during the culture period. However, a significant release of matrix molecules into the culture medium was also noticeable. At the transcriptional level, a decrease in aggrecan and procollagen II mRNA expression was noticeable, whereas procollagen I expression was increased. To conclude, the present data demonstrate that biodegradable polyurethane porous scaffolds seeded with articular chondrocytes support cell attachment and the production of extracellular matrix proteins. The limitations of the system are the diffusion of large amounts of matrix molecules into the culture medium and the dedifferentiation of the chondrocytes with prolonged time in culture. However, due to the favourable mechanical properties of the polyurethane scaffold, stimulation of chondrocytes by mechanical loading can be considered in order to improve the formation of a functional cartilage-like extracellular matrix.
Collapse
Affiliation(s)
- Sibylle Grad
- Biochemistry & Cell Biology Unit, AO Research Institute, 7270 Davos Platz, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Abstract
Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new treatment modalities for repair of meniscus tears and eventually will enable the replacement of a whole meniscus by a tissue-engineered construct. Many questions remain to be answered before the final goal, a tissue-engineered meniscus is available for clinical implementation. These questions are related to the selection of an optimal cell type, the source of the cells, the need to use growth factor(s) and the type of scaffold that can be used for stimulation of differentiation of cells into tissues with optimal phenotypes. Particularly in a loaded, highly complex environment of the knee, optimal mechanical properties of such a scaffold seem to be of utmost importance. With respect to cells, autologous meniscus cells seems the optimal cell source for tissue engineering of meniscus tissue, but their availability is limited. Therefore research should be stimulated to investigate the suitability of other cell sources for the creation of meniscus tissue. Bone marrow stroma cells could be useful since it is well known that they can differentiate into bone and cartilage cells. With respect to growth factors, TGF-beta could be a suitable growth factor to stimulate cells into a fibroblastic phenotype but the problems of TGF-beta introduced into a joint environment should then be solved. Polyurethane scaffolds with optimal mechanical properties and with optimal interconnective macro-porosity have been shown to facilitate ingrowth and differentiation of tissue into fibro-cartilage. However, even these materials cannot prevent cartilage degeneration in animal models. Surface modification and/or seeding of cells into the scaffolds before implantation may offer a solution for this problem in the future.This review focuses on a number of specific questions; what is the status of the development of procedures for lesion healing and how far are we from replacing the entire meniscus by a (tissue-engineered) prosthesis. Subquestions related to the type of scaffold used are: is the degree of tissue ingrowth and differentiation related to the initial mechanical properties and if so, what is the influence of those properties on the subsequent remodelling of the tissue into fibro-cartilage; what is the ideal pore geometry and what is the optimal degradation period to allow biological remodelling of the tissue in the scaffold. Finally, we will finish with our latest results of the effect of tear reconstruction and the insertion of prostheses on articular cartilage degradation.
Collapse
Affiliation(s)
- P Buma
- Orthopaedic Research Laboratory, Department of Orthopaedics, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Cao T, Ho KH, Teoh SH. Scaffold Design andin VitroStudy of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling. ACTA ACUST UNITED AC 2003; 9 Suppl 1:S103-12. [PMID: 14511474 DOI: 10.1089/10763270360697012] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tissue engineering offers an alternative method that can overcome some of the existing drawbacks of current articular defect repair methods because articular cartilage has a limited capacity to respond to injury. The solution may lie in the design of a three-dimensional load-bearing scaffold. Here we describe the tissue engineering of an osteochondral construct by coculturing osteogenic cells and chondrogenic cells on a three-dimensional load-bearing bioresorbable polymer scaffold. Porous polycaprolactone scaffolds were designed and fabricated via fused deposition modeling. Osteogenic cells were seeded and precultured in one-half of the partitioned scaffolds. Chondrogenic cells were later seeded into the other half. The cell-seeded scaffolds were cultured in a coculture medium. Both cell types proliferated, migrated, linked in their scaffold compartments, and integrated at the interface. Osteoblasts and chondrocytes produced different extracellular matrices in each scaffold compartment. Mineralized nodules deposited in the osteogenic cell seeded compartment. High osteocalcin was detected in precultured osteogenic cell supernatant and high alkaline phosphatase was detected in the coculture supernatant of osteochondral constructs. This study suggests that a tissue-engineered osteochondral construct with a three-dimensional polycaprolactone scaffold has the potential for osteochondral defect repair.
Collapse
Affiliation(s)
- Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
49
|
Tienen TG, Heijkants RGJC, Buma P, De Groot JH, Pennings AJ, Veth RPH. A porous polymer scaffold for meniscal lesion repair--a study in dogs. Biomaterials 2003; 24:2541-8. [PMID: 12695081 DOI: 10.1016/s0142-9612(03)00053-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Meniscal lesions often occur in the avascular area of the meniscus with little chance of spontaneous repair. An access channel in the meniscal tissue can function as an entrance for ingrowing repair tissue from the vascular periphery of the meniscus to the lesion in the avascular zone which again induced healing of the lesion. Implantation of a porous polymer in a full-thickness access channel induced healing. However, a better integration between meniscal tissue and the implant might be achieved with the combination of the newly developed porous polymers and a modified surgical technique. This might improve meniscal lesion healing and the repair of the access channel with neo-meniscal tissue. Longitudinal lesions were created in the avascular part of 24 canine lateral menisci and a partial-thickness access channel was formed to connect the lesion with the meniscal periphery. In 12 menisci, the access channel was left empty (control group), while in the remaining 12 menisci the polymer implant was sutured into the access channel. Repair of the longitudinal lesions was achieved with and without polymer implantation in the partial-thickness access channel. Polymer implants induced fibrous ingrowth with cartilaginous areas, which resembled neo-meniscal tissue. Implantation did not prevent articular cartilage degeneration.
Collapse
Affiliation(s)
- T G Tienen
- Department of Orthopaedics, Orthopaedic Research Laboratory, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Kobayashi M, Toguchida J, Oka M. Development of an artificial meniscus using polyvinyl alcohol-hydrogel for early return to, and continuance of, athletic life in sportspersons with severe meniscus injury. I: mechanical evaluation. Knee 2003; 10:47-51. [PMID: 12649026 DOI: 10.1016/s0968-0160(02)00152-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The importance of knee meniscus function is now recognized, and the treatment of meniscus injury has been changing from resection to repair. However, depending on the type of injury, meniscectomy sometimes cannot be avoided. The young athlete might undergo meniscectomy in order to return to sports life as early as possible. However, in such a knee, it is important to anticipate the future problem of degenerative change or osteoarthrosis. In consideration of the prognosis and circumstances in such patients, we have developed an artificial meniscus using polyvinyl alcohol-hydrogel (PVA-H) and performed mechanical tests for compression and stress-relaxation. We found that the human meniscus has unique viscoelastic properties and a high water content. PVA-H showed viscoelastic behaviour similar to that of human meniscus in mechanical tests. These results suggest that an artificial meniscus using PVA-H with a high water content can compensate for meniscal function and might be clinically applicable.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|