Chakravarti S, Hamilton B, Sussman R. Relationship between cellular RecA protein concentration and untargeted mutagenesis in Escherichia coli.
Mutat Res 1986;
160:179-93. [PMID:
2938000 DOI:
10.1016/0027-5107(86)90127-2]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We measured the production of untargeted mutations in the cI and cII genes of untreated lambda phage undergoing a lytic cycle in UV-irradiated bacterial hosts. As previously shown, treatment with 4 micrograms/ml of rifampicin during post-irradiation incubation inhibited amplification of the RecA protein in these cells. In addition, we observed a decreased mutation rate compared to the untreated, irradiated bacteria. Treatment with 4 micrograms/ml or 8 micrograms/ml rifampicin did not prevent the UV induction of the umuDC operon, as judged by assay of beta-galactosidase activity in a umuC-lacZ fusion strain. In contrast, the UV-induction of beta-galactosidase in the sulA-lacZ fusion strain was decreased by 4 micrograms/ml rifampicin. The inhibition of untargeted mutagenesis by this drug treatment was also observed in a strain constitutive for SOS functions (lexA (Def)) as well as in a RecA-overproducing plasmid strain, suggesting the requirement of other factor(s) in wild-type recA+ cells. An htpR165-carrying strain, that blocks induction of heat-shock proteins, exhibited normal UV-promoted mutagenesis. A correlation was observed between the cellular concentration of RecA protein, increased spontaneously by a temperature shift in a lexA(Ts) strain, and the extent of UV-promoted untargeted mutagenesis. These results suggest a mechanistic role of RecA protein in this process.
Collapse