1
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
2
|
Takegawa K, Ito T, Yamamoto A, Yamazaki N, Shindo M, Shinohara Y. KH-17, a simplified derivative of bongkrekic acid, weakly inhibits the mitochondrial ADP/ATP carrier from both sides of the inner mitochondrial membrane. Chem Biol Drug Des 2023; 101:865-872. [PMID: 36527173 DOI: 10.1111/cbdd.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Two natural products, bongkrekic acid and carboxyatractyloside, are known to specifically inhibit the mitochondrial ADP/ATP carrier from its matrix side and cytosolic side, respectively, in concentration ranges of 10-6 M. In the present study, we investigated the manner of action of a synthetic bongkrekic acid derivative, KH-17, lacking three methyl groups, one methoxy group, and five internal double bonds, on the mitochondrial ADP/ATP carrier. At slightly acidic pH, KH-17 inhibited mitochondrial [3 H]ADP uptake, but its inhibitory action was about 10 times weaker than that of its parental compound, bongkrekic acid. The main site of action of KH-17 was confirmed as the matrix side of the ADP/ATP carrier by experiments using submitochondrial particles, which have an inside-out orientation of the inner mitochondrial membrane. However, when we added KH-17 to mitochondria at neutral pH, it had a weak inhibitory effect on [3 H]ADP uptake, and its inhibitory strength was similar to that of bongkrekic acid. These results indicated that KH-17 weakly inhibits the ADP/ATP carrier not only from the matrix side but also from the cytosolic side. To ascertain whether this interpretation was correct, we examined the effects of KH-17 and carboxyatractyloside on mitochondrial [3 H]ADP uptake at two [3 H]ADP concentrations. We found that both KH-17 and carboxyatractyloside showed a stronger inhibitory effect at the lower [3 H]ADP concentration. Therefore, we concluded that the bongkrekic acid derivative, KH-17, weakly inhibits the mitochondrial ADP/ATP carrier from both sides of the inner mitochondrial membrane. These results suggested that the elimination of three methyl groups, one methoxy group, and five internal double bonds present in bongkrekic acid altered its manner of action towards the mitochondrial ADP/ATP carrier. Our data will help to improve our understanding of the interaction between bongkrekic acid and the mitochondrial ADP/ATP carrier.
Collapse
Affiliation(s)
- Kazuto Takegawa
- Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Ito
- Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Naoshi Yamazaki
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Kerr M, Dennis KMJH, Carr CA, Fuller W, Berridge G, Rohling S, Aitken CL, Lopez C, Fischer R, Miller JJ, Clarke K, Tyler DJ, Heather LC. Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia. FASEB J 2021; 35:e21765. [PMID: 34318967 PMCID: PMC8662312 DOI: 10.1096/fj.202100394r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.
Collapse
Affiliation(s)
- M Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - K M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - W Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - G Berridge
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - S Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C L Aitken
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Lopez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - J J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Physics, University of Oxford, Oxford, UK.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - K Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - L C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Sci Rep 2017; 7:41355. [PMID: 28134341 PMCID: PMC5278347 DOI: 10.1038/srep41355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Chloroplast development is an important subject in botany. In this study, a rice (Oryza sativa) mutant exhibiting impairment in early chloroplast development (seedling leaf albino (sla)) was isolated from a filial generation via hybridization breeding. The sla mutant seedlings have an aberrant form of chloroplasts, which resulted in albinism at the first and second leaves; however, the leaf sheath was green. The mutant gradually turned green after the two-leaf stage, and the third leaf was a normal shade of green. Map-based cloning indicated that the gene OsBT1-3, which belongs to the mitochondrial carrier family (MCF), is responsible for the sla mutant phenotype. OsBT1-3 expression was high in the young leaves, decreased after the two-leaf stage, and was low in the sheath, and these findings are consistent with the recovery of a number of chloroplasts in the third leaf of sla mutant seedlings. The results also showed that OsBT1-3-yellow fluorescent protein (YFP) was targeted to the chloroplast, and a Western blot assay using a peptide-specific antibody indicated that OsBT1-3 localizes to the chloroplast envelope. We also demonstrated that OsBT1-3 functions as a unidirectional transporter of adenine nucleotides. Based on these findings, OsBT1-3 likely acts as a plastid nucleotide uniporter and is essential for chloroplast development in rice leaves at the young seedling stage.
Collapse
|
5
|
Anwar M, Kasper A, Steck AR, Schier JG. Bongkrekic Acid-a Review of a Lesser-Known Mitochondrial Toxin. J Med Toxicol 2017; 13:173-179. [PMID: 28105575 DOI: 10.1007/s13181-016-0577-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Bongkrekic acid (BA) has a unique mechanism of toxicity among the mitochondrial toxins: it inhibits adenine nucleotide translocase (ANT) rather than the electron transport chain. Bongkrekic acid is produced by the bacterium Burkholderia gladioli pathovar cocovenenans (B. cocovenenans) which has been implicated in outbreaks of food-borne illness involving coconut- and corn-based products in Indonesia and China. Our objective was to summarize what is known about the epidemiology, exposure sources, toxicokinetics, pathophysiology, clinical presentation, and diagnosis and treatment of human BA poisoning. METHODS We searched MEDLINE (1946 to present), EMBASE (1947 to present), SCOPUS, The Indonesia Publication Index ( http://id.portalgaruda.org/ ), ToxNet, book chapters, Google searches, Pro-MED alerts, and references from previously published journal articles. We identified a total of 109 references which were reviewed. Of those, 29 (26 %) had relevant information and were included. Bongkrekic acid is a heat-stable, highly unsaturated tricarboxylic fatty acid with a molecular weight of 486 kDa. Outbreaks have been reported from Indonesia, China, and more recently in Mozambique. Very little is known about the toxicokinetics of BA. Bongkrekic acid produces its toxic effects by inhibiting mitochondrial (ANT). ANT can also alter cellular apoptosis. Signs and symptoms in humans are similar to the clinical findings from other mitochondrial poisons, but they vary in severity and time course. Management of patients is symptomatic and supportive. CONCLUSIONS Bongkrekic acid is a mitochondrial ANT toxin and is reported primarily in outbreaks of food-borne poisoning involving coconut and corn. It should be considered in outbreaks of food-borne illness when signs and symptoms manifest involving the liver, brain, and kidneys and when coconut- or corn-based foods are implicated.
Collapse
Affiliation(s)
- Mehruba Anwar
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA.
| | - Amelia Kasper
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA
| | - Alaina R Steck
- Agency for Toxic Substances and Disease Registry (ATSDR), 4770 Buford Highway, Atlanta, GA, 30341, USA
| | - Joshua G Schier
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA
| |
Collapse
|
6
|
Identification of adenine nucleotide translocase 4 inhibitors by molecular docking. J Mol Graph Model 2013; 45:173-9. [PMID: 24056384 DOI: 10.1016/j.jmgm.2013.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/21/2022]
Abstract
The protein adenine nucleotide translocase (ANT) is localized in the mitochondrial inner membrane and plays an essential role in transporting ADP into the mitochondrial matrix and ATP out from the matrix for cell utilization. In mammals there are four paralogous ANT genes, of which ANT4 is exclusively expressed in meiotic germ cells. Since ANT4 has been shown essential for spermatogenesis and male fertility in mice, inhibition of ANT4 appears to be a reasonable target for male contraceptive development. Further, in contrast to ANT1, ANT2 and ANT3 that are highly homologous to each other, ANT4 has a distinguishable amino acid sequence, which serves as a basis to develop a selective ANT4 inhibitor. In this study, we aimed to identify candidate compounds that can selectively inhibit ANT4 activity over the other ANTs. We used a structure-based method in which ANT4 was modeled then utilized as the basis for selection of compounds that interact with sites unique to ANT4. A large chemical library (>100,000 small molecules) was screened by molecular docking and effects of these compounds on ADP/ATP exchange through ANT4 were examined using yeast mitochondria expressing human ANT4. Through this, we identified one particular candidate compound, [2,2'-methanediylbis(4-nitrophenol)], which inhibits ANT4 activity with a lower IC50 than the other ANTs (5.8 μM, 4.1 μM, 5.1 μM and 1.4 μM for ANT1, 2, 3 and 4, respectively). This newly identified active lead compound and its chemical structure are expected to provide new opportunities to optimize selective ANT4 inhibitors for contraceptive purposes.
Collapse
|
7
|
Dahl G, Qiu F, Wang J. The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 2013; 75:583-93. [PMID: 23499662 DOI: 10.1016/j.neuropharm.2013.02.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 12/29/2022]
Abstract
Pannexins were originally thought to represent a second and redundant family of gap junction proteins in addition to the well characterized connexins. However, it is now evident that pannexins function as unapposed membrane channels and the major role of Panx1 is that of an ATP release channel. Despite the contrasting functional roles, connexins, innexins and pannexins share pharmacological properties. Most gap junction blockers also attenuate the function of Panx1, including carbenoxolone, mefloquine and flufenamic acid. However, in contrast to connexin based gap junction channels, Panx1 channel activity can be attenuated by several groups of drugs hitherto considered very specific for other proteins. The drugs affecting Panx1 channels include several transport inhibitors, chloride channel blockers, mitochondrial inhibitors, P2X7 receptor ligands, inflammasome inhibitors and malaria drugs. These observations indicate that Panx1 may play an extended role in a wider spectrum of physiological functions. Alternatively, Panx1 may share structural domains with other proteins, not readily revealed by sequence alignments. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, School of Medicine, PO Box 016430, Miami, FL 33101, USA.
| | - Feng Qiu
- Department of Physiology and Biophysics, University of Miami, School of Medicine, PO Box 016430, Miami, FL 33101, USA
| | - Junjie Wang
- Department of Physiology and Biophysics, University of Miami, School of Medicine, PO Box 016430, Miami, FL 33101, USA
| |
Collapse
|
8
|
Yamada Y, Nakamura K, Furukawa R, Kawamura E, Moriwaki T, Matsumoto K, Okuda K, Shindo M, Harashima H. Mitochondrial Delivery of Bongkrekic Acid Using a MITO-Porter Prevents the Induction of Apoptosis in Human HeLa Cells. J Pharm Sci 2013; 102:1008-15. [DOI: 10.1002/jps.23442] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 11/08/2022]
|
9
|
Aulik NA, Hellenbrand KM, Kisiela D, Czuprynski CJ. Mannheimia haemolytica leukotoxin binds cyclophilin D on bovine neutrophil mitochondria. Microb Pathog 2011; 50:168-78. [PMID: 21220005 DOI: 10.1016/j.micpath.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 01/03/2023]
Abstract
Mannheimia haemolytica is an important member of the bovine respiratory disease (BRD) complex that causes fibrinous and necrotizing pleuropneumonia in cattle. BRD is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. The most important virulence factor of M. haemolytica is its leukotoxin. Previous research in our laboratory has shown that the leukotoxin is able to enter into and traffic to the mitochondria of a bovine lymphoblastoid cell line (BL-3). In this study, we evaluated the ability of LKT to be internalized and travel to mitochondria in bovine neutrophils. We demonstrate that LKT binds bovine neutrophil mitochondria and co-immunoprecipitates with TOM22 and TOM40, which are members of the translocase of the outer mitochondrial (TOM) membrane family. Upon entry into mitochondria, LKT co-immunoprecipitates with cyclophilin D, a member of the mitochondria permeability transition pore. Unlike BL-3 cells, bovine neutrophil mitochondria are not protected against LKT by the membrane-stabilizing agent cyclosporin A, nor were bovine neutrophil mitochondria protected by the permeability transition pore antagonist bongkrekic acid. In addition, we found that bovine neutrophil cyclophilin D is significantly smaller than that found in BL-3 cells. Bovine neutrophils were protected against LKT by protein transfection of an anti-cyclophilin D antibody directed at the C-terminal amino acids, but not an antibody against the first 50 N-terminal amino acids. In contrast, BL-3 cells were protected by antibodies against either the C-terminus or N-terminus of cyclophilin. These data confirm that LKT binds to bovine neutrophil mitochondria, but indicate there are distinctions between neutrophil and BL-3 mitochondria that might reflect differences in cyclophilin D.
Collapse
Affiliation(s)
- Nicole A Aulik
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
10
|
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1978-2021. [PMID: 18510943 DOI: 10.1016/j.bbamem.2008.04.011] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an "old fashioned" review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive "c-state" the actual mechanism still remains a conjecture.
Collapse
|
11
|
Guerriero CJ, Weisz OA. N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. Am J Physiol Cell Physiol 2006; 292:C1562-6. [PMID: 17092993 DOI: 10.1152/ajpcell.00426.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and WAVE stimulate actin-related protein (Arp)2/3-mediated actin polymerization, leading to diverse downstream effects, including the formation and remodeling of cell surface protrusions, modulation of cell migration, and intracytoplasmic propulsion of organelles and pathogens. Selective inhibitors of individual Arp2/3 activators would enable more exact dissection of WASP- and WAVE-dependent cellular pathways and are potential therapeutic targets for viral pathogenesis. Wiskostatin is a recently described chemical inhibitor that selectively inhibits neuronal WASP (N-WASP)-mediated actin polymerization in vitro. A growing number of recent studies have utilized this drug in vivo to uncover novel cellular functions for N-WASP; however, the selectivity of wiskostatin in intact cells has not been carefully explored. In our studies with this drug, we observed rapid and dose-dependent inhibition of N-WASP-dependent membrane trafficking steps. Additionally, however, we found that addition of wiskostatin inhibited numerous other cellular functions that are not believed to be N-WASP dependent. Further studies revealed that wiskostatin treatment caused a rapid, profound, and irreversible decrease in cellular ATP levels, consistent with its global effects on cell function. Our data caution against the use of this drug as a selective perturbant of N-WASP-dependent actin dynamics in vivo.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
12
|
|
13
|
Abstract
Atractyloside (Atr) is a diterpenoid glycoside that occurs naturally in plants (many of which are used in ethnomedicines) found in Europe, Africa, South America, Asia and the far East. It is also present in animal grazing forage. Atr (and its analogues) may be present at levels as high as 600 mg/kg dried plant material. Consumption of the plants containing Atr or carboxyatractyloside (carboxyAtr) has caused fatal renal proximal tubule necrosis and/or centrilobular hepatic necrosis in man and farm animals. Although pure Atr and crude plant extracts disrupt carbohydrate homeostasis and induce similar pathophysiological lesions in the kidney and liver, it is also possible that the toxicity of Atr may be confounded by the presence of other natural constituents in plants. Atr competitively inhibits the adenine nucleoside carrier in isolated mitochondria and thus blocks oxidative phosphorylation. This has been assumed to explain changes in carbohydrate metabolism and the toxic effects in liver and kidney. Although the acute toxicity of Atr is well described, many aspects of Atr toxicity (subchronic and chronic toxicity, reproductive toxicity, mutagenicity and carcinogenicity) have not been investigated and pharmacokinetic and metabolism data are limited. In vitro proximal tubular cells are selectively sensitive to Atr, whereas other renal cell types are quite resistant. There are also differences in the response of liver and renal tissue to Atr. Thus, not all of the clinical, biochemical and morphological changes caused by Atr can simply be explained on the basis of inhibition of mitochondrial phosphorylation. The relevance to a wider human risk is shown by the presence of Atr analogues in dried roasted Coffea arabica beans (17.5 32 mg/kg). There are no data to help identify the risk of low dose chronic exposure in human coffee consumers, nor is there information on the levels of Atr or its analogues in other commonly consumed human foodstuffs.
Collapse
Affiliation(s)
- D K Obatomi
- Department of Biochemistry, University of Jos, Nigeria
| | | |
Collapse
|
14
|
Ji H, Bradley TM, Tremblay GC. Lactate-dependent gluconeogenesis and atractyloside-sensitive flux through pyruvate carboxylase are reduced during smoltification of Atlantic salmon (Salmo salar). ACTA ACUST UNITED AC 1996. [DOI: 10.1002/(sici)1097-010x(19961215)276:6<375::aid-jez1>3.0.co;2-k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Beauseigneur F, Goubern M, Chapey MF, Gresti J, Vergely C, Tsoko M, Demarquoy J, Rochette L, Clouet P. F1F0-ATPase, early target of the radical initiator 2,2'-azobis-(2-amidinopropane) dihydrochloride in rat liver mitochondria in vitro. Biochem J 1996; 320 ( Pt 2):571-6. [PMID: 8973568 PMCID: PMC1217967 DOI: 10.1042/bj3200571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study was designed to determine which enzyme activities were first impaired in mitochondria exposed to 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), a known radical initiator. EPR spin-trapping revealed generation of reactive oxygen species although malondialdehyde formation remained very low. With increasing AAPH concentrations, State-3 respiration was progressively depressed with unaltered ADP/O ratios. A top-down approach demonstrated that alterations were located at the phosphorylation level. As shown by inhibitor titrations, ATP/ADP translocase activity was unaffected in the range of AAPH concentrations used. In contrast, AAPH appeared to exert a deleterious effect at the level of F1F0-ATPase, comparable with dicyclohexylcarbodi-imide, which alters Fo proton channel. A comparison of ATP hydrolase activity in uncoupled and broken mitochondria reinforced this finding. In spite of its pro-oxidant properties, AAPH was shown to act as a dose-dependent inhibitor of cyclosporin-sensitive permeability transition initiated by Ca2+, probably as a consequence of its effect on F1F0-ATPase. Resveratrol, a potent antiperoxidant, completely failed to prevent the decrease in State-3 respiration caused by AAPH. The data suggest that AAPH, when used under mild conditions, acted as a radical initiator and was capable of damaging F1F0-ATPase, thereby slowing respiratory chain activity and reducing mitochondrial antioxidant defences.
Collapse
|
16
|
Rosen S, Spokes K, Brezis M, Silva P, Epstein FH. Toxicity of adenine nucleotides in the isolated perfused kidney: selective destruction of the S2 segment of the proximal tubule. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1992; 61:169-77. [PMID: 1685278 DOI: 10.1007/bf02890419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an attempt to ameliorate the morphological abnormalities and decreased renal function produced by hypoxia in the isolated perfused rat kidney, adenosine triphosphate (ATP) was added to the perfusate medium. No improvement was noted in the histological changes or renal function. Paradoxically, however, in oxygenated control kidneys, ATP (2.5-10 mM), caused a severe injury remarkably limited to the S2 segments of proximal tubule. This injury was more destructive than that observed with complete ischemia for the same period of time or with inhibitors of glycolysis, intermediary metabolism, or respiratory chain function. Tubular damage produced by ATP was paradoxically prevented by hypoxia and mitochondrial inhibition. The mechanism of this selective toxic injury to the proximal tubule remains unclear and may depend upon intact transport metabolism of the cell.
Collapse
Affiliation(s)
- S Rosen
- Charles A. Dana Research Institute, Harvard-Thorndike Laboratory, Beth Israel Hospital, Department of Pathology, Boston, MA
| | | | | | | | | |
Collapse
|
17
|
Hargittai PT, Lieberman EM. Axon-glia interactions in the crayfish: glial cell oxygen consumption is tightly coupled to axon metabolism. Glia 1991; 4:417-23. [PMID: 1834562 DOI: 10.1002/glia.440040410] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxygen consumption (QO2) of single isolated axons and their associated glial cell sheath was investigated under a variety of conditions to determine the contribution of each cell type to whole tissue QO2. It was found that the QO2 of the sheath, in the absence of a functional axon, represented approximately 30% of the total tissue QO2. When the axon was injected with carboxyatractyloside, an inhibitor of mitochondrial oxidative phosphorylation that is membrane impermeant, electrophysiological properties of the axon were not affected and glial sheath respiratory activity was stimulated by 1.7 to 2.7 times the untreated control level. These results suggest that glial cell metabolic activity is regulated by the metabolic activity of the axon. Depending on the experimental conditions the glial sheath accounts for 30% to nearly 100% of the QO2 of axon-glial cell tissue. On the basis of these and morphometric measurements we estimate that in a normally functioning axon-glial cell system the glial sheath accounts for 90% of the tissue QO2.
Collapse
Affiliation(s)
- P T Hargittai
- Department of Physiology, School of Medicine, East Carolina University, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
18
|
Houstĕk J, Pedersen PL. Adenine nucleotide and phosphate transport systems of mitochondria. Relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88969-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Stubbs M, Freeman D, Ross BD. Formation of n.m.r.-invisible ADP during renal ischaemia in rats. Biochem J 1984; 224:241-6. [PMID: 6508761 PMCID: PMC1144419 DOI: 10.1042/bj2240241] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Measurement of the adenine nucleotide and inorganic phosphate content of normoxic and ischaemic kidney in vivo has been made, comparing enzymic assay (after freeze-clamping and acid extraction) with quantification by 31P-n.m.r. Both methods give similar results for ATP, and n.m.r. quantification of Pi gives a value 25-50% of that obtained by enzymic assay. ADP, which is largely invisible to n.m.r. in the normoxic kidney, remains invisible during ischaemia despite a 2-3 fold rise in enzymically assayed ADP. N.m.r. and enzymic assay of the acid extracts give similar values for all metabolites measured. The question of ADP binding in the kidney is discussed, as are the implications for the metabolic regulation of ADP-dependent reactions.
Collapse
|
20
|
Tager JM, Wanders RJ, Groen AK, Kunz W, Bohnensack R, Küster U, Letko G, Böhme G, Duszynski J, Wojtczak L. Control of mitochondrial respiration. FEBS Lett 1983; 151:1-9. [PMID: 6337871 DOI: 10.1016/0014-5793(83)80330-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The control theory of Kacser and Burns [in: Rate Control of Biological Processes (Davies, D.D. ed) pp. 65-104, Cambridge University Press, London, 1973] and Heinrich and Rapoport [Eur. J. Biochem. (1974) 42, 97-105] has been used to quantify the amount of control exerted by different steps on mitochondrial oxidative phosphorylation in rat-liver mitochondria. Inhibitors were used to manipulate the amount of active enzyme. The control strength of the adenine nucleotide translocator was measured by carrying out titrations with carboxyatractyloside. In state 4, the control strength of the translocator was found to be zero. As the rate of respiration was increased by adding hexokinase, the control strength of the translocator increased to a maximum value of approximately 30% at approximately 80% of state 3 respiration. In state 3, control of respiration is distributed between a number of steps, including the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase. The measured values for the distribution of control agree very well with those calculated with the aid of a model for mitochondrial oxidative phosphorylation developed by Bohnensack et al. [Biochim. Biophys. Acta (1982) 680, 271-280].
Collapse
|
21
|
Duszynski J, Groen AK, Wanders RJ, Vervoorn RC, Tager JM. Quantification of the role of the adenine nucleotide translocator in the control of mitochondrial respiration in isolated rat-liver cells. FEBS Lett 1982; 146:262-6. [PMID: 6291990 DOI: 10.1016/0014-5793(82)80931-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)81026-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Wanders RJ, Groen AK, Meijer AJ, Tager JM. Determination of the free-energy difference of the adenine nucleotide translocator reaction in rat-liver mitochondria using intra- and extramitochondrial ATP-utilizing reactions. FEBS Lett 1981; 132:201-6. [PMID: 6271588 DOI: 10.1016/0014-5793(81)81160-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Chapter 9 Mitochondrial ion transport. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/s0167-7306(08)60037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
|