Abstract
Many nitrosamines are potent mutagens. The rate-limiting step in their in vitro metabolism to mutagens is usually a single enzymatic reaction catalyzed by one or more of the many cytochrome P-450-dependent mixed-function oxidases present in the microsomal cell fraction. Current evidence indicates that this reaction activates nitrosamines to alpha-hydroxynitrosamines, which have half-lives on the order of seconds. This product decomposes to an aldehyde and a much shorter-lived ultimate metabolite which is probably an alkyl diazonium ion or an alkyl carbocation. This may react with DNA leading to premutagenic adducts. Such adducts represent a very small fraction of the ultimate mutagen, with the rest reacting with water to yield the corresponding alcohol. Evidence for this pathway includes (1) the observation of deuterium isotope effects in metabolism and mutagenesis, (2) products (aldehydes, alcohols, and N2) consistent with this pathway, (3) studies on metabolism of nitrosamines using purified cytochrome P-450, (4) formation of DNA adducts such as O6-alkylguanines which are consistent with those expected from the ultimate mutagen, (5) expected products and genotoxic effects of other sources of activated nitrosamines, e.g., alpha-acetoxynitrosamines, alkanediazotates and related compounds. Hydroxylation of nitrosamines at other positions also occurs in vitro (usually to a lesser extent), but these products are generally stable and must be further metabolized to exert mutagenic effects (with the exception of N-nitrosoalkyl(formylmethyl)amines, which are direct-acting mutagens). Because only low percentages of nitrosamines are metabolized in vitro, the contribution to mutagenesis by secondary metabolism is small. In this respect, in vitro metabolism can differ significantly from in vivo metabolism. Bacterial mutagenesis by nitrosamines has most often been studied in Salmonella typhimurium and to a lesser extent E. coli. Mutagenesis by nitrosamines generally requires a source of microsomes (a 9000 X g supernatant fraction is often used), and NADPH. Liver fractions from Aroclor-1254- or PB-induced rodents have been most frequently employed but liver fractions from untreated animals, and homogenates of other organs (lung, kidney, nasal mucosa, and pancreas) have also been utilized. Liver homogenates from humans are generally similar to those from untreated rats in metabolizing nitrosamines to mutagens but large interindividual variations are observed. Mutagenesis is often most effective using a liquid preincubation, a slightly acidic incubation mixture and hamster liver fractions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse