1
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Millán AS, Peña-Miller R, Fuentes-Hernández A. Quantifying plasmid dynamics using single-cell microfluidics and image bioinformatics. Plasmid 2020; 113:102517. [PMID: 32535165 DOI: 10.1016/j.plasmid.2020.102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and experimentally. In recent years, technological advances in fluorescence microscopy and microfluidics have allowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup, and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy plasmid dynamics, we will use an experimental model system consisting on Escherichia coli K12 carrying non-conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and β-lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid segregation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that emerge in response to a range of selective pressures.
Collapse
Affiliation(s)
- J C R Hernandez-Beltran
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - J Rodríguez-Beltrán
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - A San Millán
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - R Peña-Miller
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| | - A Fuentes-Hernández
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| |
Collapse
|
3
|
Choudhury NA, Paul D, Das BJ, Dhar Chanda D, Bhattacharjee A. Adaptation of blaNDMthrough IncP plasmid within broad host range. Indian J Med Microbiol 2019; 37:527-530. [PMID: 32436875 DOI: 10.4103/ijmm.ijmm_20_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction It was also known that the IncP-1 plasmids are ubiquitous in environmental bacteria and those reside in soil, sewage, marine sediments and in manure. The blaNDMis associated with resistance determinants along with various mobile elements such as plasmid, insertion sequences and transposons, which facilitates its horizontal dissemination. These plasmids, if tracked, can be a starting point for the control of infection due to multidrug-resistant pathogens. The aim of the study was to investigate that IncP-type plasmids carrying blaNDMis adapted in different hosts. Materials and Methods Thirteen of the isolates were harbouring IncP-type plasmid and they all were Escherichia coli isolated from hospitalised patients of Silchar Medical College and Hospital, India. The isolates were checked for susceptibility test, and the stability was assessed by a serial passage. These isolates were further subjected to transcriptional analysis of NDM gene as well as plasmid copy number alteration. Results The study isolates were highly stable, and the resistance gene (blaNDM) was retained within isolates till 55th subsequent serial passages. Plasmid copy number alteration was random in isolates when exposed to carbapenem antibiotics, whereas increasing trend in transcriptional expression was observed with the increase in imipenem concentration. Conclusion This study was able to underscore the presence of IncP plasmid that was harbouring blaNDMand was maintained within diverse host. The finding also highlights the adaptation of the broad-host-range plasmid that responds in terms of transcriptional expression under antibiotic exposure.
Collapse
Affiliation(s)
| | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
4
|
Mariat D, Robert V, Langella P, Chatel JM. Plasmid transfer efficiency using Lactoccocus lactis strains depends on invasiveness status but also on plasmid copy number. FEMS Microbiol Lett 2018; 364:3827360. [PMID: 28505315 DOI: 10.1093/femsle/fnx100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria as Lactococcus lactis are used as vector for protein but also DNA delivery into intestinal cells in vitro and in vivo. For the plasmid delivery strategy, the plasmid copy number per bacteria (PCN) is thus of great importance. The aim of this paper is to determine the physiological conditions when PCN is the highest in the bacteria. PCN was characterized by qPCR in five different recombinant Lactococcus lactis strains, containing one (mono-) or two different plasmids (biplasmidic), at exponential or stationary phase. We showed that in all cases but one, PCN is higher at exponential than stationary phase. PCN seems to depend on (i) monoplasmidic or biplasmidic strain; (ii) origin of replication of the plasmid; and (iii) the DNA load of the bacteria. Then we studied plasmid transfer in vitro from recombinant L. lactis to eukaryotic COS-7 cells using culture at exponential or stationary phase. We showed that plasmid transfer can be improved in vitro by using bacteria at exponential phase.
Collapse
Affiliation(s)
- Denis Mariat
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Véronique Robert
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Marc Chatel
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
5
|
Yao Y, Enkhtsetseg S, Odsbu I, Fan L, Morigen M. Mutations of DnaA-boxes in the oriR region increase replication frequency of the MiniR1-1 plasmid. BMC Microbiol 2018; 18:27. [PMID: 29614952 PMCID: PMC5883639 DOI: 10.1186/s12866-018-1162-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/02/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The MiniR1-1 plasmid is a derivative of the R1 plasmid, a low copy cloning vector. RESULTS Nucleotide sequencing analysis shows that the MiniR1-1 plasmid is a 6316 bp circular double-stranded DNA molecule with an oriR1 (origin for replication). The plasmid carries the repA, tap, copA and bla genes, and genes for ORF1 and ORF2. MiniR1-1 contains eight DnaA-binding sites (DnaA-boxes). DnaA-box1 is in the oriR1 region and fully matched to the DnaA-box consensus sequence, and DnaA-box8, with one mismatch, is close to the copA gene. The presence of the MiniR1-1 plasmid leads to an accumulation of the D-period cells and an increase in cell size of slowly growing Escherichia coli cells, suggesting that the presence of MiniR1-1 delays cell division. Mutations in the MiniR1-1 DnaA-box1 and DnaA-box8 significantly increase the copy number of the plasmid and the mutations in DnaA-box1 also affect cell size. It is likely that titration of DnaA to DnaA-boxes negatively controls replication of the MiniR1-1 plasmid and delays cell division. Interestingly, DnaA weakly interacts with the initiator protein RepA in vivo. CONCLUSION DnaA regulates the copy number of MiniR1-1 as a negative factor through interacting with the RepA protein.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Sukhbold Enkhtsetseg
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Ingvild Odsbu
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| |
Collapse
|
6
|
Ruiz-Masó JÁ, Luengo LM, Moreno-Córdoba I, Díaz-Orejas R, Del Solar G. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential rep Genes. Front Microbiol 2017; 8:2367. [PMID: 29250051 PMCID: PMC5717011 DOI: 10.3389/fmicb.2017.02367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid.
Collapse
Affiliation(s)
- José Á Ruiz-Masó
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis M Luengo
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inmaculada Moreno-Córdoba
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ramón Díaz-Orejas
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gloria Del Solar
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Abstract
Plasmids are selfish genetic elements that normally constitute a burden for the bacterial host cell. This burden is expected to favor plasmid loss. Therefore, plasmids have evolved mechanisms to control their replication and ensure their stable maintenance. Replication control can be either mediated by iterons or by antisense RNAs. Antisense RNAs work through a negative control circuit. They are constitutively synthesized and metabolically unstable. They act both as a measuring device and a regulator, and regulation occurs by inhibition. Increased plasmid copy numbers lead to increasing antisense-RNA concentrations, which, in turn, result in the inhibition of a function essential for replication. On the other hand, decreased plasmid copy numbers entail decreasing concentrations of the inhibiting antisense RNA, thereby increasing the replication frequency. Inhibition is achieved by a variety of mechanisms, which are discussed in detail. The most trivial case is the inhibition of translation of an essential replication initiator protein (Rep) by blockage of the rep-ribosome binding site. Alternatively, ribosome binding to a leader peptide mRNA whose translation is required for efficient Rep translation can be prevented by antisense-RNA binding. In 2004, translational attenuation was discovered. Antisense-RNA-mediated transcriptional attenuation is another mechanism that has, so far, only been detected in plasmids of Gram-positive bacteria. ColE1, a plasmid that does not need a plasmid-encoded replication initiator protein, uses the inhibition of primer formation. In other cases, antisense RNAs inhibit the formation of an activator pseudoknot that is required for efficient Rep translation.
Collapse
|
8
|
Coupling between the basic replicon and the Kis-Kid maintenance system of plasmid R1: modulation by Kis antitoxin levels and involvement in control of plasmid replication. Toxins (Basel) 2015; 7:478-92. [PMID: 25664511 PMCID: PMC4344636 DOI: 10.3390/toxins7020478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023] Open
Abstract
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.
Collapse
|
9
|
Gaimster H, Summers D. Plasmids in the driving seat: The regulatory RNA Rcd gives plasmid ColE1 control over division and growth of its E. coli host. Plasmid 2014; 78:59-64. [PMID: 25446541 PMCID: PMC4393325 DOI: 10.1016/j.plasmid.2014.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
Regulation by non-coding RNAs was found to be widespread among plasmids and other mobile elements of bacteria well before its ubiquity in the eukaryotic world was suspected. As an increasing number of examples was characterised, a common mechanism began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modifying their translation. One regulatory RNA that seemed to swim against the tide was Rcd, encoded within the multimer resolution site of ColE1. Required for high fidelity maintenance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein target, elevating indole production by stimulating tryptophanase. Rcd production is up-regulated in dimer-containing cells and the consequent increase in indole is part of the response to the rapid accumulation of dimers by over-replication (known as the dimer catastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid replication, stopping the catastrophe and allowing time for the resolution of dimers to monomers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded in the 1980s, appears to be enjoying a revival.
Collapse
Affiliation(s)
- Hannah Gaimster
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
| | - David Summers
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
10
|
Brantl S. Antisense-RNA mediated control of plasmid replication - pIP501 revisited. Plasmid 2014; 78:4-16. [PMID: 25108234 DOI: 10.1016/j.plasmid.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 02/02/2023]
Abstract
Over the past decade, a wealth of small noncoding RNAs (sRNAs) have been discovered in the genomes of almost all bacterial species, where they constitute the most abundant class of posttranscriptional regulators. These sRNAs are key-players in prokaryotic metabolism, stress response and virulence. However, the first bona-fide antisense RNAs had been found already in 1981 in plasmids, where they regulate replication or maintenance. Antisense RNAs involved in plasmid replication control - meanwhile investigated in depth for almost 35 years - employ a variety of mechanisms of action: They regulate primer maturation, inhibit translation of essential replication initiator proteins (Rep proteins) as well as leader peptides or the formation of activator pseudoknots required for efficient rep translation. Alternatively they attenuate transcription or translation of rep mRNAs. Some antisense RNAs collaborate with transcriptional repressors to ensure proper copy-number control. Here, I summarize our knowledge on replication control of the broad-host range plasmid pIP501 that was originally isolated from Streptococcus agalactiae. Plasmid pIP501 uses two copy number-control elements, RNAIII, a cis-encoded antisense RNA, and transcriptional repressor CopR. RNA III mediates transcription attenuation, a rather widespread concept that found its culmination in the recent discovery of riboswitches. A peculiarity of pIP501 is the unusual stability of RNA III, which requires a second function of CopR: CopR does not only repress transcription from the essential repR promoter, but also prevents convergent transcription between rep mRNA and RNAIII, thereby indirectly increasing the amount of RNAIII. The concerted action of these two control elements is necessary to prevent plasmid loss at dangerously low copy numbers.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
11
|
Lorenzo-Díaz F, Fernández-López C, Garcillán-Barcia MP, Espinosa M. Bringing them together: plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective. Plasmid 2014; 74:15-31. [PMID: 24942190 PMCID: PMC7103276 DOI: 10.1016/j.plasmid.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
Rolling circle-replicating plasmids constitute a vast family that is particularly abundant in, but not exclusive of, Gram-positive bacteria. These plasmids are constructed as cassettes that harbor genes involved in replication and its control, mobilization, resistance determinants and one or two origins of lagging strand synthesis. Any given plasmid may contain all, some, or just only the replication cassette. We discuss here the family of the promiscuous streptococcal plasmid pMV158, with emphasis on its mobilization functions: the product of the mobM gene, prototype of the MOBV relaxase family, and its cognate origin of transfer, oriT. Amongst the subfamily of MOBV1 plasmids, three groups of oriT sequences, represented by plasmids pMV158, pT181, and p1414 were identified. In the same subfamily, we found four types of single-strand origins, namely ssoA, ssoU, ssoW, and ssoT. We found that plasmids of the rolling-circle Rep_2 family (to which pMV158 belongs) are more frequently found in Lactobacillales than in any other bacterial order, whereas Rep_1 initiators seemed to prefer hosts included in the Bacillales order. In parallel, MOBV1 relaxases associated with Rep_2 initiators tended to cluster separately from those linked to Rep_1 plasmids. The updated inventory of MOBV1 plasmids still contains exclusively mobilizable elements, since no genes associated with conjugative transfer (other than the relaxase) were detected. These plasmids proved to have a great plasticity at using a wide variety of conjugative apparatuses. The promiscuous recognition of non-cognate oriT sequences and the role of replication origins for lagging-strand origin in the host range of these plasmids are also discussed.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria and Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC-SODERCAN, Santander, Cantabria, Spain.
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
12
|
Yamasaki S, Hirokawa T, Asai K, Fukui K. Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method. J Chem Inf Model 2014; 54:672-82. [PMID: 24479711 DOI: 10.1021/ci400525t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A method has been developed for predicting the tertiary structures of RNA-RNA complex structures using secondary structure information and a fragment assembly algorithm. The linker base pair and secondary structure potential derived from the secondary structure information are particularly useful for prediction. Application of this method to several kinds of RNA-RNA complex structures, including kissing loops, hammerhead ribozymes, and other functional RNAs, produced promising results. Use of the secondary structure potential effectively restrained the conformational search space, leading to successful prediction of kissing loop structures, which mainly consist of common structural elements. The failure to predict more difficult targets had various causes but should be overcome through such measures as tuning the balance of the energy contributions from the Watson-Crick and non- Watson-Crick base pairs, by obtaining knowledge about a wider variety of RNA structures.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | |
Collapse
|
13
|
The evolution of collective restraint: policing and obedience among non-conjugative plasmids. PLoS Comput Biol 2013; 9:e1003036. [PMID: 23637589 PMCID: PMC3630227 DOI: 10.1371/journal.pcbi.1003036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
The repression of competition by mechanisms of policing is now recognized as a major force in the maintenance of cooperation. General models on the evolution of policing have focused on the interplay between individual competitiveness and mutual policing, demonstrating a positive relationship between within-group diversity and levels of policing. We expand this perspective by investigating what is possibly the simplest example of reproductive policing: copy number control (CNC) among non-conjugative plasmids, a class of extra-chromosomal vertically transmitted molecular symbionts of bacteria. Through the formulation and analysis of a multi-scale dynamical model, we show that the establishment of stable reproductive restraint among plasmids requires the co-evolution of two fundamental plasmid traits: policing, through the production of plasmid-coded trans-acting replication inhibitors, and obedience, expressed as the binding affinity of plasmid-specific targets to those inhibitors. We explain the intrinsic replication instabilities that arise in the absence of policing and we show how these instabilities are resolved by the evolution of copy number control. Increasing levels of policing and obedience lead to improvements in group performance due to tighter control of local population size (plasmid copy number), delivering benefits both to plasmids, by reducing the risk of segregational loss and to the plasmid-host partnership, by increasing the rate of cell reproduction, and therefore plasmid vertical transmission.
Collapse
|
14
|
Abstract
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- H Kuo
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1462
| | | |
Collapse
|
15
|
Olsson JA, Berg O, Nordström K, Dasgupta S. Eclipse period of R1 plasmids during downshift from elevated copy number: Nonrandom selection of copies for replication. Plasmid 2012; 67:191-8. [PMID: 22293171 DOI: 10.1016/j.plasmid.2012.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 10/14/2022]
Abstract
The classical Meselson-Stahl density-shift method was used to study replication of pOU71, a runaway-replication derivative of plasmid R1 in Escherichia coli. The miniplasmid maintained the normal low copy number of R1 during steady growth at 30°C, but as growth temperatures were raised above 34°C, the copy number of the plasmid increased to higher levels, and at 42°C, it replicated without control in a runaway replication mode with lethal consequences for the host. The eclipse periods (minimum time between successive replication of the same DNA) of the plasmid shortened with rising copy numbers at increasing growth temperatures (Olsson et al., 2003). In this work, eclipse periods were measured during downshifts in copy number of pOU71 after it had replicated at 39 and 42°C, resulting in 7- and 50-fold higher than normal plasmid copy number per cell, respectively. Eclipse periods for plasmid replication, measured during copy number downshift, suggested that plasmid R1, normally selected randomly for replication, showed a bias such that a newly replicated DNA had a higher probability of replication compared to the bulk of the R1 population. However, even the unexpected nonrandom replication followed the copy number kinetics such that every generation, the plasmids underwent the normal inherited number of replication, n, independent of the actual number of plasmid copies in a newborn cell.
Collapse
Affiliation(s)
- Jan A Olsson
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
16
|
Tal S, Paulsson J. Evaluating quantitative methods for measuring plasmid copy numbers in single cells. Plasmid 2012; 67:167-73. [PMID: 22305922 DOI: 10.1016/j.plasmid.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/17/2022]
Abstract
The life of plasmids is a constant battle against fluctuations: failing to correct copy number fluctuations can increase the plasmid loss rate by many orders of magnitude, as can a failure to more evenly divide the copies between daughters at cell division. Plasmids are therefore long-standing model systems for stochastic processes in cells, much thanks to the efforts of Kurt Nordström to whose memory this issue is dedicated. Here we analyze a range of experimental methods for measuring plasmid copy numbers in single cells, focusing on challenges, trade-offs, and necessary experimental controls. In particular we analyze published and unpublished strategies to infer copy numbers from expression of plasmid-encoded reporters, direct labeling of plasmids with fluorescent probes or DNA binding proteins fused to fluorescent reporters, PCR based methods applied to single cell lysates, and plasmid-specific replication arrest. We conclude that no method currently exists to measure plasmid copy numbers in single cells, and that most methods are overwhelmed by various types of experimental noise. We also discuss how accurate methods can be developed.
Collapse
Affiliation(s)
- Shay Tal
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
López-Villarejo J, Diago-Navarro E, Hernández-Arriaga AM, Díaz-Orejas R. Kis antitoxin couples plasmid R1 replication and parD (kis,kid) maintenance modules. Plasmid 2012; 67:118-27. [PMID: 22244926 DOI: 10.1016/j.plasmid.2011.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
Abstract
The coupling between the replication and parD (kis, kid) maintenance modules of R1 has been revisited here by the isolation of a significant collection of conditional replication mutants in the pKN1562 mini-R1 plasmid, and in its derivative, pJLV01, specifically affected in the RNase activity of the Kid toxin. This new analysis aims to identify key factors in this coupling. For this purpose we have quantified and characterized the restriction introduced by parD to isolate conditional replication mutants of this plasmid, a signature of the modular coupling. This restriction depends on the RNase activity of the Kid toxin and it is relieved by either over-expression of the Kis antitoxin or by preventing its degradation by Lon and ClpAP proteases. Based on these data and on the correlation between copy numbers and parD transcriptional levels obtained in the different mutants, it is proposed that a reduction of Kis antitoxin levels in response to inefficient plasmid replication is the key factor for coupling plasmid replication and parD modules.
Collapse
Affiliation(s)
- Juan López-Villarejo
- Centro de Investigaciones Biológicas-CSIC, Dept. de Microbiología Molecular y Biología de la Infección, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Cervantes-Rivera R, Pedraza-López F, Pérez-Segura G, Cevallos MA. The replication origin of a repABC plasmid. BMC Microbiol 2011; 11:158. [PMID: 21718544 PMCID: PMC3155836 DOI: 10.1186/1471-2180-11-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides within the repC gene and is located close to or inside of a large A+T region. RepC can act as an incompatibility factor, and the last 39 amino acid residues of the carboxy-terminal region of this protein are involved in promoting this phenotype.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
19
|
Bohle K, Ross A. Plasmid DNA production for pharmaceutical use: Role of specific growth rate and impact on process design. Biotechnol Bioeng 2011; 108:2099-106. [DOI: 10.1002/bit.23138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 02/02/2023]
|
20
|
Licht A, Freede P, Brantl S. Transcriptional repressor CopR acts by inhibiting RNA polymerase binding. MICROBIOLOGY-SGM 2011; 157:1000-1008. [PMID: 21252280 DOI: 10.1099/mic.0.047209-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CopR is a transcriptional repressor encoded by the broad-host-range streptococcal plasmid pIP501, which also replicates in Bacillus subtilis. It acts in concert with the antisense RNA, RNAIII, to control pIP501 replication. CopR represses transcription of the essential repR mRNA about 10- to 20-fold. In previous work, DNA binding and dimerization constants were determined and the motifs responsible localized. The C terminus of CopR was shown to be required for stability. Furthermore, SELEX of the copR operator revealed that in vivo evolution was for maximal binding affinity. Here, we elucidate the repression mechanism of CopR. Competition assays showed that CopR-operator complexes are 18-fold less stable than RNA polymerase (RNAP)-pII complexes. DNase I footprinting revealed that the binding sites for CopR and RNAP overlap. Gel-shift assays demonstrated that CopR and B. subtilis RNAP cannot bind simultaneously, but compete for binding at promoter pII. Due to its higher intracellular concentration CopR inhibits RNAP binding. Additionally, KMnO(4) footprinting experiments indicated that prevention of open complex formation at pII does not further contribute to the repression effect of CopR.
Collapse
Affiliation(s)
- Andreas Licht
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| | - Peggy Freede
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
21
|
Matsuo M, Kurokawa K, Lee BL, Sekimizu K. Shuttle vectors derived from pN315 for study of essential genes in Staphylococcus aureus. Biol Pharm Bull 2010; 33:198-203. [PMID: 20118540 DOI: 10.1248/bpb.33.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the par to rep region of the 24653 bp plasmid pN315, which is present in Staphylococcus aureus strain N315, we constructed three vectors that can be shuttled between Escherichia coli and S. aureus and maintained stably in S. aureus. Due to plasmid incompatibility, the resident plasmid in S. aureus cells can be replaced via transformation with an entering plasmid, which carries a different drug resistance gene. To evaluate the applicability of this plasmid-based approach for identifying genes essential for S. aureus cell growth, the chromosomal mraY gene, which is involved in peptidoglycan biosynthesis, was deleted in cells harboring a resident plasmid with an intact mraY gene. The resultant disruptant was then transformed with an empty vector. Cells with a chromosomal mraY deletion but lacking the plasmid supplying mraY could not be recovered, suggesting that mraY is indispensable for staphylococcal cell growth or viability. In contrast, other two genes were shown to be dispensable by this system. Thus, the pN315-based plasmids appear to be useful for studying genes essential for S. aureus cell growth.
Collapse
Affiliation(s)
- Miki Matsuo
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
22
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Nordström K, Dasgupta S. Copy-number control of the Escherichia coli chromosome: a plasmidologist's view. EMBO Rep 2009; 7:484-9. [PMID: 16670681 PMCID: PMC1479556 DOI: 10.1038/sj.embor.7400681] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 03/15/2006] [Indexed: 11/09/2022] Open
Abstract
The homeostatic system that sets the copy number, and corrects over-replication and under-replication, seems to be different for chromosomes and plasmids in bacteria. Whereas plasmid replication is random in time, chromosome replication is tightly coordinated with the cell cycle such that all origins are initiated synchronously at the same cell mass per origin once per cell cycle. In this review, we propose that despite their apparent differences, the copy-number control of the Escherichia coli chromosome is similar to that of plasmids. The basic mechanism that is shared by both systems is negative-feedback control of the availability of a protein or RNA positive initiator. Superimposed on this basic mechanism are at least three systems that secure the synchronous initiation of multiple origins; however, these mechanisms are not essential for maintaining the copy number.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
24
|
Berzal-Herranz A, Wagner EGH, Diaz-Orejas R. Control of replication of plasmid R1: the intergenic region between copA and repA modulates the level of expression of repA. Mol Microbiol 2006; 5:97-108. [PMID: 1707477 DOI: 10.1111/j.1365-2958.1991.tb01830.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RepA protein of plasmid R1 is rate-limiting for initiation of R1 replication. Its synthesis is mainly regulated by interactions of the antisense RNA, CopA, with the leader region of the RepA mRNA, CopT. This work describes the characterization of several mutants with sequence alterations in the intergenic region between the copA gene and the repA reading frame. The analysis showed that most of the mutations led both to a decrease in stability of maintenance of mini-R1 derivatives and to lowered repA expression assayed in translational repA-lacZ fusion constructs. Destruction of the copA gene and replacement of the upstream region by the tac promoter in the latter constructs indicated that these mutations per se alter the expression of repA. In addition, we show that particular mutations in this region can directly affect CopA-mediated control, either by changing the kinetics of interaction of CopA RNA with the RepA mRNA and/or by modifying the activity of the copA promoter. These data indicate the importance of the region analysed in the process that controls R1 replication.
Collapse
Affiliation(s)
- A Berzal-Herranz
- Centro de Investigaciones Biologicas (CSIC), Velázquez 144, E-28006 Madrid, Spain.Department of Microbiology. Biomedical Centre, Uppsala University, Box 581, S-751 23 Uppsala, Sweden
| | - E G H Wagner
- Centro de Investigaciones Biologicas (CSIC), Velázquez 144, E-28006 Madrid, Spain.Department of Microbiology. Biomedical Centre, Uppsala University, Box 581, S-751 23 Uppsala, Sweden
| | - R Diaz-Orejas
- Centro de Investigaciones Biologicas (CSIC), Velázquez 144, E-28006 Madrid, Spain.Department of Microbiology. Biomedical Centre, Uppsala University, Box 581, S-751 23 Uppsala, Sweden
| |
Collapse
|
25
|
Bharathi A, Polasa H. Elimination of ColE1(pBR322 and pBR329) plasmids inEscherichia coliby α-santonin. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1990.tb04151.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Pal D, Venkova-Canova T, Srivastava P, Chattoraj DK. Multipartite regulation of rctB, the replication initiator gene of Vibrio cholerae chromosome II. J Bacteriol 2005; 187:7167-75. [PMID: 16237000 PMCID: PMC1272990 DOI: 10.1128/jb.187.21.7167-7175.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication initiator proteins in bacteria not only allow DNA replication but also often regulate the rate of replication initiation as well. The regulation is mediated by limiting the synthesis or availability of initiator proteins. The applicability of this principle is demonstrated here for RctB, the replication initiator for the smaller of the two chromosomes of Vibrio cholerae. A strong promoter for the rctB gene named rctBp was identified and found to be autoregulated in Escherichia coli. Promoter activity was lower in V. cholerae than in E. coli, and a part of this reduction is likely to be due to autorepression. Sequences upstream of rctBp, implicated earlier in replication control, enhanced the repression. The action of the upstream sequences required that they be present in cis, implying long-range interactions in the control of the promoter activity. A second gene specific for chromosome II replication, rctA, reduced rctB translation, most likely by antisense RNA control. Finally, optimal rctBp activity was found to be dependent on Dam. Increasing RctB in trans increased the copy number of a miniplasmid carrying oriCII(VC), implying that RctB can be rate limiting for chromosome II replication. The multiple modes of control on RctB are expected to reduce fluctuations in the initiator concentration and thereby help maintain chromosome copy number homeostasis.
Collapse
Affiliation(s)
- Debasish Pal
- Laboratory of Biochemistry, Center for Cancer Research, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
27
|
Nordström K. Plasmid R1--replication and its control. Plasmid 2005; 55:1-26. [PMID: 16199086 DOI: 10.1016/j.plasmid.2005.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Plasmid R1 is a low-copy-number plasmid belonging to the IncFII group. The genetics, biochemistry, molecular biology, and physiology of R1 replication and its control are summarised and discussed in the present communication. Replication of R1 starts at a unique origin, oriR1, and proceeds unidirectionally according to the Theta mode. Plasmid R1 replicates during the entire cell cycle and the R1 copies in the cell are members of a pool from which a plasmid copy at random is selected for replication. However, there is an eclipse period during which a newly replicated copy does not belong to this pool. Replication of R1 is controlled by an antisense RNA, CopA, that is unstable and formed constitutively; hence, its concentration is a measure of the concentration of the plasmid. CopA-RNA interacts with its complementary target, CopT-RNA, that is located upstream of the RepA message on the repA-mRNA. CopA-RNA post-transcriptionally inhibits translation of the repA-mRNA. CopA- and CopT-RNA interact in a bimolecular reaction which results in an inverse proportionality between the relative rate of replication (replications per plasmid copy and cell cycle) and the copy number; the number of replications per cell and cell cycle, n, is independent of the actual copy number in the individual cells, the so-called +n mode of control. Single base-pair substitutions in the copA/copT region of the plasmid genome may result in mutants that are compatible with the wild type. Loss of CopA activity results in (uncontrolled) so-called runaway replication, which is lethal to the host but useful for the production of proteins from cloned genes. Plasmid R1 also has an ancillary control system, CopB, that derepresses the synthesis of repA-mRNA in cells that happen to contain lower than normal number of copies. Plasmid R1, as other plasmids, form clusters in the cell and plasmid replication is assumed to take place in the centre of the cells; this requires traffic from the cluster to the replication factories and back to the clusters. The clusters are plasmid-specific and presumably based on sequence homology.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, P.O. Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
28
|
Olsson JA, Paulsson J, Nordström K. Effect of the CopB auxiliary replication control system on stability of maintenance of Par(+) plasmid R1. J Bacteriol 2004; 186:207-11. [PMID: 14679240 PMCID: PMC303431 DOI: 10.1128/jb.186.1.207-211.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid R1 is a low-copy-number plasmid that is present at a level of about four or five copies per average cell. The copy number is controlled posttranscriptionally at the level of synthesis of the rate-limiting initiator protein RepA. In addition to this, R1 has an auxiliary system that derepresses a second promoter at low copy numbers, leading to increased repA mRNA synthesis. This promoter is normally switched off by a constitutively synthesized plasmid-encoded repressor protein, CopB; in cells with low copy numbers, the concentration of CopB is low and the promoter is derepressed. Here we show that the rate of loss of a Par(+) derivative of the basic replicon of R1 increased about sevenfold when the cells contained a high concentration of the CopB protein formed from a compatible plasmid.
Collapse
Affiliation(s)
- Jan A Olsson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Olsson JA, Berg OG, Dasgupta S, Nordström K. Eclipse period during replication of plasmid R1: contributions from structural events and from the copy-number control system. Mol Microbiol 2003; 50:291-301. [PMID: 14507381 DOI: 10.1046/j.1365-2958.2003.03683.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eclipse period (the time period during which a newly replicated plasmid copy is not available for a new replication) of plasmid R1 in Escherichia coli was determined with the classic Meselson-Stahl density-shift experiment. A mini-plasmid with the wild-type R1 replicon and a mutant with a thermo-inducible runaway-replication phenotype were used in this work. The eclipses of the chromosome and of the wild-type plasmid were 0.6 and 0.2 generation times, respectively, at temperatures ranging from 30 degrees C to 42 degrees C. The mutant plasmid had a similar eclipse at temperatures up to 38 degrees C. At 42 degrees C, the plasmid copy number increased rapidly because of the absence of replication control and replication reached a rate of 350-400 plasmid replications per cell and cell generation. During uncontrolled replication, the eclipse was about 3 min compared with 10 min at controlled replication (the wild-type plasmid at 42 degrees C). Hence, the copy-number control system contributed significantly to the eclipse. The eclipse in the absence of copy-number control (3 min) presumably is caused by structural requirements: the covalently closed circular plasmid DNA has to regain the right degree of superhelicity needed for initiation of replication and it takes time to assemble the initiation factors.
Collapse
Affiliation(s)
- Jan A Olsson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
30
|
Ganusov VV, Brilkov AV. Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture. J Theor Biol 2002; 219:193-205. [PMID: 12413875 DOI: 10.1006/jtbi.2002.3101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
What determines the stability of plasmid-bearing cells in natural and laboratory conditions? In order to answer this question in a quantitative manner, we need tools allowing the estimation of parameters governing plasmid loss in different environments. In the present work, we have developed two methods for the estimation of the instability parameters of plasmid-bearing cells growing in chemostat. These instability parameters are: (i) selection coefficient (or cost of the plasmid)alpha and (ii) the probability of plasmid loss at cell division tau(0). We have found that generally selection coefficient alpha changes during elimination of plasmid-bearing cells due to changes in substrate concentration; hence, methods which assume constancy of alpha are intrinsically imprecise. Instead, one can estimate selection coefficient at the beginning and the end of cultivation when the substrate concentration is approximately constant. Applying developed techniques to two sets of experimental data, we have found that (i) the cost of the plasmid pBR322 depended on the dilution rate in chemostat and was higher at low dilutions; (ii) high levels of plasmid gene expression led to a high cost of the plasmid pPHL-7; (iii) the probability of plasmid loss was lower at high levels of plasmid gene expression and independent of the dilution rate. We have also discussed the application of our results to understanding the basic biology of bacterial plasmids.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
31
|
Abstract
RNA loop-loop interactions are frequently used to trigger initial recognition between two RNA molecules. In this review, we present selected well-documented cases that illustrate the diversity of biological processes using RNA loop-loop recognition properties. The first one is related to natural antisense RNAs that play a variety of regulatory functions in bacteria and their extra-chromosomal elements. The second one concerns the dimerization of HIV-1 genomic RNA, which is responsible for the encapsidation of a diploid RNA genome. The third one concerns RNA interactions involving double-loop interactions. These are used by the bicoid mRNA to form dimers, a property that appears to be important for mRNA localization in drosophila embryo, and by bacteriophage phi29 pRNA which forms hexamers that participate in the translocation of the DNA genome through the portal vertex of the capsid. Despite the high diversity of systems and mechanisms, some common features can be highlighted. (1) Efficient recognition requires rapid bi-molecular binding rates, regardless of the RNA pairing scheme. (2) The initial recognition is favored by particular conformations of the loops enabling a proper presentation of nucleotides (generally a restricted number) that initiate the recognition process. (3) The fate of the initial reversible loop-loop complex is dictated by both functional and structural constraints. RNA structures have evolved either to "freeze" the initial complex, or to convert it into a more stable one, which involves propagation of intermolecular interactions along topologically feasible pathways. Stabilization of the initial complex may also be assisted by proteins and/or formation of additional contacts.
Collapse
Affiliation(s)
- Christine Brunel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res 2002; 30:e45. [PMID: 12000850 PMCID: PMC115299 DOI: 10.1093/nar/30.10.e45] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have isolated 2'-Fluoro-substituted RNA aptamers that bind to streptavidin (SA) with an affinity around 7 +/- 1.8 nM, comparable with that of recently described peptide aptamers. Binding to SA was not prevented by prior saturation with biotin, enabling nucleic acid aptamers to form useful ternary complexes. Mutagenesis, secondary structure analysis, ribonuclease footprinting and deletion analysis provided evidence for the essential structural features of SA-binding aptamers. In order to provide a general method for the exploitation of these aptamers, we produced derivatives in which they were fused to the naturally structured RNA elements, CopT or CopA. In parallel, we produced derivatives of CD4-binding aptamers fused to the complementary CopA or CopT elements. When mixed, these two chimeric aptamers rapidly hybridized, by virtue of CopA-CopT complementarity, to form stable, bi-functional aptamers that we called 'adaptamers'. We show that a CD4-SA-binding adaptamer can be used to capture CD4 onto a SA-derivatized surface, illustrating their general utility as indirect affinity ligands.
Collapse
Affiliation(s)
- Abdessamad Tahiri-Alaoui
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
33
|
Kolb FA, Westhof E, Ehresmann C, Ehresmann B, Wagner EG, Romby P. Bulged residues promote the progression of a loop-loop interaction to a stable and inhibitory antisense-target RNA complex. Nucleic Acids Res 2001; 29:3145-53. [PMID: 11470871 PMCID: PMC55835 DOI: 10.1093/nar/29.15.3145] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 06/20/2001] [Accepted: 06/20/2001] [Indexed: 11/12/2022] Open
Abstract
In several groups of bacterial plasmids, antisense RNAs regulate copy number through inhibition of replication initiator protein synthesis. These RNAs are characterized by a long hairpin structure interrupted by several unpaired residues or bulged loops. In plasmid R1, the inhibitory complex between the antisense RNA (CopA) and its target mRNA (CopT) is characterized by a four-way junction structure and a side-by-side helical alignment. This topology facilitates the formation of a stabilizer intermolecular helix between distal regions of both RNAs, essential for in vivo control. The bulged residues in CopA/CopT were shown to be required for high in vitro binding rate and in vivo activity. This study addresses the question of why removal of bulged nucleotides blocks stable complex formation. Structure mapping, modification interference, and molecular modeling of bulged-less mutant CopA-CopT complexes suggests that, subsequent to loop-loop contact, helix propagation is prevented. Instead, a fully base paired loop-loop interaction is formed, inducing a continuous stacking of three helices. Consequently, the stabilizer helix cannot be formed, and stable complex formation is blocked. In contrast to the four-way junction topology, the loop-loop interaction alone failed to prevent ribosome binding at its loading site and, thus, inhibition of RepA translation was alleviated.
Collapse
Affiliation(s)
- F A Kolb
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue Rene Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Kolb FA, Westhof E, Ehresmann B, Ehresmann C, Wagner EG, Romby P. Four-way junctions in antisense RNA-mRNA complexes involved in plasmid replication control: a common theme? J Mol Biol 2001; 309:605-14. [PMID: 11397083 DOI: 10.1006/jmbi.2001.4677] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In several groups of bacterial plasmids, antisense RNAs regulate copy number through inhibition of replication initiator protein synthesis. In plasmid R1, we have recently shown that the inhibitory complex between the antisense RNA (CopA) and its target mRNA (CopT) is characterized by the formation of two intermolecular helices, resulting in a four-way junction structure and a side-by-side helical alignment. Based on lead-induced cleavage and ribonuclease (RNase) V(1) probing combined with molecular modeling, a strikingly similar topology is supported for the complex formed between the antisense RNA (Inc) and mRNA (RepZ) of plasmid Col1b-P9. In particular, the position of the four-way junction and the location of divalent ion-binding site(s) indicate that the structural features of these two complexes are essentially the same in spite of sequence differences. Comparisons of several target and antisense RNAs in other plasmids further indicate that similar binding pathways are used to form the inhibitory antisense-target RNA complexes. Thus, in all these systems, the structural features of both antisense and target RNAs determine the topologically possible and kinetically favored pathway that is essential for efficient in vivo control.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cations, Divalent/metabolism
- Cations, Divalent/pharmacology
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/genetics
- Endoribonucleases/metabolism
- Hydrolysis/drug effects
- Lead/metabolism
- Lead/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/biosynthesis
- Plasmids/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Templates, Genetic
Collapse
Affiliation(s)
- F A Kolb
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue R. Descartes, Strasbourg Cedex, F-67084, France
| | | | | | | | | | | |
Collapse
|
35
|
Kolb FA, Engdahl HM, Slagter-Jäger JG, Ehresmann B, Ehresmann C, Westhof E, Wagner EG, Romby P. Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J 2000; 19:5905-15. [PMID: 11060041 PMCID: PMC305787 DOI: 10.1093/emboj/19.21.5905] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA-CopT complex is characterized by a four-way junction structure and a side-by-side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop-loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B'). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA-RNA complex, is proposed.
Collapse
Affiliation(s)
- F A Kolb
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue R. Descartes, Strasbourg cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bergstrom CT, Lipsitch M, Levin BR. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 2000; 155:1505-19. [PMID: 10924453 PMCID: PMC1461221 DOI: 10.1093/genetics/155.4.1505] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the near-ubiquity of plasmids in bacterial populations and the profound contribution of infectious gene transfer to the adaptation and evolution of bacteria, the mechanisms responsible for the maintenance of plasmids in bacterial populations are poorly understood. In this article, we address the question of how plasmids manage to persist over evolutionary time. Empirical studies suggest that plasmids are not infectiously transmitted at a rate high enough to be maintained as genetic parasites. In part i, we present a general mathematical proof that if this is the case, then plasmids will not be able to persist indefinitely solely by carrying genes that are beneficial or sometimes beneficial to their host bacteria. Instead, such genes should, in the long run, be incorporated into the bacterial chromosome. If the mobility of host-adaptive genes imposes a cost, that mobility will eventually be lost. In part ii, we illustrate a pair of mechanisms by which plasmids can be maintained indefinitely even when their rates of transmission are too low for them to be genetic parasites. First, plasmids may persist because they can transfer locally adapted genes to newly arriving strains bearing evolutionary innovations, and thereby preserve the local adaptations in the face of background selective sweeps. Second, plasmids may persist because of their ability to shuttle intermittently favored genes back and forth between various (noncompeting) bacterial strains, ecotypes, or even species.
Collapse
Affiliation(s)
- C T Bergstrom
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
37
|
Abstract
Plasmids control their replication so that the replication frequency per plasmid copy responds to the number of plasmid copies per cell. High sensitivity amplification in replication response to copy number deviations generally reduces variation in copy numbers between different single cells, thereby reducing the plasmid loss rate in a cell population. However, experiments show that plasmid R1 has a gradual, insensitive replication control predicting considerable copy number variation between single cells. The critical step in R1 copy number control is regulation of synthesis of a rate-limiting cis-acting replication protein, RepA. De novo synthesis of a large number of RepA molecules is required for replication, suggesting that copy number control is exercised at multiple steps. In this theoretical kinetic study we analyse R1 multistep copy number control and show that it results in the insensitive replication response found experimentally but that it at the same time effectively prohibits the existence of only one plasmid copy in a dividing cell. In combination with the partition system of R1, this can lead to very high segregational stability. The R1 control mechanism is compared to the different multistep copy number control of plasmid ColE1 that is based on conventional sensitivity amplification. This implies that while copy number control for ColE1 efficiently corrects for fluctuations that have already occurred, R1 copy number control prevents their emergence in cells that by chance start their cycle with only one plasmid copy. We also discuss how regular, clock-like, behaviour of single plasmid copies becomes hidden in experiments probing collective properties of a population of plasmid copies because the individual copies are out of phase. The model is formulated using master equations, taking a stochastic approach to regulation, but the mathematical formalism is kept to a minimum and the model is simplified to its bare essence. This simplicity makes it possible to extend the analysis to other replicons with similar design principles.
Collapse
Affiliation(s)
- J Paulsson
- Department of Cell and Molecular Biology, Biomedical center Box 596, Uppsala, SE-75124, Sweden
| | | |
Collapse
|
38
|
Wagner EG, Brantl S. Kissing and RNA stability in antisense control of plasmid replication. Trends Biochem Sci 1998; 23:451-4. [PMID: 9868360 DOI: 10.1016/s0968-0004(98)01322-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- E G Wagner
- Dept of Microbiology, SLU (Swedish University of Agricultural Sciences), Uppsala.
| | | |
Collapse
|
39
|
Abstract
Multicopy plasmids of Escherichia coli are distributed randomly at cell division and, as long as copy number remains high, plasmid-free cells arise only rarely. Copy number variation is minimized by plasmid-encoded control circuits, and the limited data available suggest that deviations are corrected efficiently under most circumstances. However, plasmid multimers confuse control circuits, leading to copy number depression. To make matters worse, multimers out-replicate monomers and accumulate clonally within the culture, creating a subpopulation of cells with a significantly increased rate of plasmid loss. Multimers of natural multicopy plasmids, such as ColE1, are resolved to monomers by a site-specific recombination system (Xer-cer) whose activity is limited to intramolecular recombination. Recombination requires the heterodimeric XerCD recombinase plus two accessory proteins (ArgR and PepA), which activate recombination and prevent intermolecular events. Evidence is accumulating that Xer-cer recombination is relatively slow, and there is a risk that cells might divide before multimer resolution is complete. The Rcd transcript encoded within cer may solve this problem by preventing the division of multimer-containing cells. Working in concert, the triumvirate of copy number control, multimer resolution and cell division control achieve an extremely high fidelity of plasmid maintenance.
Collapse
Affiliation(s)
- D Summers
- Department of Genetics, Cambridge, UK.
| |
Collapse
|
40
|
Herman-Antosiewicz A, Srutkowska S, Taylor K, Wegrzyn G. Replication and maintenance of lambda plasmids devoid of the Cro repressor autoregulatory loop in Escherichia coli. Plasmid 1998; 40:113-25. [PMID: 9735313 DOI: 10.1006/plas.1998.1348] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmids derived from bacteriophage lambda are known as lambda plasmids. These plasmids contain the ori lambda region and lambda replication genes O and P. Typical lambda plasmids also contain the cro gene, the product of which is a repressor of the pR promoter when present at relatively high concentrations. These genes stably maintain the plasmid in Escherichia coli at copy numbers of 20 to 50 per cell. According to a generally accepted model, stable maintenance of lambda plasmids is possible due to the Cro repressor autoregulatory loop (the cro gene is under control of pR). Here we demonstrate that lambda plasmids devoid of the Cro autoregulatory loop can also be stably maintained in E. coli strains. We present data for two such plasmids: pTC lambda 1 in which the pR-cro region has been replaced by the ptetA promoter and the tetR gene (coding for the TetR repressor), and a standard lambda plasmid with inactivated cro gene (lambda cro-null plasmid). Thus, the presence of the Cro repressor autoregulatory loop does not appear to be essential to the maintenance of lambda plasmids in vivo.
Collapse
|
41
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 694] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Paulsson J, Nordström K, Ehrenberg M. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates. Plasmid 1998; 39:215-34. [PMID: 9571138 DOI: 10.1006/plas.1998.1338] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable experiments arise naturally from the present work. It is also discussed how the presence of the Rom protein may affect dynamic qualities of copy number control.
Collapse
Affiliation(s)
- J Paulsson
- Department of Molecular Biology, Uppsala University, Uppsala, S-75124, Sweden
| | | | | |
Collapse
|
43
|
Wróbel B, Wegrzyn G. Replication of plasmids derived from P1, F, R1, R6K and RK2 replicons in amino acid-starved Escherichia coli stringent and relaxed strains. J Basic Microbiol 1998; 37:451-63. [PMID: 9440285 DOI: 10.1002/jobm.3620370614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Replication of mini-plasmids derived from bacteriophage P1 and naturally existing plasmids F, R1, R6K and RK2 in otherwise isogenic relA+ and relA- Escherichia coli strains during amino acid starvation and limitation was investigated. Since it was previously demonstrated that inhibition of DNA synthesis or amplification of plasmid DNA may depend on the nature of deprived amino acid, we starved bacteria for five different amino acids. We found differential replication of all these plasmids but RK2 (which did not replicate at all in amino acid-starved bacteria) during the stringent and relaxed response. While in almost all cases plasmid DNA replication was inhibited during the stringent response irrespective of the nature of deprived amino acid, wild-type or copy-up mini-P1, mini-F and mini-R1 plasmids replicated in relA- bacteria depending on the kind of starvation. R6K-derived plasmids harbouring ori beta and gamma (but not those containing ori alpha, beta and gamma or only ori gamma) were able to replicate in relA- bacteria starved for all tested amino acids. Possible explanations for the mechanisms of regulation of replication of plasmids derived from P1, F, R1, R6K and RK2 during amino acid starvation are discussed. Our results also indicate that, like in the case of some other replicons, appropriate amino acid starvation or limitation may be used as a method for efficient amplification of plasmids derived from P1, F, R1 and R6K.
Collapse
Affiliation(s)
- B Wróbel
- Department of Molecular Biology, University of Gdańsk, Poland
| | | |
Collapse
|
44
|
Abstract
Replication of plasmid pIP501 is regulated at a step subsequent to transcription initiation by an antisense RNA (RNAIII) and transcriptionally by a repressor protein, CopR. Previously, it had been shown that CopR binds to a 44-bp DNA fragment upstream of and overlapping the repR promoter pII. Subsequently, we found that high-copy-number pIP501 derivatives lacking copR and low-copy-number derivatives containing copR produced the same intracellular amounts of RNAIII. This suggested a second, hitherto-unknown function of CopR. In this report, we show that CopR does not affect the half-life of RNAIII. Instead, we demonstrate in vivo that, in the presence of both pII and pIII, CopR provided in cis or in trans causes an increase in the intracellular concentration of RNAIII and that this effect is due to the function of the protein rather than its mRNA. We suggest that, in the absence of CopR, the increased (derepressed) RNAII transcription interferes, in cis, with initiation of transcription of RNAIII (convergent transcription), resulting in a lower RNAIII/plasmid ratio. When CopR is present, the pII promoter is repressed to >90%, so that convergent transcription is mostly abolished and RNAIII/plasmid ratios are high. The hypothesis that RNAII transcription influences promoter pIII through induced changes in DNA supercoiling is supported by the finding that the gyrase inhibitor novobiocin affects the accumulation of both sense and antisense RNA. The dual role of CopR in repression of RNAII transcription and in prevention of convergent transcription is discussed in the context of replication control of pIP501.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacterial Proteins
- Blotting, Northern
- Cloning, Molecular
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Novobiocin/pharmacology
- Plasmids/genetics
- Promoter Regions, Genetic
- RNA/analysis
- RNA/metabolism
- RNA, Antisense/analysis
- RNA, Antisense/drug effects
- RNA, Antisense/metabolism
- Recombination, Genetic
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- S Brantl
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Germany.
| | | |
Collapse
|
45
|
Steinmetzer K, Brantl S. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA. J Mol Biol 1997; 269:684-93. [PMID: 9223633 DOI: 10.1006/jmbi.1997.1083] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication of the streptococcal plasmid pIP501 is regulated by the CopR protein and an antisense-RNA (RNAIII). CopR acts as transcriptional repressor at the essential repR promoter pII by binding to inverted repeat IR1 upstream of pII. To further characterize the interaction of CopR with its target, footprinting studies were performed. Methylation interference identified three guanine bases (G240, G242 and G251) in the top strand and two (G252 and G254) in the bottom strand contacted by CopR in the major groove of the DNA. Missing base interference revealed the contribution of the bases in the neighbourhood of these guanine bases to the specific DNA-protein contacts. Phosphate residues essential for CopR binding were determined by ethylation interference. The recognition sequence was localized at the centre of inverted repeat IR1. CopR contacts two consecutive major grooves (site I and II) on the same face of the DNA. Although the two sites share a common sequence motif, neighbouring bases are contacted differently. DNA fragments carrying single mutations in site I or II were analysed by band shift assays. Gel filtration and native gel electrophoresis demonstrated that CopR exists only as a dimer. A sigmoidal binding curve of CopR to its DNA target was observed and allowed the determination of the apparent dissociation constant K(D). The significance of the relatively high apparent K(D) for the role of CopR in pIP501 copy number regulation is discussed.
Collapse
Affiliation(s)
- K Steinmetzer
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Germany
| | | |
Collapse
|
46
|
Malmgren C, Wagner EG, Ehresmann C, Ehresmann B, Romby P. Antisense RNA control of plasmid R1 replication. The dominant product of the antisense rna-mrna binding is not a full RNA duplex. J Biol Chem 1997; 272:12508-12. [PMID: 9139701 DOI: 10.1074/jbc.272.19.12508] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The replication frequency of plasmid R1 is controlled by an antisense RNA (CopA) that binds to its target site (CopT) in the leader region of repA mRNA and inhibits the synthesis of the replication initiator protein RepA. Previous studies on CopA-CopT pairing in vitro revealed the existence of a primary loop-loop interaction (kissing complex) that is subsequently converted to an almost irreversible duplex. However, the structure of more stable binding intermediates that lead to the formation of a complete duplex was speculative. Here, we investigated the interaction between CopA and CopT by using Pb(II)-induced cleavages. The kissing complex was studied using a truncated antisense RNA (CopI) that is unable to form a full duplex with CopT. Furthermore, RNase III, which is known to process the CopA-CopT complex in vivo, was used to detect the existence of a full duplex. Our data indicate that the formation of a full CopA-CopT duplex appears to be a very slow process in vitro. Unexpectedly, we found that the loop-loop interaction persists in the predominant CopA-CopT complex and is stabilized by intermolecular base pairing involving the 5'-proximal 30 nucleotides of CopA and the complementary region of CopT. This almost irreversible complex suffices to inhibit ribosome binding at the tap ribosome binding site and may be the inhibitory complex in vivo.
Collapse
Affiliation(s)
- C Malmgren
- Department of Microbiology, Biomedical Center, Uppsala University, Box 581 S-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
47
|
Abstract
Using a sensitive primer extension technique, we have carried out studies to localize the start site of replication of the replicon RepFIC. In the course of these studies, we have found evidence that supports the hypothesis that transcription is an integral component of the initiation of replication. On the basis of our findings, we suggest that the transcript is processed to act as a primer, and therefore we propose that the transcript has a dual role as primer of replication and mRNA for the RepA1 protein. We present a model, based on our evidence, for the initiation of replication of the replicon RepFIC. This model provides as well an alternative explanation for what has been called the cis action of RepA1, and we show that RepA1 may act in trans as well as in cis.
Collapse
Affiliation(s)
- R Maas
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| | | |
Collapse
|
48
|
Burian J, Guller L, Macor M, Kay WW. Small cryptic plasmids of multiplasmid, clinical Escherichia coli. Plasmid 1997; 37:2-14. [PMID: 9073577 DOI: 10.1006/plas.1996.1273] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clinical isolates of Escherichia coli were found to host a multiplicity of plasmids. These were resolved from plasmid gel profiles, from the properties of various transconjugants and transformants of E. coli DH1, by the topoisomerase I relaxation of covalently closed circle plasmid DNA, by electron microscopy, and by the determination of their compatibilities. The majority of these were unusually small, cryptic plasmids (SCPs). From one strain, KL4, 13 electrophoretic bands were resolved to five plasmids, three of which were SCPs. SCPs were phenotypically barren, and the smallest of these, pKL1, contained barely enough information for self-replication. A derivative of pKL1, pKL1Km, in which the transposon was restricted to a small 350-bp region, was stably maintained in Shigella, Salmonella, Serratia, and Citrobacter species and its replication was polA independent. pKL1 encoded only a single protein, RepA (Mr 17960), which specifically bound to pKL1 DNA. No apparent homologies with other RepA protein sequences could be detected. Thus the SCP, pKL1, is a novel minimal plasmid replicon encoding only enough information to ensure perpetuation. A hypothesis is presented describing SCPs as a class of selfish DNA that persists simply due to its ability to replicate and to its stability based on high copy number.
Collapse
Affiliation(s)
- J Burian
- Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, Bratislava, Slovakia
| | | | | | | |
Collapse
|
49
|
Acebo P, Alda MT, Espinosa M, del Solar G. Isolation and characterization of pLS1 plasmid mutants with increased copy numbers. FEMS Microbiol Lett 1996; 140:85-91. [PMID: 8666205 DOI: 10.1111/j.1574-6968.1996.tb08319.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae genetic systems designed for isolation of plasmid mutants with copy-up phenotypes have been developed. The target plasmids have the pLS1 replicon, and two different strategies have been followed: (i) selection of clones exhibiting augmented resistance to antibiotics, or (ii) obligatory co-existence of incompatible plasmids. We have isolated 23 plasmid mutants exhibiting increased number of copies. All the mutations corresponded to four different alleles of the copG gene of plasmid pLS1. These strategies could be used with other plasmids.
Collapse
Affiliation(s)
- P Acebo
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Ruiz-Echevarría MJ, de la Torre MA, Díaz-Orejas R. A mutation that decreases the efficiency of plasmid R1 replication leads to the activation of parD, a killer stability system of the plasmid. FEMS Microbiol Lett 1995; 130:129-35. [PMID: 7649433 DOI: 10.1111/j.1574-6968.1995.tb07709.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The silent parD (kis/kid) stability operon of plasmid R1 is normally repressed by the co-ordinated action of the Kis and Kid proteins. In this report it is shown that a mutation in repA, the gene of the plasmid replication protein, that reduces two-fold the copy number of the plasmid, leads to the derepression of the parD system. This derepression can be prevented by a suppressor mutation in copB, a copy number control gene of plasmid R1, that increases the efficiency of replication of the repA mutant. Derepression of the wild-type parD system leads to high plasmid stability. These data show the activation of a plasmid stability operon by a mutation that reduces the efficiency of wild-type plasmid replication.
Collapse
|