1
|
Herrero Y, Velázquez C, Pascuali N, May M, Abramovich D, Scotti L, Parborell F. Resveratrol alleviates doxorubicin-induced damage in mice ovary. Chem Biol Interact 2023; 376:110431. [PMID: 36925030 DOI: 10.1016/j.cbi.2023.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
While oocytes and embryos cryopreservation can favor some patients with cancer-induced infertility to achieve pregnancy, the development of effective therapeutic strategies to preserve ovarian function during chemotherapy would be a significant advantage. The aim of the present study is to analyze whether Resveratrol treatment (Res) can preserve ovarian function from doxorubicin (Doxo)-induced gonadotoxicity using a mice model of premature ovarian failure. Res (7 and 15 mg/kg) increased the percentage of primary and antral follicles whilst decreasing the percentage of atretic follicles compared to Doxo alone. Res preserved the number of primordial follicles compared with those in the Doxo group but they did not change from those in the control group. Res treatment increased the number of AMH positive follicles compared to Doxo alone. Res increased proliferation index in follicular cells and reduced the DNA damage and apoptosis in preantral and early antral follicles compared to Doxo alone. Additionally, Doxo administration caused a severe endothelial damage and affected microvasculature stability in the ovary. However, Res was able to increase the recruitment of pericytes and smooth muscle cells in the Doxo-treated group. We also found that Res increased the expression of VEGF compared to Doxo alone. By H&E staining, Doxo-treated mice demonstrated endometrial alterations compared to controls, affecting both epithelial and stromal compartments. Nonetheless, Res restored the architecture of uterine tissue. Moreover, we also showed that Res administration is able to maintain antioxidant defenses through the increase of SOD expression in the Doxo-induced POF model. In conclusion, Res administration prior to and during Doxo treatment might serve as a noninvasive and low-cost protocol to preserve ovarian function in female cancer survivors.
Collapse
Affiliation(s)
- Yamila Herrero
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Candela Velázquez
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA-UNSADA-CONICET), San Antonio de Areco, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147:103363. [PMID: 34450435 DOI: 10.1016/j.jri.2021.103363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Despite being rare, primary ovarian insufficiency (POI) is a significant cause of infertility and deficiency of ovarian hormone in women. Several health risks are also associated with POI, which include dry eye syndrome, reduced density of bones and enhanced fracture risks, troublesome menopausal symptoms, early development of cardiovascular disease, and psychological effects such as declined cognition, reduced perceived psychological support, anxiety, and depression. Replacing premenopausal levels of ovarian sex steroids through proper hormone replacement therapy could improve the quality of life for POI women and ameliorate related health risks. Herein, POI and its complications, in addition to hormone replacement therapies, which are safe and effective, are discussed. It is proposed that the use of HRT) Hormone replacement therapy (formulations which mimic normal production of ovarian hormones could reduce POI-associated morbidity rates if they are continued by the age 50, which is approximately the natural age of menopause. Particular populations of POI women are also addressed, which include those with enhanced risk of ovarian or breast cancer, those with Turner syndrome, those approaching natural menopause, and those who are breastfeeding. It is generally predicted that stem cell-based therapies would be both safe and effective. In fact, several types of cells have been described as safe, though their effectiveness and therapeutic application are yet to be defined. Several factors exist which could affect the results of treatment, such as cell handling, ex-vivo preparation strategies, variations in tissue of origin, potency, and immunocompatibility. Accordingly, cell types potentially effective in regenerative medicine could be recognized. Notably, products of MSCs from various sources of tissues show different levels of regenerative capabilities. The ultimate focus of the review is on adipose tissue-derive MCSs (ADMSCs), which possess exceptional features such as general availability, great ability to proliferate and differentiate, immunomodulatory capabilities, and low immunogenicity.
Collapse
Affiliation(s)
- Narges Nouri
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
3
|
Melatonin and Fertoprotective Adjuvants: Prevention against Premature Ovarian Failure during Chemotherapy. Int J Mol Sci 2017; 18:ijms18061221. [PMID: 28590419 PMCID: PMC5486044 DOI: 10.3390/ijms18061221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
Premature ovarian failure is one of the side effects of chemotherapy in pre-menopausal cancer patients. Preservation of fertility has become increasingly important in improving the quality of life of completely recovered cancer patients. Among the possible strategies for preserving fertility such as ovarian tissue cryopreservation, co-treatment with a pharmacological adjuvant is highly effective and poses less of a burden on the human body. Melatonin is generally produced in various tissues and acts as a universally acting antioxidant in cells. Melatonin is now more widely used in various biological processes including treating insomnia and an adjuvant during chemotherapy. In this review, we summarize the information indicating that melatonin may be useful for reducing and preventing premature ovarian failure in chemotherapy-treated female patients. We also mention that many adjuvants other than melatonin are developed and used to inhibit chemotherapy-induced infertility. This information will give us novel insights on the clinical use of melatonin and other agents as fertoprotective adjuvants for female cancer patients.
Collapse
|
4
|
Mahajan N. Fertility preservation in female cancer patients: An overview. J Hum Reprod Sci 2015; 8:3-13. [PMID: 25838742 PMCID: PMC4381379 DOI: 10.4103/0974-1208.153119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/06/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022] Open
Abstract
Fertility preservation is becoming increasingly important to improve the quality of life in cancer survivors. Despite guidelines suggesting that discussion of fertility preservation should be done prior to starting cancer therapies, there is a lack of implementation in this area. A number of techniques are available for fertility preservation, and they can be used individually or together in the same patient to maximize efficiency. Oocyte and embryo cryopreservation are now established techniques but have their limitations. Ovarian tissue cryopreservation though considered experimental at present, has a wider clinical application and the advantage of keeping the fertility window open for a longer time. Both chemotherapy and radiotherapy have a major impact on reproductive potential and fertility preservation procedures should be carried out prior to these treatments. The need for fertility preservation has to be weighed against morbidity and mortality associated with cancer. There is thus a need for a multidisciplinary collaboration between oncologists and reproductive specialists to improve awareness and availability.
Collapse
Affiliation(s)
- Nalini Mahajan
- Department of Reproductive Medicine, Nova IVI Fertilit, New Delhi, India
| |
Collapse
|
5
|
Roness H, Kalich-Philosoph L, Meirow D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum Reprod Update 2014; 20:759-74. [PMID: 24833728 DOI: 10.1093/humupd/dmu019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. METHODS This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. RESULTS Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. CONCLUSIONS Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to demonstrate that co-treatment with these agents will not interfere with the anti-cancer activity of the chemotherapy drugs, or produce genetically comprised embryos.
Collapse
Affiliation(s)
- Hadassa Roness
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Lital Kalich-Philosoph
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel The Safdie Institute for AIDS and Immunology Research, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Ramat-Gan 52900, Israel
| | - Dror Meirow
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Husseinzadeh N, Husseinzadeh HD. Preservation of Fertility in Female Cancer Patients Desiring Future Child Bearing; What is Available and What can be Offered. World J Oncol 2013; 4:1-7. [PMID: 29147324 PMCID: PMC5649913 DOI: 10.4021/wjon616w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2013] [Indexed: 11/03/2022] Open
Abstract
The aim of this review is to present an overview of available methods for preservation of ovarian function and fertility in female cancer patients who desire to maintain their child-bearing capacity for future pregnancies. A Medline search was conducted. Published articles from American and European studies from 1976 to present were reviewed. The effect of cancer treatment on the ovary, as well as different methods of fertility preservation and their reproductive outcomes are presented. Pregnancy rates vary according to the type of primary malignancy, stage of disease, method of fertility preservation (for example, hormonal therapy, cryopreservation, fertility-sparing surgery), and other confounding factors such as the patient's age, reproductive capacity, status of partnership, and genetic disposition. The highest rates of successful pregnancy were observed with embryo cryopreservation. Today, higher cure rates and longer survival are a result of earlier cancer diagnosis and treatment. In conjunction with the advances in assisted reproduction, the preservation of ovarian function and fertility is a major part of multidisciplinary care that should be offered to any young female patient with cancer. Fertility preservation in young cancer patients raises a number of ethical issues particularly regarding standard versus experimental therapies, and long-term financial cost.
Collapse
Affiliation(s)
- Nader Husseinzadeh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Cincinnati, 231 Albert Sabin Way. Cincinnati, Ohio 45267, USA
| | - Holleh D Husseinzadeh
- Taussig Cancer Center, Cleveland Clinic Foundation. 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
7
|
Maltaris T, Weigel M, Dittrich R. Cancer and fertility preservation in females: where we stand and where we are heading. Expert Rev Endocrinol Metab 2009; 4:79-89. [PMID: 30934375 DOI: 10.1586/17446651.4.1.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is estimated that, in 2010, one in every 250 adults will be a childhood cancer survivor. This review discusses the impact of current cancer treatment on fertility potential and the assisted-reproduction innovations available today for the most common cancers in young women. As the emerging discipline of fertility preservation is steadily attracting increasing interest, developments in the near future promise to be very exciting. However, in everyday routine work, better interdisciplinary cooperation between gynecological and pediatric oncologists, surgeons, immunologists and endocrinologists is necessary so that individualized options for fertility preservation can be offered in advance of surgical procedures or cancer treatments.
Collapse
Affiliation(s)
- Theodoros Maltaris
- a Department of Obstetrics and Gynecology, Leopoldina Academic Hospital, 97421, Schweinfurt, Germany.
| | - Michael Weigel
- b Department of Obstetrics and Gynecology, Leopoldina Academic Hospital, Schweinfurt, Germany.
| | - Ralf Dittrich
- c Department of Obstetrics and Gynecology, University-Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
8
|
Eichenlaub-Ritter U, Adler ID, Carere A, Pacchierotti F. Gender differences in germ-cell mutagenesis and genetic risk. ENVIRONMENTAL RESEARCH 2007; 104:22-36. [PMID: 17156773 DOI: 10.1016/j.envres.2006.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Current international classification systems for chemical mutagens are hazard-based rather than aimed at assessing risks quantitatively. In the past, germ-cell tests have been mainly performed with a limited number of somatic cell mutagens, and rarely under conditions aimed at comparing gender-specific differences in susceptibility to mutagen exposures. There are profound differences in the genetic constitution, and in hormonal, structural, and functional aspects of differentiation and control of gametogenesis between the sexes. A critical review of the literature suggests that these differences may have a profound impact on the relative susceptibility, stage of highest sensitivity and the relative risk for the genesis of gene mutation, as well as structural and numerical chromosomal aberrations in male and female germ cells. Transmission of germ-cell mutations to the offspring may also encounter gender-specific influences. Gender differences in susceptibility to chemically derived alterations in imprinting patterns may pose a threat for the health of the offspring and may also be transmitted to future generations. Recent reports on different genetic effects from high acute and from chronic low-dose exposures challenge the validity of conclusions drawn from standard methods of mutagenicity testing. In conclusion, research is urgently needed to identify genetic hazards for a larger range of chemical compounds, including those suspected to disturb proper chromosome segregation. Alterations in epigenetic programming and their health consequences will have to be investigated. More attention should be paid to gender-specific genetic effects. Finally, the database for germ-cell mutagens should be enlarged using molecular methodologies, and genetic epidemiology studies should be performed with these techniques to verify human genetic risk.
Collapse
|
9
|
Pacchierotti F, Adler ID, Eichenlaub-Ritter U, Mailhes JB. Gender effects on the incidence of aneuploidy in mammalian germ cells. ENVIRONMENTAL RESEARCH 2007; 104:46-69. [PMID: 17292877 DOI: 10.1016/j.envres.2006.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/01/2006] [Accepted: 12/03/2006] [Indexed: 05/13/2023]
Abstract
Aneuploidy occurs in 0.3% of newborns, 4% of stillbirths, and more than 35% of all human spontaneous abortions. Human gametogenesis is uniquely and gender-specific susceptible to errors in chromosome segregation. Overall, between 1% and 4% of sperm and as many as 20% of human oocytes have been estimated by molecular cytogenetic analysis to be aneuploid. Maternal age remains the paramount aetiological factor associated with human aneuploidy. The majority of extra chromosomes in trisomic offspring appears to be of maternal origin resulting from nondisjunction of homologous chromosomes during the first meiotic division. Differences in the recombination patterns between male and female meiosis may partly account for the striking gender- and chromosome-specific differences in the genesis of human aneuploidy, especially in aged oocytes. Nondisjunction of entire chromosomes during meiosis I as well as premature separation of sister chromatids or homologues prior to meiotic anaphase can contribute to aneuploidy. During meiosis, checkpoints at meiotic prophase and the spindle checkpoint at M-phase can induce meiotic arrest and/or cell death in case of disturbances in pairing/recombination or spindle attachment of chromosomes. It has been suggested that gender differences in aneuploidy may result from more permissive checkpoints in females than males. Furthermore, age-related loss of chromosome cohesion in oocytes as a cause of aneuploidy may be female-specific. Comparative data about the susceptibility of human male and female germ cells to aneuploidy-causing chemicals is lacking. Increases of aneuploidy frequency in sperm have been shown after exposure to therapeutic drugs, occupational agents and lifestyle factors. Conversely, data on oocyte aneuploidy caused by exogenous agents is limited because of the small numbers of oocytes available for analysis combined with potential maternal age effects. The vast majority of animal studies on aneuploidy induction in germ cells represent cause and effect data. Specific studies designed to evaluate possible gender differences in induction of germ cell aneuploidy have not been found. However, the comparison of rodent data available from different laboratories suggests that oocytes are more sensitive than male germ cells when exposed to chemicals that effect the meiotic spindle. Only recently, in vitro experiments, analyses of transgenic animals and knockdown of expression of meiotic genes have started to address the molecular mechanisms underlying chromosome missegregation in mammalian germ cells whereby striking differences between genders could be shown. Such information is needed to clarify the extent and the mechanisms of gender effects, including possible differential susceptibility to environmental agents.
Collapse
Affiliation(s)
- F Pacchierotti
- Section of Toxicology and Biomedical Sciences, ENEA CR Casaccia, Rome, Italy
| | | | | | | |
Collapse
|
10
|
Maltaris T, Seufert R, Fischl F, Schaffrath M, Pollow K, Koelbl H, Dittrich R. The effect of cancer treatment on female fertility and strategies for preserving fertility. Eur J Obstet Gynecol Reprod Biol 2006; 130:148-55. [PMID: 16979280 DOI: 10.1016/j.ejogrb.2006.08.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/21/2006] [Accepted: 08/16/2006] [Indexed: 12/31/2022]
Abstract
Aggressive chemotherapy and radiotherapy in young patients with cancer has greatly enhanced the life expectancy of these patients, but these treatments often cause infertility because of the massive destruction of the ovarian reserve resulting in premature ovarian failure (POF). This review focuses on the effect of cancer treatments on fertility and on the various surgical and assisted-reproduction innovations that are available to provide the patient with the option of future pregnancies. As the emerging discipline of fertility preservation is steadily attracting increasing interest, developments in the near future promise to be very exciting. However, in everyday routine work, better interdisciplinary cooperation between gynecological and pediatric oncologists, surgeons, immunologists and endocrinologists is necessary so that individualized options for fertility preservation can be offered in advance of surgical procedures or cancer treatments. GnRH analog treatment can preserve fertility in some patients, but not in all. At present, cryopreservation of ovarian tissue appears as a very promising method of providing the cancer patient with a realistic chance of preserving fertility-a prospect that is also extremely important to patients for psychological reasons.
Collapse
Affiliation(s)
- Theodoros Maltaris
- Department of Obstetrics and Gynecology, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Maltaris T, Koelbl H, Seufert R, Kiesewetter F, Beckmann MW, Mueller A, Dittrich R. Gonadal damage and options for fertility preservation in female and male cancer survivors. Asian J Androl 2006; 8:515-33. [PMID: 16847527 DOI: 10.1111/j.1745-7262.2006.00206.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is estimated that in 2010, 1 in every 250 adults will be a childhood cancer survivor. Today, oncological surgery, radiotherapy and chemotherapy achieve relatively high rates of remission and long-term survival, yet are often detrimental to fertility. Quality of life is increasingly important to long-term survivors of cancer, and one of the major quality-of-life issues is the ability to produce and raise normal children. Developments in the near future in the emerging field of fertility preservation in cancer survivors promise to be very exciting. This article reviews the published literature, discusses the effects of cancer treatment on fertility and presents the options available today thanks to advances in assisted-reproduction technology for maintaining fertility in male and female patients undergoing this type of treatment. The various diagnostic methods of assessing the fertility potential and the efficacy of in vitro fertilization (IVF) after cancer treatment are also presented.
Collapse
Affiliation(s)
- Theodoros Maltaris
- Department of Obstetrics and Gynecology, Johannes Gutenburg University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mailhes JB, Marchetti F. Mechanisms and chemical induction of aneuploidy in rodent germ cells. Cytogenet Genome Res 2005; 111:384-91. [PMID: 16192721 DOI: 10.1159/000086916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/07/2005] [Indexed: 11/19/2022] Open
Abstract
The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be identified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.
Collapse
Affiliation(s)
- J B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | |
Collapse
|
13
|
Culic V, Culic S, Reisic B. "Two hits" in utero? MEDICAL AND PEDIATRIC ONCOLOGY 2003; 40:267-8. [PMID: 12555263 DOI: 10.1002/mpo.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Mailhes JB, Hilliard C, Lowery M, London SN. MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes. CELL & CHROMOSOME 2002; 1:2. [PMID: 12437781 PMCID: PMC149371 DOI: 10.1186/1475-9268-1-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 10/08/2002] [Indexed: 12/16/2022]
Abstract
BACKGROUND: Although chromosome missegregation during oocyte maturation (OM) is a significant contributor to human morbidity and mortality, very little is known about the causes and mechanisms of aneuploidy. Several investigators have proposed that temporal perturbations during OM predispose oocytes to aberrant chromosome segregation. One approach for testing this proposal is to temporarily inhibit the activity of protein proteolysis during OM. We used the reversible proteasome inhibitor MG-132 to transiently perturb the temporal sequence of events during OM and subsequently analyzed mouse metaphase II (MII) for cytogenetic abnormalities. The transient inhibition of proteasome activity by MG-132 resulted in elevated levels of oocytes containing extra chromatids and chromosomes. RESULTS: The transient inhibition of proteasome-mediated proteolysis during OM by MG-132 resulted in dose-response delays during OM and elevated levels of aneuploid MII oocytes. Oocytes exposed in vitro to MG-132 exhibited greater delays during metaphase I (MI) as demonstrated by significantly (p < 0.01) higher levels of MI arrested oocytes and lower frequencies of premature sister chromatid separation in MII oocytes. Furthermore, the proportions of MII oocytes containing single chromatids and extra chromosomes significantly (p < 0.01) increased with MG-132 dosage. CONCLUSIONS: These data suggest that the MG-132-induced transient delay of proteasomal activity during mouse OM in vitro predisposed oocytes to abnormal chromosome segregation. Although these findings support a relationship between disturbed proteasomal activity and chromosome segregation, considerable additional data are needed to further investigate the roles of proteasome-mediated proteolysis and other potential molecular mechanisms on chromosome segregation during OM.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology Louisiana State University Health Sciences Center, P.O. Box 33932, Shreveport, Louisiana 71130 USA
| | - Colette Hilliard
- Department of Obstetrics and Gynecology Louisiana State University Health Sciences Center, P.O. Box 33932, Shreveport, Louisiana 71130 USA
| | - Mary Lowery
- Department of Pathology, Louisiana State University Health Sciences Center, P.O. Box 33932, Shreveport, Louisiana 71130 USA
| | - Steve N London
- Department of Obstetrics and Gynecology Louisiana State University Health Sciences Center, P.O. Box 33932, Shreveport, Louisiana 71130 USA
| |
Collapse
|
15
|
Dode MA, Adona PR. Developmental capacity of Bos indicus oocytes after inhibition of meiotic resuption by 6-dimethylaminopurine. Anim Reprod Sci 2001; 65:171-80. [PMID: 11267797 DOI: 10.1016/s0378-4320(00)00207-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several reports have suggested that a treatment before in vitro maturation might improve oocyte competence and increase its developmental potential. Therefore, the objectives of the present study were to establish the kinetics of IVM in Zebu oocytes, to assess the effect of 6-dimethylaminopurine (6-DMAP), a phosphorylation inhibitor, on meiotic resumption, and to verify the developmental potential of the blocked oocytes after removal of the inhibitory conditions. To establish the kinetics of in vitro maturation 1422 oocytes were obtained from Nellore cows ovaries and matured in presence and absence of gonadotropins. Samples of oocytes were taken from culture at 0, 6, 9, 12, 15, 18, 21 and 24h, and the oocytes were fixed, stained and evaluated for nuclear morphology. Germinal vesicle break down (GVBD) occurred between 6 and 12h of culture in both groups. By 21h the majority of the oocytes had reached metaphase II in presence (71%) and absence (62%) of gonadotropins. In order to examine the inhibitory effect of 6-DMAP, 585 oocytes were cultured for 12, 18 and 24h in the presence or absence of 2mM of 6-DMAP. At each time point the oocytes were evaluated for nuclear morphology. To test the reversibility of meiotic inhibition 366 oocytes were incubated for 0, 12, 18 and 24h in the presence of 6-DMAP and then were transferred to the maturation medium and cultured for further 24h. A total of 429 oocytes were used to evaluate the developmental potential after meiotic inhibition. The oocytes were cultured in the presence of 6-DMAP for 0, 12, 18 and 24h, and then were matured, fertilized and cultured in vitro. Culture of bovine oocytes in the presence of 6-DMAP up to 24h completely blocked GVBD with more than 90% of the oocytes at GV stage. The inhibitory effect of 6-DMAP was fully reversible since maturation rates were similar (P>0.05) among all treatment groups. The evaluation of embryo development after various periods of meiotic blockage showed that inhibition, regardless the time period, had no effect (P>0.05) on penetration and cleavage rates. However, the proportion of embryos at blastocyst stage was reduced after inhibition for 12 (20.2%), 18 (20.1%) and 24h (19.0%) compared with the control group (35.6%). 6-DMAP has a reversible effect on maintenance of meiotic arrest, but reduced further embryo development.
Collapse
Affiliation(s)
- M A Dode
- Embrapa Gado de Corte, Rodovia BR 262 km 4, Caixa Postal 154, CEP, Campo Grande, MS, Brazil.
| | | |
Collapse
|
16
|
Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J, Wyrobek AJ. Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci U S A 2001; 98:3952-7. [PMID: 11274416 PMCID: PMC31160 DOI: 10.1073/pnas.061404598] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2000] [Indexed: 11/18/2022] Open
Abstract
Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4',6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.
Collapse
Affiliation(s)
- F Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This chapter summarizes the most relevant methodologies available for evaluation of cytogenetic damage induced in vivo in mammalian germ cells. Protocols are provided for the following endpoints: numerical and structural chromosome aberrations in secondary oocytes or first-cleavage zygotes, reciprocal translocations in primary spermatocytes, chromosome counting in secondary spermatocytes, numerical and structural chromosome aberrations, and sister chromatid exchanges (SCE) in spermatogonia, micronuclei in early spermatids, aneuploidy in mature sperm. The significance of each methodology is discussed. The contribution of novel molecular cytogenetic approaches to the detection of chromosome damage in rodent germ cells is also considered.
Collapse
Affiliation(s)
- A Russo
- DBSF-Department of Structural and Functional Biology, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
18
|
London SN, Young D, Caldito G, Mailhes JB. Clomiphene citrate-induced perturbations during meiotic maturation and cytogenetic abnormalities in mouse oocytes in vivo and in vitro. Fertil Steril 2000; 73:620-6. [PMID: 10689023 DOI: 10.1016/s0015-0282(99)00549-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine if clomiphene citrate induces temporal perturbations during meiotic maturation and aneuploidy in mouse oocytes. DESIGN A controlled dose study involving mouse oocytes in vivo and in vitro. SETTING Clinical and academic research setting in a university medical center. INTERVENTION(S) Oocytes were obtained after superovulation and from mature follicles. MAIN OUTCOME MEASURE(S) Cytogenetic analysis of oocytes for aneuploidy, premature centromere separation, premature anaphase, and single chromatids, and the frequencies of metaphase I and diploid oocytes. RESULT(S) Clomiphene citrate resulted in a decrease in the number of ovulated oocytes and a significant (P<.05) increase in hyperploidy at 100 mg/kg in vivo. In vitro, 5.0 microg/mL of clomiphene citrate significantly (P<.05) increased hyperploidy and reduced the proportion of metaphase I oocytes. CONCLUSION(S) These findings suggest that clomiphene citrate has the potential for inducing aneuploidy in mouse oocytes both in vivo and in vitro and that the rate of oocyte maturation is altered after clomiphene exposure in vitro. Additional data are needed to support the results of this study.
Collapse
Affiliation(s)
- S N London
- Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
19
|
Mailhes JB, Carabatsos MJ, Young D, London SN, Bell M, Albertini DF. Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Mutat Res 1999; 423:79-90. [PMID: 10029682 DOI: 10.1016/s0027-5107(98)00228-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To increase our understanding about the potential risks of chemically-induced aneuploidy, more information about the various mechanisms of aneuploidy induction is needed, particularly in germ cells. Most chemicals that induce aneuploidy inhibit microtubule polymerization. However, taxol alters microtubule dynamics by enhancing polymerization and stabilizing the polymer fraction. We tested the hypothesis that taxol induces meiotic delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Super-ovulated ICR mice received 0 (control), 2.5, 5.0, and 7.5 mg/kg taxol intraperitoneally immediately after HCG. Females were paired (1:1) with males for 17 h after taxol treatment. Mated females were given colchicine 25 h after taxol and their one-cell zygotes were collected 16 h later. Ovulated oocytes from non-mated females were collected 17 h after taxol. Chromosomes were C-banded for cytogenetic analyses. Oocytes were also collected from another group of similarly treated females for in situ chromatin and microtubule analyses. Taxol significantly (p<0.01) enhanced the proportion of oocytes exhibiting parthenogenetic activation, chromosomes displaced from the meiotic spindle, and sister-chromatid separation. Moreover, 7.5 mg/kg taxol significantly (p<0.01) increased the proportions of metaphase I and diploid oocytes and polyploid zygotes. A significant (p<0.01) dose response for taxol-induced hyperploidy in oocytes and zygotes was found. These results support the hypothesis that taxol-induced meiotic delay and spindle defects contribute to aneuploid mouse oocytes and zygotes.
Collapse
Affiliation(s)
- J B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Medical Center, P.O. Box 33932, Shreveport LA 71130, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Mailhes JB, Young D, Aardema MJ, London SN. Thiabendazole-induced cytogenetic abnormalities in mouse oocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 29:367-371. [PMID: 9212787 DOI: 10.1002/(sici)1098-2280(1997)29:4<367::aid-em4>3.0.co;2-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Of the various classes of human genetic disorders, aneuploidy is the most prevalent. Besides its association with maternal age and its predominant origin during maternal meiosis I, little is known about the etiology of aneuploidy. Although various classes of chemicals have been shown to induce aneuploidy in experimental systems, there is no definitive evidence for the role of chemically induced aneuploidy and adverse human health effects, particularly germ cell effects. Thus, it is important to understand the potential of chemicals for inducing aneuploidy in germ cells. There are conflicting data in the literature about the ability of thiabendazole (TBZ) to induce aneuploidy; therefore, we investigated the potential of TBZ for inducing aneuploidy in oocytes. Superovulated ICR female mice were administered 0, 50, 100, or 150 mg/kg TBZ by intraperitoneal injection. The frequencies and percentages of hyperploid oocytes were 0/472 (0), 2/410 (0.5), 6/ 478 (1.3), and 3/427 (0.7) for control, 50, 100, and 150 mg/kg TBZ, respectively. The difference between controls and the 100 mg/kg dose was statistically significant. Also, the proportions of ovulatory mice and the number of oocytes collected per ovulatory female were reduced in the TBZ groups relative to controls. Based on these results, we conclude that TBZ induces a small, but significant increase in the frequency of aneuploid oocytes at toxic doses that also impair ovulation.
Collapse
Affiliation(s)
- J B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | |
Collapse
|