1
|
Hou DD, Zhu RZ, Sun Z, Ma XD, Wang DC, Timothy H, Chen WN, Yan F, Lei P, Han XW, Chen DX, Cai LP, Guan HQ. Serum Proteomics Analysis in Rats of Immunosuppression Induced by Chronic Stress. Scand J Immunol 2017; 84:165-73. [PMID: 27384769 DOI: 10.1111/sji.12461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
The immune system can be damaged by chronic stress. However, for this process, the involved molecular alterations and their regulatory roles played in immunosuppression still remain unclear. This study was aimed to identify the differences in serum protein expressions that are closely associated with the effect of chronic stress on immune function. Serum protein levels of rats in control group and chronic stress group were measured by iTRAQ analysis. Subsequently, among the 121 differentially expressed proteins screened between the two groups, 46 proteins were upregulated (>1.5-fold, P < 0.05), while 75 proteins were downregulated (<0.67-fold, P < 0.05). Bioinformatics analysis revealed that most of the differentially expressed proteins were in relation with the metabolic, cellular, response stimulus and immune system processes. The significantly differential expression of ceruloplasmin, haptoglobin, catalase and peroxiredoxin-1 were picked out for reconfirmation by ELISA analysis. The results were consistent with those obtained by iTRAQ. What is more, the roles of above-mentioned four proteins, apolipoprotein B-100 and heat-shock protein 90 in immunosuppression induced by chronic stress were discussed. Taken together, these findings may provide a new insight into better understanding the molecular mechanisms of immunosuppression induced by chronic stress.
Collapse
Affiliation(s)
- D D Hou
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - R Z Zhu
- Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Z Sun
- Liaoning People's Hospital, Shenyang, China
| | - X D Ma
- Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - D C Wang
- The Second Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - H Timothy
- The First Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - W N Chen
- Experiment and Technology Center, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - F Yan
- The First Clinical Medical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - P Lei
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - X W Han
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - D X Chen
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - L P Cai
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - H Q Guan
- Basic Medical Science College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P. R. China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Tamang DL, Alves BN, Elliott V, Redelman D, Wadhwa R, Fraser SA, Hudig D. Regulation of perforin lysis: implications for protein disulfide isomerase proteins. Cell Immunol 2009; 255:82-92. [PMID: 19147124 DOI: 10.1016/j.cellimm.2008.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Perforin, a membrane-permeabilizing protein, is important to T cell cytotoxic action. Perforin has potential to damage the T cell in the endoplasmic reticulum (ER), is sequestered in granules, and later is exocytosed to kill cells. In the ER and after exocytosis, calcium and pH favor perforin activity. We found a novel perforin inhibitor associated with cytotoxic T cell granules and termed it Cytotoxic Regulatory Protein 2 (CxRP2). CxRP2 blocked lysis by granule extracts, recombinant perforin and T cells. Its effects lasted for hours. CxRP2 was calcium stable and refractory to inhibitors of granzyme and cathepsin proteases. Through mass spectrometric analysis of active 50-100 kDa proteins, we identified CxRP2 candidates. Protein disulfide isomerase A3 was the strongest candidate but was unavailable for testing; however, protein disulfide isomerase A1 had CxRP2 activity. Our results indicate that protein disulfide isomerases, in the ER or elsewhere, may protect T cells from their own perforin.
Collapse
Affiliation(s)
- David L Tamang
- Department of Microbiology and Immunology MS320, University of Nevada, School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Woodard SL, Fraser SA, Winkler U, Jackson DS, Kam CM, Powers JC, Hudig D. Purification and Characterization of Lymphocyte Chymase I, a Granzyme Implicated in Perforin-Mediated Lysis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
One mechanism of killing by cytotoxic lymphocytes involves the exocytosis of specialized granules. The released granules contain perforin, which assembles into pores in the membranes of cells targeted for death. Serine proteases termed granzymes are present in the cytotoxic granules and include several chymases (with chymotrypsin-like specificity of cleavage). One chymase is selectively reactive with an inhibitor, Biotinyl-Aca-Aca-Phe-Leu-PheP(OPh)2, that blocks perforin lysis. We report the purification and characterization of this chymase, lymphocyte chymase I, from rat natural killer cell (RNK)-16 granules. Lymphocyte chymase I is 30 kDa with a pH 7.5 to 9 optimum and primary substrate preference for tryptophan, a preference distinct from rat mast cell chymases. This chymase also reacts with other selective serine protease inhibitors that block perforin pore formation. It elutes by Cu2+-immobilized metal affinity chromatography with other granzymes and has the N-terminal protein sequence conserved among granzymes. Chymase I reduces pore formation when preincubated with perforin at 37°C. In contrast, addition of the chymase without preincubation had little effect on lysis. It should be noted that the perforin preparation contained sufficient residual chymase activity to support lysis. Thus, the reduction of lysis may represent an effect of excess prolytic chymase I or a means to limit perforin lysis of bystander cells. In contrast, other chymases and granzyme K were without effect when added to perforin during similar preincubation. Identification of the natural substrate of chymase I will help resolve how it regulates perforin-mediated pore formation.
Collapse
Affiliation(s)
| | - Stephanie A. Fraser
- ‡The Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557; and
| | | | - Delwin S. Jackson
- §School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chih-Min Kam
- §School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - James C. Powers
- §School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Dorothy Hudig
- *Department of Microbiology, School of Medicine,
- †School of Veterinary Sciences, and
| |
Collapse
|
4
|
Winkler U, Fraser SA, Hudig D. Perforin-enhancing protein, a low molecular weight protein of cytotoxic lymphocyte granules, enhances perforin lysis. Biochem Biophys Res Commun 1997; 236:34-9. [PMID: 9223421 DOI: 10.1006/bbrc.1997.6899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perforin is a 68 kD protein found in the granules of cytotoxic lymphocytes and is used by lymphocytes to form lethal pores in the membranes of the cells they kill. We and others have found that when perforin is purified, its lytic activity is markedly reduced. ELISAs indicated that our final recovery of perforin protein was excellent. We decided to determine if depletion of other granule proteins contributed to the loss of lytic activity. We isolated perforin to the point where lytic activity was diminished and added back granule proteins that had no lytic activity or detectable (antigenic) perforin. Perforin was isolated by Cu2+-immobilized metal affinity chromatography (IMAC) followed by phenyl-Superose hydrophobic interaction chromatography (HIC). Its lytic activity was enhanced by a low molecular weight (<15 kD) protein, perforin enhancing protein (PEPr). We have isolated PEPr by two methods, HIC and MonoQ. Nonlytic PEPr restored perforin to close to its original lytic activity. A protein similar if not identical to PEPr was also detectable as an 125I-labeled protein associated with lytic perforin. We propose that PEPr acts in conjunction with perforin to form lethal pores and suggest that PEPr may be the rat equivalent of the human cytotoxic lymphocyte protein, granulysin.
Collapse
Affiliation(s)
- U Winkler
- Department of Microbiology, School of Medicine, University of Nevada, Reno 89557, USA
| | | | | |
Collapse
|