1
|
Salamanca G, Tagliavia C, Grandis A, Graïc JM, Cozzi B, Bombardi C. Distribution of vasoactive intestinal peptide (VIP) immunoreactivity in the rat pallial and subpallial amygdala and colocalization with γ-aminobutyric acid (GABA). Anat Rec (Hoboken) 2024; 307:2891-2911. [PMID: 38263752 DOI: 10.1002/ar.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
The amygdaloid complex, also known as the amygdala, is a heterogeneous group of distinct nuclear and cortical pallial and subpallial structures. The amygdala plays an important role in several complex functions including emotional behavior and learning. The expression of calcium-binding proteins and peptides in GABAergic neurons located in the pallial and subpallial amygdala is not uniform and is sometimes restricted to specific groups of cells. Vasoactive intestinal polypeptide (VIP) is present in specific subpopulations of GABAergic cells in the amygdala. VIP immunoreactivity has been observed in somatodendritic and axonal profiles of the rat basolateral and central amygdala. However, a comprehensive analysis of the distribution of VIP immunoreactivity in the various pallial and subpallial structures is currently lacking. The present study used immunohistochemical and morphometric techniques to analyze the distribution and the neuronal localization of VIP immunoreactivity in the rat pallial and subpallial amygdala. In the pallial amygdala, VIP-IR neurons are local inhibitory interneurons that presumably directly and indirectly regulate the activity of excitatory pyramidal neurons. In the subpallial amygdala, VIP immunoreactivity is expressed in several inhibitory cell types, presumably acting as projection or local interneurons. The distribution of VIP immunoreactivity is non-homogeneous throughout the different areas of the amygdaloid complex, suggesting a distinct influence of this neuropeptide on local neuronal circuits and, consequently, on the cognitive, emotional, behavioral and endocrine activities mediated by the amygdala.
Collapse
Affiliation(s)
- G Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - C Tagliavia
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - A Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - J M Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - B Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - C Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Cunha-Reis D, Caulino-Rocha A. VIP Modulation of Hippocampal Synaptic Plasticity: A Role for VIP Receptors as Therapeutic Targets in Cognitive Decline and Mesial Temporal Lobe Epilepsy. Front Cell Neurosci 2020; 14:153. [PMID: 32595454 PMCID: PMC7303298 DOI: 10.3389/fncel.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is an important modulatory peptide throughout the CNS acting as a neurotransmitter, neurotrophic or neuroprotective factor. In the hippocampus, a brain area implicated in learning and memory processes, VIP has a crucial role in the control of GABAergic transmission and pyramidal cell activity in response to specific network activity by either VIP-containing basket cells or interneuron-selective (IS) interneurons and this appears to have a differential impact in hippocampal-dependent cognition. At the cellular level, VIP regulates synaptic transmission by either promoting disinhibition, through activation of VPAC1 receptors, or enhancing pyramidal cell excitability, through activation of VPAC2 receptors. These actions also control several important synaptic plasticity phenomena such as long-term potentiation (LTP) and long-term depression (LTD). This paper reviews the current knowledge on the activation and multiple functions of VIP expressing cells in the hippocampus and their role in controlling synaptic transmission, synaptic plasticity and learning and memory processes, discussing also the role of VPAC1 and VPAC2 VIP receptors in the regulation of these different processes. Furthermore, we address the current knowledge regarding changes in VIP mediated neurotransmission in epileptogenesis and mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), and discuss the therapeutic opportunities of using selective VIP receptor ligands to prevent epileptogenesis and cognitive decline in MTLE-HS.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Ago Y, Hayata-Takano A, Kawanai T, Yamauchi R, Takeuchi S, Cushman JD, Rajbhandari AK, Fanselow MS, Hashimoto H, Waschek JA. Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice. Neurobiol Learn Mem 2017; 145:222-231. [PMID: 29030297 DOI: 10.1016/j.nlm.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
The structurally related neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been implicated in stress regulation and learning and memory. Several bodies of research have shown the impact of the PACAP specific receptor PAC1 on fear memory, but the roles of other PACAP receptors in regulating fear stress responses remain to be elucidated. Here we aimed to investigate the effects of genetic deletion of VIPR2 encoding the VPAC2 receptor, which binds both VIP and PACAP, on fear-related memory and on dendritic morphology in the brain regions of the fear circuitry. Male VPAC2 receptor knockout (VPAC2-KO) and littermate wild-type control mice were subjected to Pavlovian fear conditioning paradigm. VPAC2-KO mice displayed normal acquisition of fear conditioning, contextual and cued fear memory, but impaired extinction of cued fear memory. Morphological analyses revealed reductions in cell body size and total branch number and length of apical and basal dendrites of prelimbic cortex neurons in VPAC2-KO mice. In addition, Sholl analysis indicated that the amount of dendritic material distal to the soma was decreased, while proximal dendritic material was increased. In the infralimbic cortex, the amount of apical dendritic material proximal to the soma was increased in VPAC2-KO mice, while other indices of morphology did not differ. Finally, there were no differences in dendritic morphology in basolateral amygdala neurons between genotypes. These findings suggest that the VPAC2 receptor plays an important role in the fear extinction processes and the regulation of the dendritic morphology in the prelimbic and infralimbic cortices.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Takuya Kawanai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Yamauchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuto Takeuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Abha K Rajbhandari
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Lateralized hippocampal effects of vasoactive intestinal peptide on learning and memory in rats in a model of depression. Psychopharmacology (Berl) 2012; 221:561-74. [PMID: 22160165 DOI: 10.1007/s00213-011-2600-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/24/2011] [Indexed: 01/25/2023]
Abstract
RATIONALE Findings of pharmacological studies revealed that vasoactive intestinal peptide (VIP) plays a modulatory role in learning and memory. A role of the peptide in the neurobiological mechanisms of affective disorders was also suggested. OBJECTIVE The objectives are to study the involvement of VIP in learning and memory processes after unilateral and bilateral local application into hippocampal CA1 area in rats with a model of depression (bilateral olfactory bulbectomy--OBX) and to test whether VIP receptors could affect cognition. RESULTS VIP (50 ng) and combination (VIP(6-28) 10 ng + VIP 50 ng) microinjected bilaterally or into the right CA1 area improved the learning and memory of OBX rats in shuttle-box and step-through behavioral tests as compared to the saline-treated OBX controls. Left-side VIP microinjections did not affect the number of avoidances (shuttle box) and learning criteria (step through) as compared to the left-side saline-treated OBX controls. The administration of the combination into left CA1 influenced positively the performance in the step-through task. VIP antagonist (VIP(6-28), 10 ng) did not affect learning and memory of OBX rats. These findings suggest asymmetric effect of VIP on cognitive processes in hippocampus of rats with OBX model of depression. CONCLUSION Our results point to a lateralized modulatory effect of VIP injected in the hippocampal CA1 area on the avoidance deficits in OBX rats. The right CA1 area was predominantly involved in the positive effect of VIP on learning and memory. A possible role of the PAC1 receptors is suggested.
Collapse
|
5
|
Ivanova M, Ternianov A, Tashev R, Belcheva S, Belcheva I. Lateralized learning and memory effects of vasoactive intestinal peptide infused into the rat hippocampal CA1 area. ACTA ACUST UNITED AC 2009; 156:42-6. [DOI: 10.1016/j.regpep.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 05/11/2009] [Accepted: 05/17/2009] [Indexed: 01/18/2023]
|
6
|
Benagiano V, Flace P, Lorusso L, Rizzi A, Bosco L, Cagiano R, Ambrosi G. Vasoactive intestinal polypeptide immunoreactivity in the human cerebellum: qualitative and quantitative analyses. J Anat 2009; 215:256-66. [PMID: 19552726 DOI: 10.1111/j.1469-7580.2009.01110.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although autoradiographic, reverse transcription-polymerase chain reaction and immunohistochemical studies have demonstrated receptors for vasoactive intestinal polypeptide (VIP) in the cerebellum of various species, immunohistochemistry has never shown immunoreactivity for VIP within cerebellar neuronal bodies and processes. The present study aimed to ascertain whether VIP immunoreactivity really does exist in the human cerebellum by making a systematic analysis of samples removed post-mortem from all of the cerebellar lobes. The study was carried out using light microscopy immunohistochemical techniques based on a set of four different antibodies (three polyclonal and one monoclonal) against VIP, carefully selected on the basis of control tests performed on human colon. All of the antibodies used showed VIP-immunoreactive neuronal bodies and processes distributed in the cerebellar cortex and subjacent white matter of all of the cerebellum lobes, having similar qualitative patterns of distribution. Immunoreactive neurons included subpopulations of the main neuron types of the cortex. Statistical analysis of the quantitative data on the VIP immunoreactivity revealed by the different antibodies in the different cerebellar lobes did not demonstrate any significant differences. In conclusion, using four different anti-VIP antibodies, the first evidence of VIP immunoreactivity is herein supplied in the human post-mortem cerebellum, with similar qualitative/quantitative patterns of distribution among the different cerebellum lobes. Owing to the function performed by VIP as a neurotransmitter/neuromodulator, it is a candidate for a role in intrinsic and extrinsic (projective) circuits of the cerebellum, in agreement with previous demonstrations of receptors for VIP in the cerebellar cortex and nuclei. As VIP signalling pathways are implicated in the regulation of cognitive and psychic functions, cerebral blood flow and metabolism, processes of histomorphogenesis, differentiation and outgrowth of nervous tissues, the results of this study could be applied to clinical neurology and psychiatry, opening new perspectives for the interpretation of neurodevelopment disorders and development of new therapeutic strategies in cerebellar diseases.
Collapse
Affiliation(s)
- Vincenzo Benagiano
- Dipartimento di Anatomia Umana e Istologia R. Amprino, University of Bari, 71124 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chaudhury D, Loh DH, Dragich JM, Hagopian A, Colwell CS. Select cognitive deficits in vasoactive intestinal peptide deficient mice. BMC Neurosci 2008; 9:63. [PMID: 18616823 PMCID: PMC2474849 DOI: 10.1186/1471-2202-9-63] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/10/2008] [Indexed: 12/03/2022] Open
Abstract
Background The neuropeptide vasoactive intestinal peptide (VIP) is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.
Collapse
Affiliation(s)
- Dipesh Chaudhury
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA.
| | | | | | | | | |
Collapse
|
8
|
Ivanova M, Ternianov A, Belcheva S, Tashev R, Negrev N, Belcheva I. Hippocampal asymmetry in exploratory behavior to vasoactive intestinal polypeptide. Peptides 2008; 29:940-7. [PMID: 18321609 DOI: 10.1016/j.peptides.2008.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 12/13/2022]
Abstract
The effects of vasoactive intestinal polypeptide (VIP) microinjected uni- or bilaterally into the CA1 hippocampal area of male Wistar rats at a dose of 10, 50 and 100 ng on exploratory behavior were examined. VIP microinjected bilaterally at a high dose (100 ng) significantly decreased the horizontal movements, while at low doses (10 and 50 ng) had no effect on the exploratory activity. Microinjections of VIP into the left hippocampal CA1 area at doses 50 and 100 ng suppressed the exploratory activity, while right-side VIP administration at a dose 100 ng significantly increased horizontal movements compared to the respective controls. Vertical activity was stimulated only by VIP administered into the right hippocampal CA1 area at the three doses used. Neither bilateral nor left injections of VIP induced changes in the vertical movements. The main finding was the presence of hippocampal asymmetry in exploratory behavior to unilateral microinjections of VIP depending on the dose and the microinjected hemisphere.
Collapse
Affiliation(s)
- Margarita Ivanova
- Department of Physiology and Pathophysiology, Medical Uiversity, Varna, Bulgaria
| | | | | | | | | | | |
Collapse
|
9
|
Gozes I, Bachar M, Bardea A, Davidson A, Rubinraut S, Fridkin M. Protection against developmental deficiencies by a lipophilic VIP analogue. Neurochem Res 1998; 23:689-93. [PMID: 9566607 DOI: 10.1023/a:1022494907001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stearyl-Nle-VIP (SNV) is a novel agonist of vasoactive intestinal peptide (VIP) exhibiting a 100-fold greater potency than the parent molecule and specificity for a receptor associated with neuronal survival. Here, the developmental and protective effects of SNV were investigated in vivo using two models of developmental retardation, hypoxia and cholinergic blockade. In both cases chronic administration of SNV during development provided protective effects. Water maze experiments on the weaned animals have demonstrated a prophylactic action for SNV and enhancement of spatial memory in animals exposed to a cholinotoxin. SNV may act by providing neuroprotection, thereby improving cognitive functions. This work is dedicated to Prof. R.J. Wurtman whose inspiration and leadership in the field of neuroscience and cognition is beyond comparison.
Collapse
Affiliation(s)
- I Gozes
- Dept. Clin. Biochem. Sackler Med. Sch. Tel Aviv Univ., Israel.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The present review is dedicated to the work of B.S. Mc Ewen on the regulatory effects of steroid hormones on peptidergic neurotransmission in the brain and pituitary. The focus is on the discoveries encompassing almost two decades of work on the central and neuroendocrine regulation of vasoactive intestinal peptide (VIP) by both corticosteroids and estrogens.
Collapse
|
11
|
Gozes I, Bachar M, Bardea A, Davidson A, Rubinraut S, Fridkin M, Giladi E. Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implications for early treatment of Alzheimer's disease. JOURNAL OF NEUROBIOLOGY 1997; 33:329-42. [PMID: 9298769 DOI: 10.1002/(sici)1097-4695(199709)33:3<329::aid-neu10>3.0.co;2-a] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stearyl-Nle17-VIP (SNV) is a novel agonist of vasoactive intestinal peptide (VIP) exhibiting a 100-fold greater potency than the parent molecule and specificity for a receptor associated with neuronal survival. Here, mice deficient in apolipoprotein E (ApoE), a molecule associated with the etiology of Alzheimer's disease, served as a model to investigate the developmental and protective effects of SNV. In comparison to control animals, the deficient mice exhibited (a) reduced amounts of VIP messenger RNA; (b) decreased cholinergic activity (c) significant retardation in the acquisition of developmental milestones: forelimb placing behavior and cliff avoidance behavior; and (d) learning and memory impairments. Daily injections of SNV to ApoE-deficient newborn pups resulted in increased cholinergic activity and marked improvements in the time of acquisition of behavioral milestones, with peptide-treated animals developing as fast as control animals and exhibiting improved cognitive functions after cessation of peptide treatment. Specificity was demonstrated in that treatment with a related peptide (PACAP), pituitary adenylate cyclase-activating peptide, produced only limited amelioration. As certain genotypes of ApoE increase the probability of Alzheimer's disease, early counseling and preventive treatments may now offer an important route for therapeutics design.
Collapse
Affiliation(s)
- I Gozes
- Department of Clinical Biochemistry, Sackler Medical School, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu JY, Henins KA, Gressens P, Gozes I, Fridkin M, Brenneman DE, Hill JM. Neurobehavioral development of neonatal mice following blockade of VIP during the early embryonic period. Peptides 1997; 18:1131-7. [PMID: 9396053 DOI: 10.1016/s0196-9781(97)00146-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work has shown that blockade of VIP function in the early postimplantation embryo results in growth retardation and microcephaly. In the present work, the neurobehavioral development of neonatal mice was examined following treatment of dams with a VIP antagonist during this period. Inhibition of VIP functions during early embryogenesis impaired the performance of 5 of 10 developmental behaviors. These behaviors included developmental milestones (first appearance of ear twitch and eye opening) and complex motor behaviors (negative geotaxis, surface righting, and air righting). The retardation of neurobehavioral development produced by inhibition of VIP action indicates that this peptide is important to the progression of embryonic development.
Collapse
Affiliation(s)
- J Y Wu
- Section on Developmental and Molecular Pharmacology, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sarrieau A, Najimi M, Chigr F, Kopp N, Jordan D, Rostene W. Localization and developmental pattern of vasoactive intestinal polypeptide binding sites in the human hypothalamus. Synapse 1994; 17:129-40. [PMID: 8091302 DOI: 10.1002/syn.890170209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using a quantitative in vitro autoradiographic approach, vasoactive intestinal polypeptide (VIP) binding site densities were compared in the post-mortem hypothalamus of human neonate/infant and adult. The densities were similar during development in most of the hypothalamic nuclei and areas examined underlying the stability of 125I-VIP binding sites in the post-mortem hypothalamus of young and adult individuals. However, the ventral part of the medial preoptic area, the medial, lateral, and supramammillary nuclei were characterized by an increase of 125I-VIP binding with age. In young and adult individuals, the highest densities of hypothalamic 125I-VIP binding sites were detected in the supraoptic and infundibular nuclei; the ependyma; the organum vasculosum of the lamina terminalis; the horizontal limb of the diagonal band of Broca; the ventral part of the medial preoptic area (in adult); the suprachiasmatic, paraventricular, and periventricular nuclei; and the medial and lateral mammillary nuclei in adult. Moderate densities were found in the vertical limb of the diagonal band of Broca, the bed nucleus of the stria terminalis, the ventral part of the medial preoptic area in neonate/infant, the medial and lateral mammillary nuclei in neonate/infant, the supramammillary nucleus in adult, the dorsal hypothalamic area, and the ventromedial nucleus. Low to moderate binding site densities were observed in the other hypothalamic regions of young or adult individuals. The nonspecific binding ranged from 15% of the total binding in the anterior hypothalamus to 20% in the mediobasal and posterior hypothalamic levels. Taken together, these results provide evidence for a large distribution of VIP binding sites in neonate/infant and adult human hypothalamus suggesting the implication of VIP in the development of this brain structure and the maintenance of its various functions.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Hypothalamus/anatomy & histology
- Hypothalamus/growth & development
- Hypothalamus/metabolism
- Hypothalamus, Anterior/anatomy & histology
- Hypothalamus, Anterior/growth & development
- Hypothalamus, Anterior/metabolism
- Hypothalamus, Middle/anatomy & histology
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Hypothalamus, Posterior/anatomy & histology
- Hypothalamus, Posterior/growth & development
- Hypothalamus, Posterior/metabolism
- Infant
- Infant, Newborn
- Iodine Radioisotopes
- Male
- Middle Aged
- Receptors, Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- A Sarrieau
- INSERM U339, Centre de Recherche Paris Saint-Antoine, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The effects of vasoactive intestinal peptide (VIP) on spatial cognitive deficits induced in the rat by injections of scopolamine were examined in a radial arm maze. A single intraperitoneal (i.p.), subcutaneous (s.c.) or intracerebroventricular (i.c.v.) injection of VIP inhibited the reduction in the number of initial correct responses in rats with scopolamine-induced amnesia. The inhibition was associated with a bell-shaped dose-response curve. Thus, VIP appears to have an ameliorating effect on spatial cognitive deficits induced by scopolamine in the rat.
Collapse
Affiliation(s)
- Y Yamaguchi
- Research Laboratory, Zenyaku Kogyo Co., Ltd, Tokyo, Japan
| | | |
Collapse
|
15
|
Takashima A, Maeda Y, Itoh S. Vasoactive intestinal peptide (VIP) causes memory impairment in passive avoidance responding of the rat. Peptides 1993; 14:1067-71. [PMID: 8284258 DOI: 10.1016/0196-9781(93)90088-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our previous studies demonstrated that CCK-8 and its analog, cerulein (CER), have a potent preventive action on experimental amnesia, and that VIP has reciprocal action against CCK-8 and CER. Since VIP has been reported to cause amnesia, we carried out the present experiments to confirm this action and to examine the preventive effect of CER on VIP-induced amnesia. In the passive avoidance response, central administration, but not peripheral injection, of VIP caused amnesia; the effective portion of the molecule was found to be located in the N-terminus amino acid sequence. Secretin and PACAP, which have similar molecular structures to that of VIP, had no amnestic action. Preadministration of CER prevented VIP-induced memory deficit. The VIP antagonists did not affect amnesia induced by electroconvulsive shock and scopolamine. It was concluded that CER prevents VIP-induced memory deficit in the passive avoidance response of the rat.
Collapse
Affiliation(s)
- A Takashima
- Shionogi Research Laboratories (Aburahi Branch), Osaka, Japan
| | | | | |
Collapse
|
16
|
Takashima A, Maeda Y, Itoh S. Influence of chronic intracerebroventricular infusion of vasoactive intestinal peptide (VIP) on memory processes in Morris water pool test in the rat. Peptides 1993; 14:1073-8. [PMID: 8284259 DOI: 10.1016/0196-9781(93)90089-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In our previous study, bolus injection of VIP into the lateral cerebral ventricle, at nonphysiological high doses, has been shown to produce amnesia. Accordingly, in the present study, VIP was infused chronically into the cerebral ventricle of the rat at a rate of 10 ng per day for 2 weeks. During the infusion period, the animals were subjected to the Morris water pool test. The VIP infusion caused an apparent impairment of memory, particularly in the acquisition of new information; VIP(1-12) also caused similar impairment, but to a lesser extent. The VIP antagonists did not affect the performance of learned tasks. However, cerulein treatment prevented the VIP-induced memory impairment.
Collapse
Affiliation(s)
- A Takashima
- Shionogi Research Laboratories (Aburahi Branch), Osaka, Japan
| | | | | |
Collapse
|
17
|
Hill JM, Gozes I, Hill JL, Fridkin M, Brenneman DE. Vasoactive intestinal peptide antagonist retards the development of neonatal behaviors in the rat. Peptides 1991; 12:187-92. [PMID: 2052494 DOI: 10.1016/0196-9781(91)90186-s] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on the demonstrated neurotrophic activity of VIP in vitro, a recently designed VIP antagonist was used to assess the role of this neuropeptide in the behavioral development of rats. Rats received daily subcutaneous injections from birth to day 14. Observations of developmental milestones/behaviors were made daily for 21 days. Of the measures of behavioral development tested, the time to surface right on day 4 and the day of onset for forelimb placing, hindlimb placing, forelimb grasping and air righting were significantly retarded by the antagonist. Cotreatment with VIP prevented the antagonist-induced delay. These results suggest that VIP activity is important in the development of select complex motor behaviors.
Collapse
Affiliation(s)
- J M Hill
- Peptide Design, Germantown, MD 20874
| | | | | | | | | |
Collapse
|
18
|
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide present in high concentrations in the hippocampus. The studies reported here demonstrate that VIP administered into the third ventricle of the brain caused amnesia in mice trained on a left-right footshock avoidance task in a T-maze. VIP resulted in amnesia when administered directly into the rostral portion of the hippocampus at a 10-fold lower dose than was needed to produce amnesia when VIP was administered intracerebroventricularly. When VIP was administered 24 hr after training, it failed to impair retention measured a week later. VIP receptor antagonist ([4-Cl-D-Phe6,Leu17]VIP) enhanced retention when administered into the rostral portion of the hippocampus, suggesting that VIP plays a physiological role in memory modulation. VIP receptor antagonist administered 24 hr after training did not facilitate retention. To gain some insight as to how VIP may be affecting memory processing, we determined if some memory-improving compounds showed a selective ability to block amnesia induced by VIP. The amnestic effect of VIP was blocked by peripheral administration of the memory-enhancing agents, arecoline, naloxone and ST 587 (a noradrenergic receptor agonist) but not by cholecystokinin octapeptide. Central administration of arecoline, but not neuropeptide Y, blocked the amnestic effect of VIP. It is concluded that VIP is a potent amnestic peptide.
Collapse
Affiliation(s)
- J F Flood
- St. Louis University, Division of Geriatric Medicine, MO 63104
| | | | | |
Collapse
|
19
|
Abstract
In the mammalian brain, a major regulatory peptide is vasoactive intestinal peptide (VIP). This 28 amino acid peptide, originally isolated from the porcine duodenum, was later found in the central and peripheral nervous systems and in endocrine cells, where it exhibits neurotransmitter and hormonal roles. Increasing evidence points to VIP's importance as a mediator or a modulator of several basic functions. Thus, VIP is a major factor in brain activity, neuroendocrine functions, cardiac activity, respiration, digestion, and sexual potency. In view of this peptide's importance, the mechanisms controlling its production and the pathways regulating its functions have been reviewed. VIP is a member of a peptide family, including peptides such as glucagon, secretin, and growth hormone releasing hormone. These peptides may have evolved by exon duplication coupled with gene duplication. The human VIP gene contains seven exons, each encoding a distinct functional domain on the protein precursor or the mRNA. VIP gene transcripts are mainly found in neurons or neuron-related cells. VIP gene expression is regulated by neuronal and endocrine signals that contribute to its developmental control. VIP exerts its function via receptor-mediated systems, activating signal transduction pathways, including cAMP. It can act as a neurotransmitter, neuromodulator, and a secretagog. As a growth and developmental regulator, VIP may have a crucial effect as a neuronal survival factor. We shall proceed from the gene to its multiple functions.
Collapse
Affiliation(s)
- I Gozes
- Laboratory of Molecular Genetics and Developmental Neurobiology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
20
|
Kulkosky PJ, Doyle JS, Cook VI, Glazner GW, Foderaro MA. Vasoactive intestinal peptide: behavioral effects in the rat and hamster. Pharmacol Biochem Behav 1989; 34:387-93. [PMID: 2622995 DOI: 10.1016/0091-3057(89)90331-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The behavioral effects of intracerebroventricular (ICV) injection of the brain-gut peptide vasoactive intestinal peptide (VIP) were quantified with a behavioral sampling technique in home-caged, nondeprived, male and female albino rats and golden hamsters. ICV VIP sex-dependently decreased observed resting behavior during 1 hr after injections in both rats and hamsters at 0.1-10.0 micrograms. Grooming behavior was increased in hamsters, and rearing and standing behaviors were increased in rats, sex-dependently at VIP doses that decreased resting. Drinking behavior was suppressed in rats by VIP at 10.0 micrograms. Intraperitoneal (IP) VIP (100.0 micrograms/kg) increased 5% ethanol intake and decreased eating behavior in fluid-deprived male rats. The increase in ethanol intake produced by IP VIP was prevented by IP cholecystokinin octapeptide (CCK, 4.0 micrograms/kg). VIP potently controls resting and ingestive behaviors, suggesting a role for this neuropeptide, along with CCK, in the feedback regulation of rodent behavior.
Collapse
Affiliation(s)
- P J Kulkosky
- Department of Psychology, University of Southern Colorado, Pueblo 81001-4901
| | | | | | | | | |
Collapse
|
21
|
Besson J. Distribution and pharmacology of vasoactive intestinal peptide receptors in the brain and pituitary. Ann N Y Acad Sci 1988; 527:204-19. [PMID: 2839077 DOI: 10.1111/j.1749-6632.1988.tb26982.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Besson
- INSERM U. 55, Unité de Recherches sur les Peptides Neurodigestifs et le Diabète, Hôpital St. Antoine, Paris, France
| |
Collapse
|
22
|
Besson J, Sarrieau A, Vial M, Marie JC, Rosselin G, Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res 1986; 398:329-36. [PMID: 3801907 DOI: 10.1016/0006-8993(86)91493-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Biochemical characteristics and topographical distribution of mono-[125I )vasoactive intestinal peptide (VIP) binding sites in rat brain were studied on tissue sections and by quantitative autoradiography. Biochemical investigations show two classes of binding sites with a dissociation constant of 1.03 +/- 0.11 nM and 68 +/- 14 nM and a maximal binding capacity of 43.3 +/- 5.1 fmol/mg protein and 713 +/- 117 fmol/mg protein respectively. The order of potency of various peptides to inhibit 125I-VIP binding to brain sections is: VIP greater than PHI greater than secretin greater than VIP greater than hGRF. Autoradiography reveals the highest densities of binding sites in the pineal gland, the dentate gyrus of the hippocampus, the central amygdaloid nucleus and in various thalamic nuclei such as the mediodorsal, lateral posterior, submedius, dorsolateral and medial geniculate nuclei. Similar high densities are observed in the olfactory bulbs as well as in the suprachiasmatic and dorsomedial nuclei of the hypothalamus and in the superior colliculus. These data together with the distribution of the endogenous peptide suggest a physiological role for VIP both in the regulation of CNS activities and pituitary functions.
Collapse
|
23
|
LaBella FS, Geiger JD, Glavin GB. Administered peptides inhibit the degradation of endogenous peptides. The dilemma of distinguishing direct from indirect effects. Peptides 1985; 6:645-60. [PMID: 2999731 DOI: 10.1016/0196-9781(85)90168-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Virtually all peptides are biologically active following central administration as a consequence of both direct and indirect cellular actions. Direct effects are mainly interactions with specific membrane receptors but may include unions with other components of the receptor/effector complex. Significant indirect biological effects of exogenous peptides, including apparent secretagogue effects on endogenous peptides largely overlooked in practice, result from extensive competition with endogenous peptides for degradative enzymes (peptidases). A consequence of this competition is enhancement of tonic or intermittent activity of endogenous peptides. The pharmacological profile of any peptide reflects or includes, therefore, the spectrum of endogenous peptides that is protected from peptidase action. It is likely that certain pharmacologically active peptides, including a large number of di-, tri- and oligo-peptides, elicit responses mainly or exclusively by competing for peptidases. Therefore, reliable estimates of the relative contributions of direct and indirect actions of exogenous peptides may be difficult, if not impossible, to obtain.
Collapse
|