1
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Abbas Farishta R, Boire D, Casanova C. Hierarchical Organization of Corticothalamic Projections to the Pulvinar. Cereb Cortex Commun 2021; 1:tgaa030. [PMID: 34296104 PMCID: PMC8152833 DOI: 10.1093/texcom/tgaa030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Signals from lower cortical visual areas travel to higher-order areas for further processing through cortico-cortical projections, organized in a hierarchical manner. These signals can also be transferred between cortical areas via alternative cortical transthalamic routes involving higher-order thalamic nuclei like the pulvinar. It is unknown whether the organization of transthalamic pathways may reflect the cortical hierarchy. Two axon terminal types have been identified in corticothalamic (CT) pathways: the types I (modulators) and II (drivers) characterized by thin axons with small terminals and by thick axons and large terminals, respectively. In cats, projections from V1 to the pulvinar complex comprise mainly type II terminals, whereas those from extrastriate areas include a combination of both terminals suggesting that the nature of CT terminals varies with the hierarchical order of visual areas. To test this hypothesis, distribution of CT terminals from area 21a was charted and compared with 3 other visual areas located at different hierarchical levels. Results demonstrate that the proportion of modulatory CT inputs increases along the hierarchical level of cortical areas. This organization of transthalamic pathways reflecting cortical hierarchy provides new and fundamental insights for the establishment of more accurate models of cortical signal processing along transthalamic cortical pathways.
Collapse
Affiliation(s)
| | - Denis Boire
- École d'optométrie, Université de Montréal, Québec, Canada.,Département d'anatomie, Université du Québec à Trois-Rivières, Québec, Canada
| | | |
Collapse
|
3
|
Westbrook AM. A review of the neurophysiology of the turtle retina III. Amacrine and ganglion cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb06538.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Jin M, Glickfeld LL. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors. Curr Biol 2020; 30:4682-4692.e7. [PMID: 33035487 PMCID: PMC7725996 DOI: 10.1016/j.cub.2020.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Cortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of the primary visual cortex (V1) and three key higher visual areas (lateromedial [LM], anterolateral [AL], and posteromedial [PM]) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM, or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm (FA) rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically specific, suggesting that suppression of PM altered sensory integration or the decision-making process rather than processing of local visual features. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Yuan N, Li M, Chen X, Lu Y, Fang Y, Gong H, Qian L, Wu J, Zhang S, Shipp S, Andolina IM, Sun X, Wang W. Immediate Impact of Acute Elevation of Intraocular Pressure on Cortical Visual Motion Processing. Invest Ophthalmol Vis Sci 2020; 61:59. [PMID: 32462199 PMCID: PMC7405714 DOI: 10.1167/iovs.61.5.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To physiologically examine the impairment of cortical sensitivity to visual motion during acute elevation of intraocular pressure (IOP). Methods Motion processing in the cat brain is well characterized, its X and Y cell visual pathways being functionally analogous to parvocellular and magnocellular pathways in primates. Using this model, we performed ocular anterior chamber perfusion to reversibly elevate IOP over a range from 30 to 90 mm Hg while monitoring cortical activity with intrinsic signal optical imaging. Drifting random-dot fields and gratings were used to characterize cortical population responses to motion direction and orientation in early visual areas 17 and 18. Results We found that acute IOP elevations at 50 mm Hg and above, which is often observed in acute glaucoma, suppressed cortical motion direction responses. This suppression was more profound in area 17 than in area 18, and more profound in central than peripheral visual field (eccentricities 0°–4° vs. 4°–8°) within area 17. In addition, orientation responses were more suppressed than motion direction responses for the same IOP modulation. Conclusions In contrast to human chronic glaucoma that may cause greater dysfunction in large-cell magnocellular than in small-cell parvocellular visual pathways, our direct measurement of cortical processing networks implies that the small X-cell pathway shows greater vulnerability to acute IOP elevation than the large Y-cell pathway in visual motion processing. The results demonstrate that fine discrimination mechanisms for motion in the central visual field are particularly impacted by acute IOP attacks, suggesting a neural basis for immediate visual deficits in the fine motion perception of acute glaucoma patients.
Collapse
|
6
|
Ananyev E, Yong Z, Hsieh PJ. Center-surround velocity-based segmentation: Speed, eccentricity, and timing of visual stimuli interact to determine interocular dominance. J Vis 2020; 19:3. [PMID: 31689716 DOI: 10.1167/19.13.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We used a novel method to capture the spatial dominance pattern of competing motion fields at rivalry onset. When rivaling velocities were different, the participants reported center-surround segmentation: The slower stimuli often dominated in the center while faster motion persisted along the borders. The size of the central static/slow field scaled with the stimulus size. The central dominance was time-locked to the static stimulus onset but was disrupted if the dynamic stimulus was presented later. We then used the same stimuli as masks in an interocular suppression paradigm. The local suppression strengths were probed with targets at different eccentricities. Consistent with the center-surround segmentation, target speed and location interacted with mask velocities. Specifically, suppression power of the slower masks was nonhomogenous with eccentricity, providing a potential explanation for center-surround velocity-based segmentation. This interaction of speed, eccentricity, and timing has implications for motion processing and interocular suppression. The influence of different masks on which target features get suppressed predicts that some "unconscious effects" are not generalizable across masks and, thus, need to be replicated under various masking conditions.
Collapse
Affiliation(s)
- Egor Ananyev
- Nanyang Technological University, Department of Psychology, Singapore
| | - Zixin Yong
- Duke-NUS Medical School, Neuroscience and Behavioural Disorders Program, Singapore
| | - Po-Jang Hsieh
- National Taiwan University, Department of Psychology, Taipei, Taiwan
| |
Collapse
|
7
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
8
|
Zhang J, Zhang X, Hu X, Wu W, Yang Y. Organization of spatial frequency in cat striate cortex. Neuroscience 2017; 362:95-103. [PMID: 28823818 DOI: 10.1016/j.neuroscience.2017.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Primary visual cortex, the first cortical stage of visual information processing, is represented by diverse functional maps that demonstrate the selectivity for specific visual features such as spatial frequency (SF). Although the local organization of SF maps in cat area 17 (A17) has been largely investigated, the global arrangement remains elusive. To address this unclear aspect, we evaluated the organization of SF maps within A17 by intrinsic signal optical imaging and extracellular electrophysiological recording. Our results explicitly showed that SF organization in cat A17 displayed a global asymmetrical unimodal distribution. In particular, we found the highest SF preference within the global distribution concentrated around the horizontal meridian. These results significantly contribute to a more comprehensive understanding of the SF organization in visual cortex.
Collapse
Affiliation(s)
- Jingjing Zhang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Xian Zhang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Xu Hu
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Wei Wu
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
9
|
Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells. J Neurosci 2017; 37:998-1013. [PMID: 28123031 DOI: 10.1523/jneurosci.2120-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. SIGNIFICANCE STATEMENT A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields.
Collapse
|
10
|
Silvanto J. Why is "blindsight" blind? A new perspective on primary visual cortex, recurrent activity and visual awareness. Conscious Cogn 2014; 32:15-32. [PMID: 25263935 DOI: 10.1016/j.concog.2014.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
The neuropsychological phenomenon of blindsight has been taken to suggest that the primary visual cortex (V1) plays a unique role in visual awareness, and that extrastriate activation needs to be fed back to V1 in order for the content of that activation to be consciously perceived. The aim of this review is to evaluate this theoretical framework and to revisit its key tenets. Firstly, is blindsight truly a dissociation of awareness and visual detection? Secondly, is there sufficient evidence to rule out the possibility that the loss of awareness resulting from a V1 lesion simply reflects reduced extrastriate responsiveness, rather than a unique role of V1 in conscious experience? Evaluation of these arguments and the empirical evidence leads to the conclusion that the loss of phenomenal awareness in blindsight may not be due to feedback activity in V1 being the hallmark awareness. On the basis of existing literature, an alternative explanation of blindsight is proposed. In this view, visual awareness is a "global" cognitive function as its hallmark is the availability of information to a large number of perceptual and cognitive systems; this requires inter-areal long-range synchronous oscillatory activity. For these oscillations to arise, a specific temporal profile of neuronal activity is required, which is established through recurrent feedback activity involving V1 and the extrastriate cortex. When V1 is lesioned, the loss of recurrent activity prevents inter-areal networks on the basis of oscillatory activity. However, as limited amount of input can reach extrastriate cortex and some extrastriate neuronal selectivity is preserved, computations involving comparison of neural firing rates within a cortical area remain possible. This enables "local" read-out from specific brain regions, allowing for the detection and discrimination of basic visual attributes. Thus blindsight is blind due to lack of "global" long-range synchrony, and it functions via "local" neural readout from extrastriate areas.
Collapse
Affiliation(s)
- Juha Silvanto
- University of Westminster, Faculty of Science and Technology, Department of Psychology, 309 Regent Street, W1B 2HW London, UK; Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, PO BOX 15100, 00076 Aalto, Finland.
| |
Collapse
|
11
|
Romo PA, Zeater N, Wang C, Dreher B. Binocular neurons in parastriate cortex: interocular 'matching' of receptive field properties, eye dominance and strength of silent suppression. PLoS One 2014; 9:e99600. [PMID: 24927276 PMCID: PMC4057260 DOI: 10.1371/journal.pone.0099600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision.
Collapse
Affiliation(s)
- Phillip A. Romo
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Natalie Zeater
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
12
|
Piché M, Thomas S, Casanova C. Spatiotemporal profiles of neurons receptive fields in the cat posteromedial lateral suprasylvian cortex. Neuroscience 2013; 248:319-32. [DOI: 10.1016/j.neuroscience.2013.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022]
|
13
|
Hughes HC, Nozawa G, Kitterle F. Global precedence, spatial frequency channels, and the statistics of natural images. J Cogn Neurosci 2013; 8:197-230. [PMID: 23968149 DOI: 10.1162/jocn.1996.8.3.197] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A great deal of evidence suggests that early in processing, retinal images are filtered by parallel, spatial frequency selective channels. We attempt to incorporate this view of early vision with the principle of global precedence, which holds that Gestalt-like processes sensitive to global image configurations tend to dominate local feature processing in human pattern perception. Global precedence is inferred from the pattern of reaction times observed when visual patterns contain multiple cues at different levels of spatial scale. Specifically, it is frequently observed that global processing times are largely unaffected by conflicting local cues, but local processing times are substantially lengthened by conflicting global cues. The asymmetry of these effects suggests the dominant role of global configurations. Since global spatial information is effectively represented by low spatial frequencies, global precedence potentially implies a low frequency dominance. The thesis is that low spatial frequencies tend to be available before information carried by higher frequency bands, producing a coarse-to-fine temporal order in visual spatial perception. It is suggested that a variety of factors contribute to the "prior entry" of low frequency information, including the high contrast gain of the magnocellular pathway, the amplitude spectra typical of natural images, and inhibitory interactions between the parallel frequency-tuned channels. Evidence suggesting a close relationship between global precedence and spatial frequency channels is provided by observations that the essential features of the global precedence effect are obtained using patterns consisting of low and high frequency sinusoids. The hypothesis that these asymmetric interference effects are due to interactions between parallel spatial channels is supported by an analysis of reaction times (RTs), which shows that RTs to redundant low and high frequency cues produce less facilitation than predictions that assume the channels are independent. In view of previous work showing that global precedence depends upon the low frequency content of the stimuli, we suggest that low spatial frequencies represent the sine qua non for the dominance of configurational cues in human pattern perception, and that this configurational dominance reflects the microgenesis of visual pattern perception. This general view of the temporal dynamics of visual pattern recognition is discussed, is considered from an evolutionary perspective, and is related to certain statistical regularities in natural scenes. Potential adaptive advantages of an interactive parallel architecture that confers an initial processing advantage to low resolution information are explored.
Collapse
|
14
|
Chalupa LM, Dreher B. High precision systems require high precision "blueprints": a new view regarding the formation of connections in the Mammalian visual system. J Cogn Neurosci 2013; 3:209-19. [PMID: 23964836 DOI: 10.1162/jocn.1991.3.3.209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract It is well established that early in development interconnections within the mammalian visual system are often more widespread and less precise than at maturity. The literature dealing with the formation of visual connections has largely ignored differences in developmental specificity among species differing in their phylogenetic status and/or the visual ecological niche that they occupy. Based on a review of the available evidence, we have formulated an hypothesis to account for the varying degrees of developmental specificity that characterize different visual systems. It is suggested that extremely precise systems required for high-acuity binocular vision exhibit fewer presumed developmental errors than do visual systems characterized by poorer acuity and relatively crude depth perception. The developmental implications of the hypothesis are considered, and specific experiments are proposed to further test its validity.
Collapse
|
15
|
Gombkötő P, Berényi A, Nagypál T, Benedek G, Braunitzer G, Nagy A. Co-oscillation and synchronization between the posterior thalamus and the caudate nucleus during visual stimulation. Neuroscience 2013; 242:21-7. [PMID: 23542042 DOI: 10.1016/j.neuroscience.2013.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/15/2013] [Indexed: 12/01/2022]
Abstract
Recent results suggest significant cross-correlation between the spike trains of the suprageniculate nucleus (SG) of the posterior thalamus and the caudate nucleus (CN) during visual stimulation. In the present study visually evoked local field potentials (LFPs) were recorded simultaneously in the CN and the SG in order to investigate the coupling between these structures at a population level. The effect of static and dynamic visual stimulation was analyzed in 55 SG-CN LFP pairs in the frequency range 5-57Hz. Statistical analysis revealed significant correlation of the relative powers of each investigated frequency band (5-8Hz, 8-12Hz, 12-35Hz and 35-57Hz) during both static and dynamic visual stimulation. The temporal evolution of cross-correlation showed that in the majority of the cases the SG was activated first, and in approximately one third of the cases, the CN was activated earlier. These observations suggest a bidirectional information flow. The most interesting finding of this study is that different frequency bands exhibited significant cross-correlation in a stimulation paradigm-dependent manner. That is, static stimulation usually increased the cross-correlation of the higher frequency components (12-57Hz) of the LFP, while dynamic stimulation induced changes in the lowest frequency band (5-8Hz). This suggests a parallel processing of dynamic and static visual information in the SG and the CN. To our knowledge we are the first to provide evidence on the co-oscillation and synchronization of the CN and the SG at a population level upon visual stimulation, which suggests a significant cooperation between these structures in visual information processing.
Collapse
Affiliation(s)
- P Gombkötő
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options.
Collapse
Affiliation(s)
- Jaikishan Jayakumar
- Department of Optometry & Vision Sciences and Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
17
|
Rokszin A, Gombköto P, Berényi A, Márkus Z, Braunitzer G, Benedek G, Nagy A. Visual stimulation synchronizes or desynchronizes the activity of neuron pairs between the caudate nucleus and the posterior thalamus. Brain Res 2011; 1418:52-63. [PMID: 21924706 DOI: 10.1016/j.brainres.2011.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/17/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Recent morphological and physiological studies have suggested a strong relationship between the suprageniculate nucleus (Sg) of the posterior thalamus and the input structure of the basal ganglia, the caudate nucleus (CN) of the feline brain. Accordingly, to clarify if there is a real functional relationship between Sg and CN during visual information processing, we investigated the temporal relations of simultaneously recorded neuronal spike trains of these two structures, looking for any significant cross-correlation between the spiking of the simultaneously recorded neurons. For the purposes of statistical analysis, we used the shuffle and jittering resampling methods. Of the recorded 288 Sg-CN neuron pairs, 26 (9.2%) showed significantly correlated spontaneous activity. Nineteen pairs (6.7%) showed correlated activity during stationary visual stimulation, while 21 (7.4%) pairs during stimulus movement. There was no overlap between the neuron pairs that showed cross-correlated spontaneous activity and the pairs that synchronized their activity during visual stimulation. Thus visual stimulation seems to have been able to synchronize, and also, by other neuron pairs, desynchronize the activity of CN and Sg. In about half of the cases, the activation of Sg preceded the activation of CN by a few milliseconds, while in the other half, CN was activated earlier. Our results provide the first piece of evidence for the existence of a functional cooperation between Sg and CN. We argue that either a monosynaptic bidirectional direct connection should exist between these structures, or a common input comprising of parallel pathways synchronizing them.
Collapse
Affiliation(s)
- Alice Rokszin
- Dept. of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
18
|
Romo PA, Wang C, Zeater N, Solomon SG, Dreher B. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat. J Neurophysiol 2011; 106:1688-712. [DOI: 10.1152/jn.00894.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recorded single-neuron activity from cytoarchitectonic area 18 of anesthetized (0.4–0.7% isoflurane in 65% N2O-35% O2 gaseous mixture) domestic cats. Neurons were identified as simple or complex on the basis of the ratios between the phase-variant (F1) component and the mean firing rate (F0) of spike responses to optimized (orientation, direction, spatial and temporal frequencies, size) high-contrast, luminance-modulated, sine-wave drifting gratings (simple: F1/F0 spike-response ratios > 1; complex: F1/F0 spike-response ratios < 1). The predominance (∼80%) of simple cells among the neurons recorded from the principal thalamorecipient layers supports the idea that most simple cells in area 18 might constitute a putative early stage in the visual information processing. Apart from the “spike-generating” regions (the classical receptive fields, CRFs), the receptive fields of three-quarters of area 18 neurons contain silent, extraclassical suppressive regions (ECRFs). The spatial extent of summation areas of excitatory responses was negatively correlated with the strength of the ECRF-induced suppression of spike responses. Lowering the stimulus contrast resulted in an expansion of the summation areas of excitatory responses accompanied by a reduction in the strength of the ECRF-induced suppression. The spatial and temporal frequency and orientation tunings of the ECRFs were much broader than those of the CRFs. Hence, the ECRFs of area 18 neurons appear to be largely “inherited” from their dorsal thalamic inputs. In most area 18 cells, costimulation of CRFs and ECRFs resulted in significant increases in F1/F0 spike-response ratios, and thus there was a contextually modulated functional continuum between the simple and complex cells.
Collapse
Affiliation(s)
- Phillip A. Romo
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Zeater
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Samuel G. Solomon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Raudies F, Mingolla E, Neumann H. A model of motion transparency processing with local center-surround interactions and feedback. Neural Comput 2011; 23:2868-914. [PMID: 21851277 DOI: 10.1162/neco_a_00193] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Motion transparency occurs when multiple coherent motions are perceived in one spatial location. Imagine, for instance, looking out of the window of a bus on a bright day, where the world outside the window is passing by and movements of passengers inside the bus are reflected in the window. The overlay of both motions at the window leads to motion transparency, which is challenging to process. Noisy and ambiguous motion signals can be reduced using a competition mechanism for all encoded motions in one spatial location. Such a competition, however, leads to the suppression of multiple peak responses that encode different motions, as only the strongest response tends to survive. As a solution, we suggest a local center-surround competition for population-encoded motion directions and speeds. Similar motions are supported, and dissimilar ones are separated, by representing them as multiple activations, which occurs in the case of motion transparency. Psychophysical findings, such as motion attraction and repulsion for motion transparency displays, can be explained by this local competition. Besides this local competition mechanism, we show that feedback signals improve the processing of motion transparency. A discrimination task for transparent versus opaque motion is simulated, where motion transparency is generated by superimposing large field motion patterns of either varying size or varying coherence of motion. The model's perceptual thresholds with and without feedback are calculated. We demonstrate that initially weak peak responses can be enhanced and stabilized through modulatory feedback signals from higher stages of processing.
Collapse
Affiliation(s)
- Florian Raudies
- Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
20
|
Volgushev M. Local action for global vision. J Physiol 2011; 589:3419-20. [DOI: 10.1113/jphysiol.2011.212670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
|
22
|
Abstract
AbstractThe general problem of visual search can be shown to be computationally intractable in a formal, complexity-theoretic sense, yet visual search is extensively involved in everyday perception, and biological systems manage to perform it remarkably well. Complexity level analysis may resolve this contradiction. Visual search can be reshaped into tractability through approximations and by optimizing the resources devoted to visual processing. Architectural constraints can be derived using the minimum cost principle to rule out a large class of potential solutions. The evidence speaks strongly against bottom-up approaches to vision. In particular, the constraints suggest an attentional mechanism that exploits knowledge of the specific problem being solved. This analysis of visual search performance in terms of attentional influences on visual information processing and complexity satisfaction allows a large body of neurophysiological and psychological evidence to be tied together.
Collapse
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
|
30
|
Covic EN, Sherman SM. Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cereb Cortex 2011; 21:2425-41. [PMID: 21385835 DOI: 10.1093/cercor/bhr029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Little is known regarding the synaptic properties of corticocortical connections from one cortical area to another. To expand on this knowledge, we assessed the synaptic properties of excitatory projections from the primary to secondary auditory cortex and vice versa. We identified 2 types of postsynaptic responses. The first class of responses have larger initial excitatory postsynaptic potentials (EPSPs), exhibit paired-pulse depression, are limited to ionotropic glutamate receptor activation, and have larger synaptic terminals; the second has smaller initial EPSPs, paired-pulse facilitation, metabotropic glutamate receptor activation, and smaller synaptic terminals. These responses are similar to the driver and modulator properties previously identified for thalamic and thalamocortical circuitry, suggesting that the same classification may extend to corticocortical inputs and have an implication for the functional organization of corticocortical circuits.
Collapse
Affiliation(s)
- Elise N Covic
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
31
|
Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A. Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity. Front Syst Neurosci 2011; 5:4. [PMID: 21629708 PMCID: PMC3100672 DOI: 10.3389/fnsys.2011.00004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 11/13/2022] Open
Abstract
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread.
Collapse
Affiliation(s)
- Frédéric Chavane
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Mitchell DE, Timney B. Postnatal Development of Function in the Mammalian Visual System. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
van Kleef JP, Cloherty SL, Ibbotson MR. Complex cell receptive fields: evidence for a hierarchical mechanism. J Physiol 2010; 588:3457-70. [PMID: 20660567 DOI: 10.1113/jphysiol.2010.191452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Simple cells in the primary visual cortex have segregated ON and OFF subregions in their receptive fields, while complex cells have overlapping ON and OFF subregions. These two cell types form the extremes at each end of a continuum of receptive field types. Hubel and Wiesel in 1962 suggested a hierarchical scheme of processing whereby spatially offset simple cells drive complex cells. Simple and complex cells are often classified by their responses to moving sine wave gratings: simple cells have oscillatory responses while complex cells produce unmodulated responses. Here, using moving gratings as stimuli, we show that a significant number of cells that display low levels of response modulation at high contrasts demonstrate high levels of response modulation at low contrasts. Most often a drifting low contrast grating generates a large phasic response at the fundamental frequency of the grating (F(1)) and a smaller but significant phasic response that is approximately 180 deg out-of-phase with the F(1) component. We present several models capable of capturing the effects of stimulus contrast on complex cell responses. The model that best reproduces our experimental results is a variation of the classical hierarchical model. In our model several spatially offset simple cells provide input to a complex cell, with each simple cell exhibiting a different contrast response function. At low contrasts only one of these simple cells is sufficiently excited to reveal its receptive field properties. As contrast is increased additional spatially offset simple cells with higher contrast thresholds add their responses to the overall spiking activity.
Collapse
Affiliation(s)
- Joshua P van Kleef
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
34
|
Abstract
It is generally accepted that in mammals visual information is sent to the brain along functionally specialized parallel pathways, but whether the mouse visual system uses similar processing strategies is not known. It is important to resolve this issue because the mouse brain provides a tractable system for developing a cellular and molecular understanding of disorders affecting spatiotemporal visual processing. We have used single-unit recordings in mouse primary visual cortex to study whether individual neurons are more sensitive to one set of sensory cues than another. Our quantitative analyses show that neurons with short response latencies have low spatial acuity and high sensitivity to contrast, temporal frequency, and speed, whereas neurons with long latencies have high spatial acuity, low sensitivities to contrast, temporal frequency, and speed. These correlations suggest that neurons in mouse V1 receive inputs from a weighted combination of parallel afferent pathways with distinct spatiotemporal sensitivities.
Collapse
|
35
|
Variability of visual responses of superior colliculus neurons depends on stimulus velocity. J Neurosci 2010; 30:3199-209. [PMID: 20203179 DOI: 10.1523/jneurosci.3250-09.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate. In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data. Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new feature distinguishing these two pathways.
Collapse
|
36
|
Abstract
AbstractThe cerebral cortex is a rich and diverse structure that is the basis of intelligent behavior. One of the deepest mysteries of the function of cortex is that neural processing times are only about one hundred times as fast as the fastest response times for complex behavior. At the very least, this would seem to indicate that the cortex does massive amounts of parallel computation.This paper explores the hypothesis that an important part of the cortex can be modeled as a connectionist computer that is especially suited for parallel problem solving. The connectionist computer uses a special representation, termed value unit encoding, that represents small subsets of parameters in a way that allows parallel access to many different parameter values. This computer can be thought of as computing hierarchies of sensorimotor invariants. The neural substrate can be interpreted as a commitment to data structures and algorithms that compute invariants fast enough to explain the behavioral response times. A detailed consideration of this model has several implications for the underlying anatomy and physiology.
Collapse
|
37
|
Connectionism: There's something to it. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00020781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
Abstract
AbstractThis paper presents a general computational treatment of how mammals are able to deal with visual objects and environments. The model tries to cover the entire range from behavior and phenomenological experience to detailed neural encodings in crude but computationally plausible reductive steps. The problems addressed include perceptual constancies, eye movements and the stable visual world, object descriptions, perceptual generalizations, and the representation of extrapersonal space.The entire development is based on an action-oriented notion of perception. The observer is assumed to be continuously sampling the ambient light for information of current value. The central problem of vision is taken to be categorizing and locating objects in the environment. The critical step in this process is the linking of visual information to symbolic object descriptions; this is calledindexing, from the analogy of identifying a book from index terms. The system must also identifysituationsand use this knowledge to guide movement and other actions in the environment. The treatment focuses on the different representations of information used in the visual system.The four representational frames capture information in the following forms: retinotopic, head-based, symbolic, and allocentric. The functional roles of the four frames, the communication among them, and their suggested neurophysiological realization constitute the core of the paper. The model is perforce crude, but appears to be consistent with all relevant findings.
Collapse
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Kupersmith MJ, Nelson JI. Preserved visual evoked potential in infancy cortical blindness: Relationship to blindsight. Neuroophthalmology 2009. [DOI: 10.3109/01658108608997332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|