1
|
Rajabi P, Noori AS, Sargolzaei J. Autism spectrum disorder and various mechanisms behind it. Pharmacol Biochem Behav 2024; 245:173887. [PMID: 39378931 DOI: 10.1016/j.pbb.2024.173887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental condition characterized by a range of social, communicative, and behavioral challenges. This comprehensive review delves into key aspects of ASD. Clinical Overview and genetic features provide a foundational understanding of ASD, highlighting the clinical presentation and genetic underpinnings that contribute to its complexity. We explore the intricate neurobiological mechanisms at play in ASD, including structural and functional differences that may underlie the condition's hallmark traits. Emerging research has shed light on the role of the immune system and neuroinflammation in ASD. This section investigates the potential links between immunological factors and ASD, offering insights into the condition's pathophysiology. We examine how atypical functional connectivity and alterations in neurotransmitter systems may contribute to the unique cognitive and behavioral features of ASD. In the pursuit of effective interventions, this section reviews current therapeutic strategies, ranging from behavioral and educational interventions to pharmacological approaches, providing a glimpse into the diverse and evolving landscape of ASD treatment. This holistic exploration of mechanisms in ASD aims to contribute to our evolving understanding of the condition and to guide the development of more targeted and personalized interventions for individuals living with ASD.
Collapse
Affiliation(s)
- Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
2
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
3
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
4
|
Scrutinizing the molecular, biochemical, and cytogenetic attributes in subjects with Rett syndrome (RTT) and their mothers. Epilepsy Behav 2020; 111:107277. [PMID: 32653844 DOI: 10.1016/j.yebeh.2020.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022]
Abstract
Rett syndrome (RTT) is a stern dominant progressive neurological development disorder linked with X chromosome ranking second for mental slowdown, exclusively in females after few months of birth with normal development and growth period. Genetically any defects in universally expressed methyl-CpG binding protein 2 (MeCP2) transcription regulator gene are considered as radix for RTT in almost all the previous studies. Our study mainly focuses in unraveling the genetic alterations like identifying MeCP2 gene polymorphisms, chromosomal abnormalities, or X-chromosome inactivation (XCI) as underlying cause of RTT in prototypes sorted through Diagnostic and Statistical Manual of Mental Disorders-Text Revised (DSM IV). In addition, we have examined the probable surrogates of brain function disabilities like serotonin, homocysteine (Hcy), calcium, potassium, and lead from blood in both RTT porotypes and their mothers. In our investigation, we have observed varied amino acid substitution of MeCP2 and varied frequency of skewed XCI in RTT prototype. Our study validates that the demonstration of chromosomal analysis, biochemical analysis, and genomic observations helps in concluding RTT condition and can be helpful in providing appropriate treatment and counseling as well as improve the currently available protocol of diagnosis.
Collapse
|
5
|
|
6
|
Sacco R, Lintas C, Persico AM. Autism genetics: Methodological issues and experimental design. SCIENCE CHINA-LIFE SCIENCES 2015; 58:946-57. [PMID: 26335734 DOI: 10.1007/s11427-012-4315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism is a complex neuropsychiatric disorder of developmental origin, where multiple genetic and environmental factors likely interact resulting in a clinical continuum between "affected" and "unaffected" individuals in the general population. During the last two decades, relevant progress has been made in identifying chromosomal regions and genes in linkage or association with autism, but no single gene has emerged as a major cause of disease in a large number of patients. The purpose of this paper is to discuss specific methodological issues and experimental strategies in autism genetic research, based on fourteen years of experience in patient recruitment and association studies of autism spectrum disorder in Italy.
Collapse
Affiliation(s)
- Roberto Sacco
- Department of Child Neuropsychiatry and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, I-00128, Italy.,Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, I-00143, Italy
| | - Carla Lintas
- Department of Child Neuropsychiatry and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, I-00128, Italy.,Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, I-00143, Italy
| | - Antonio M Persico
- Department of Child Neuropsychiatry and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, I-00128, Italy. .,Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, I-00143, Italy.
| |
Collapse
|
7
|
Hranilovic D, Blazevic S, Stefulj J, Zill P. DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects. Autism Res 2015; 9:204-9. [PMID: 26149086 DOI: 10.1002/aur.1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
Disturbed brain and peripheral serotonin homeostasis is often found in subjects with autism spectrum disorder (ASD). The role of the serotonin receptor 2A (HTR2A) in the regulation of central and peripheral serotonin homeostasis, as well as its altered expression in autistic subjects, have implicated the HTR2A gene as a major candidate for the serotonin disturbance seen in autism. Several studies, yielding so far inconclusive results, have attempted to associate autism with a functional SNP -1438 G/A (rs6311) in the HTR2A promoter region, while possible contribution of epigenetic mechanisms, such as DNA methylation, to HTR2A dysregulation in autism has not yet been investigated. In this study, we compared the mean DNA methylation within the regulatory region of the HTR2A gene between autistic and control subjects. DNA methylation was analysed in peripheral blood leukocytes using bisulfite conversion and sequencing of the HTR2A region containing rs6311 polymorphism. Autistic subjects of rs6311 AG genotype displayed higher mean methylation levels within the analysed region than the corresponding controls (P < 0.05), while there was no statistically significant difference for AA and GG carriers. Our study provides preliminary evidence for increased HTR2A promoter methylation in leukocytes of a portion of adult autistic subjects, indicating that epigenetic mechanisms might contribute to HTR2A dysregulation observed in individuals with ASD.
Collapse
Affiliation(s)
- Dubravka Hranilovic
- Department of Animal Physiology, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sofia Blazevic
- Department of Animal Physiology, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasminka Stefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia.,Catholic University of Croatia, Zagreb, Croatia
| | - Peter Zill
- Division of Psychiatric Genetics and Neurochemistry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
8
|
Jaiswal P, Mohanakumar KP, Rajamma U. Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders. Neurosci Biobehav Rev 2015; 55:413-31. [PMID: 26021727 DOI: 10.1016/j.neubiorev.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits.
Collapse
Affiliation(s)
- Preeti Jaiswal
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India
| | - Kochupurackal P Mohanakumar
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India.
| |
Collapse
|
9
|
Abdelrahman HM, Sherief LM, Alghobashy AA, Abdel Salam SM, Hashim HM, Abdel Fattah NR, Mohamed RH. Association of 5-HT2A receptor gene polymorphisms with gastrointestinal disorders in Egyptian children with autistic disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 36C:485-490. [PMID: 25462508 DOI: 10.1016/j.ridd.2014.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Gastrointestinal disturbances (GID) are frequently reported in children with autism spectrum disorders (ASD). Recently, mounting evidence suggests that there may be a genetic link for autism with gastrointestinal disturbances. We aimed to investigate whether there were any association between the -1438A/G, 102T/C and His452Tyr polymorphisms of the serotonin 2A receptor gene (5-HT2A) in Egyptian children with ASD and GID. Eighty children with autistic disorder and 100 healthy control children were examined. -1438A/G, 102T/C and His452Tyr polymorphisms of 5-HT2A were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Significant increase of the G allele and the GG genotype of the -1438A/G polymorphism was observed in children with autism than control, but there were no significant differences in the frequencies either of the 102T/C genotype or His452Tyr genotype between the two groups. There was a significant increase of homozygote A allele of the -1438A/G and CC genotype of the 102T/C polymorphism in ASD children with GID. This study supports the possible involvement of the 5-HT2A receptor in the development of ASD and associated GID.
Collapse
Affiliation(s)
| | - Laila M Sherief
- Pediatrics Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ashgan A Alghobashy
- Pediatrics Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sanaa M Abdel Salam
- Pediatrics Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haitham M Hashim
- Psychiatry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Randa H Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Kałużna-Czaplińska J, Żurawicz E, Jóźwik J. Chromatographic techniques coupled with mass spectrometry for the determination of organic acids in the study of autism. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:128-35. [DOI: 10.1016/j.jchromb.2013.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
|
11
|
van Elst K, Bruining H, Birtoli B, Terreaux C, Buitelaar JK, Kas MJ. Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders. Neurosci Biobehav Rev 2014; 45:369-78. [PMID: 25025657 DOI: 10.1016/j.neubiorev.2014.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
The last decades have shown a spectacular and partially unexplained rise in the prevalence of autism spectrum disorders (ASD). This rise in ASD seems to parallel changes in the dietary composition of fatty acids. This change is marked by the replacement of cholesterol by omega-6 (n-6) fatty acids in many of our food products, resulting in a drastically increased ratio of omega-6/omega-3 (n-6/n-3). In this context, we review the available knowledge on the putative role of fatty acids in neurodevelopment and describe how disturbances in n-6/n-3 ratios may contribute to the emergence of ASDs. Both clinical and experimental research is discussed. We argue that a change in the ratio of n-6/n-3, especially during early life, may induce developmental changes in brain connectivity, synaptogenesis, cognition and behavior that are directly related to ASD.
Collapse
Affiliation(s)
- Kim van Elst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jan K Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Smith RM, Banks W, Hansen E, Sadee W, Herman GE. Family-based clinical associations and functional characterization of the serotonin 2A receptor gene (HTR2A) in autism spectrum disorder. Autism Res 2014; 7:459-67. [PMID: 24753316 DOI: 10.1002/aur.1383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 03/24/2014] [Indexed: 01/03/2023]
Abstract
The serotonin 2A receptor gene (HTR2A) harbors two functional single nucleotide polymorphisms (SNPs) that are frequent in populations of African and European descent; rs6311, which affects mRNA expression, and rs6314, which changes the amino acid sequence of the encoded protein and affects the signaling properties of the receptor. Multiple clinical associations support a role for these SNPs in cognitive and neuropsychiatric phenotypes, although studies in autism spectrum disorder (ASD) remain equivocal. Here, we tested transmission disequilibrium of rs6311 and rs6314 in a cohort of 158 ASD trios (simplex and multiplex), observing significant under-transmission of the minor "A" allele of rs6311 to offspring with ASD (permuted P = 0.0004). Consistent with our previous findings in the dorsolateral prefrontal cortex of unaffected individuals, rs6311/A decreases expression of HTR2A mRNA with an extended 5' untranslated region (UTR) in the frontopolar cortex in brain samples from 54 ASD patients and controls. Interpreting the clinical results in the context of our mRNA expression analysis, we speculate that any risk associated with rs6311 is conferred by greater expression of the long 5'UTR mRNA isoform. The current study corroborates earlier associations between rs6311 and ASD in a family study, supporting the hypothesis that rs6311 plays a modulatory role in ASD risk.
Collapse
Affiliation(s)
- Ryan M Smith
- Department of Pharmacology, OSU College of Medicine Center for Pharmacogenomics, The Ohio State University, Columbus, Ohio
| | | | | | | | | |
Collapse
|
13
|
Wassink TH, Hazlett HC, Davis LK, Reiss AL, Piven J. Testing for association of the monoamine oxidase A promoter polymorphism with brain structure volumes in both autism and the fragile X syndrome. J Neurodev Disord 2014; 6:6. [PMID: 24669826 PMCID: PMC3987046 DOI: 10.1186/1866-1955-6-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 03/05/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Autism and the fragile X syndrome (FXS) are related to each other genetically and symptomatically. A cardinal biological feature of both disorders is abnormalities of cerebral cortical brain volumes. We have previously shown that the monoamine oxidase A (MAOA) promoter polymorphism is associated with cerebral cortical volumes in children with autism, and we now sought to determine whether the association was also present in children with FXS. METHODS Participants included 47 2-year-old Caucasian boys with FXS, some of whom also had autism, as well as 34 2-year-old boys with idiopathic autism analyzed in a previous study. The MAOA promoter polymorphism was genotyped and tested for relationships with gray and white matter volumes of the cerebral cortical lobes and cerebro-spinal fluid volume of the lateral ventricles. RESULTS MAOA genotype effects in FXS children were the same as those previously observed in idiopathic autism: the low activity MAOA promoter polymorphism allele was associated with increased gray and white matter volumes in all cerebral lobes. The effect was most pronounced in frontal lobe gray matter and all three white matter regions: frontal gray, F = 4.39, P = 0.04; frontal white, F = 5.71, P = 0.02; temporal white, F = 4.73, P = 0.04; parieto-occipital white, F = 5.00, P = 0.03. Analysis of combined FXS and idiopathic autism samples produced P values for these regions <0.01 and effect sizes of approximately 0.10. CONCLUSIONS The MAOA promoter polymorphism is similarly associated with brain structure volumes in both idiopathic autism and FXS. These data illuminate a number of important aspects of autism and FXS heritability: a genetic effect on a core biological trait of illness, the specificity/generalizability of the genetic effect, and the utility of examining individual genetic effects on the background of a single gene disorder such as FXS.
Collapse
Affiliation(s)
- Thomas H Wassink
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1-191 MEB, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
14
|
Żurawicz E, Kałużna-Czaplińska J, Rynkowski J. Chromatographic methods in the study of autism. Biomed Chromatogr 2013; 27:1273-9. [PMID: 23605782 DOI: 10.1002/bmc.2911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022]
Abstract
Research into biomarkers of autism is a new means of medical intervention in this disease. Chromatographic techniques, especially coupled with mass spectrometry, are widely used in determination of biomarkers and assessment of effectiveness of autism therapy owing to their sensitivity and selectivity. Among the chromatographic techniques gas chromatography and liquid chromatography, especially high-performance liquid chromatography, have found application in clinical trials. The high-performance liquid chromatography technique allows an analysis of liquid samples with a wide range of molecules, small and large, providing an opportunity to perform advanced assays within a short time frame. Gas chromatography with the appropriate preparation of samples (gaseous and liquid) and a selection of analysis conditions enables the separation of thermally stable, volatile and non-volatile organic substances in short runtimes. The chromatographic techniques that are currently used in metabolic studies in autism are designed to identify abnormalities in three areas: the metabolism of neurotransmitters, nutritional and metabolic status and manifestations of oxidative stress. This review presents a necessary theoretical introduction and examples of applications of chromatographic studies of disorder markers in autism.
Collapse
Affiliation(s)
- Ewa Żurawicz
- Institute of General and Ecological Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | | | | |
Collapse
|
15
|
Wang L, Angley MT, Gerber JP, Sorich MJ. A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers 2012; 16:537-52. [PMID: 22022826 DOI: 10.3109/1354750x.2011.598564] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Autism is a complex, heterogeneous neurodevelopmental condition with a strong genetic component potentially impacted by various environmental factors influencing susceptibility. There are no reliable laboratory tests available to confirm an autism diagnosis. OBJECTIVE To examine the published literature and identify putative urinary biomarkers of autism. METHODS A comprehensive literature search was conducted using electronic bibliographic databases. RESULTS Putative autism biomarkers were identified that could be categorized according to the key theories that exist regarding the etiology of autism: gastrointestinal factors, immune dysregulation, heavy metal toxicity, neurotransmitter abnormalities, and oxidative stress. CONCLUSION There is scope for specific urinary biomarkers to be useful for identification of autistic metabolic phenotypes.
Collapse
Affiliation(s)
- Lv Wang
- Sansom Institute for Health Research, University of South Australia, Adelaide
| | | | | | | |
Collapse
|
16
|
Anderson GM, Hertzig ME, McBride PA. Brief Report: Platelet-Poor Plasma Serotonin in Autism. J Autism Dev Disord 2011; 42:1510-4. [DOI: 10.1007/s10803-011-1371-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Hranilovic D, Blazevic S, Babic M, Smurinic M, Bujas-Petkovic Z, Jernej B. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder. Psychiatry Res 2010; 178:556-8. [PMID: 20471101 DOI: 10.1016/j.psychres.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 04/04/2010] [Indexed: 11/19/2022]
Abstract
Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.
Collapse
Affiliation(s)
- Dubravka Hranilovic
- Department of Animal Physiology, Faculty of Science, University of Zagreb, and Psychiatric Hospital for Children and Youth, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
18
|
Comportements répétés et restreints (C2R) dans les troubles autistiques : évaluation clinique. Encephale 2009; 35:340-6. [DOI: 10.1016/j.encep.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 05/13/2008] [Indexed: 11/21/2022]
|
19
|
Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders. J Autism Dev Disord 2008; 39:97-104. [DOI: 10.1007/s10803-008-0604-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
20
|
Altamura C, Dell'Acqua ML, Moessner R, Murphy DL, Lesch KP, Persico AM. Altered Neocortical Cell Density and Layer Thickness in Serotonin Transporter Knockout Mice: A Quantitation Study. Cereb Cortex 2006; 17:1394-401. [PMID: 16905592 DOI: 10.1093/cercor/bhl051] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) plays morphogenetic roles during development, and their alteration could contribute to autism pathogenesis in humans. To further characterize 5-HT's contributions to neocortical development, we assessed the thickness and neuronal cell density of various cerebral cortical areas in serotonin transporter (5-HTT) knockout (ko) mice, characterized by elevated extracellular 5-HT levels. The thickness of layer IV is decreased in 5-HTT ko mice compared with wild-type (wt) mice. The overall effect on cortical thickness, however, depends on the genetic background of the mice. Overall cortical thickness is decreased in many cortical areas of 5-HTT ko mice with a mixed c129-CD1-C57BL/6J background. Instead, 5-HTT ko mice backcrossed into the C57BL/6J background display increases in supragranular and infragranular layers, which compensate entirely for decreased layer IV thickness, resulting in unchanged or even enhanced cortical thickness. Moreover, significant increases in neuronal cell density are found in 5-HTT ko mice with a C57BL/6J background (wt:hz:ko ratio = 1.00:1.04:1.17) but not in the mixed c129-CD1-C57BL/6J 5-HTT ko animals. These results provide evidence of 5-HTT gene effects on neocortical morphology in epistatic interaction with genetic variants at other loci and may model the effect of functional 5-HTT gene variants on neocortical development in autism.
Collapse
Affiliation(s)
- C Altamura
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Via Longoni 83, I-00155 Rome, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Burgess NK, Sweeten TL, McMahon WM, Fujinami RS. Hyperserotoninemia and Altered Immunity in Autism. J Autism Dev Disord 2006; 36:697-704. [PMID: 16614791 DOI: 10.1007/s10803-006-0100-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the most consistent biological findings in autism is elevated whole blood serotonin (5-HT) levels found in about 1/3 of cases. Immune abnormalities are also commonly observed in this disorder. Given 5-HT's role as an immunomodulator, possible connections between 5-HT and immune abnormalities in autism are explored in this review. Areas of focus include hyperserotoninemia and cellular immune function, autoantibodies to 5-HT receptors, and 5-HT's role in autoimmunity. Further research is needed to determine the interactions between neuropsychiatric and immune dysfunction in autism and related disorders.
Collapse
Affiliation(s)
- Nancy K Burgess
- Department of Neurology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA.
| | | | | | | |
Collapse
|
22
|
Tordjman S, Cohen D, Golse B. État des connaissances actuelle et apports des recherches biologiques dans l'autisme. ACTA ACUST UNITED AC 2006. [DOI: 10.3917/cont.025.0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
D'Amelio M, Ricci I, Sacco R, Liu X, D'Agruma L, Muscarella LA, Guarnieri V, Militerni R, Bravaccio C, Elia M, Schneider C, Melmed R, Trillo S, Pascucci T, Puglisi-Allegra S, Reichelt KL, Macciardi F, Holden JJA, Persico AM. Paraoxonase gene variants are associated with autism in North America, but not in Italy: possible regional specificity in gene-environment interactions. Mol Psychiatry 2005; 10:1006-16. [PMID: 16027737 DOI: 10.1038/sj.mp.4001714] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organophosphates (OPs) are routinely used as pesticides in agriculture and as insecticides within the household. Our prior work on Reelin and APOE delineated a gene-environment interactive model of autism pathogenesis, whereby genetically vulnerable individuals prenatally exposed to OPs during critical periods in neurodevelopment could undergo altered neuronal migration, resulting in an autistic syndrome. Since household use of OPs is far greater in the USA than in Italy, this model was predicted to hold validity in North America, but not in Europe. Here, we indirectly test this hypothesis by assessing linkage/association between autism and variants of the paraoxonase gene (PON1) encoding paraoxonase, the enzyme responsible for OP detoxification. Three functional single nucleotide polymorphisms, PON1 C-108T, L55M, and Q192R, were assessed in 177 Italian and 107 Caucasian-American complete trios with primary autistic probands. As predicted, Caucasian-American and not Italian families display a significant association between autism and PON1 variants less active in vitro on the OP diazinon (R192), according to case-control contrasts (Q192R: chi2=6.33, 1 df, P<0.025), transmission/disequilibrium tests (Q192R: TDT chi2=5.26, 1 df, P<0.025), family-based association tests (Q192R and L55M: FBAT Z=2.291 and 2.435 respectively, P<0.025), and haplotype-based association tests (L55/R192: HBAT Z=2.430, P<0.025). These results are consistent with our model and provide further support for the hypothesis that concurrent genetic vulnerability and environmental OP exposure may possibly contribute to autism pathogenesis in a sizable subgroup of North American individuals.
Collapse
Affiliation(s)
- M D'Amelio
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tordjman S, Cohen D, Golse B. Les investigations cliniques et biologiques. PSYCHIATRIE DE L ENFANT 2005. [DOI: 10.3917/psye.481.0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Conroy J, Meally E, Kearney G, Fitzgerald M, Gill M, Gallagher L. Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004; 9:587-93. [PMID: 14708029 DOI: 10.1038/sj.mp.4001459] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of the serotonin transporter (5-HTT) in the development of neuropsychiatric disorders has been widely investigated. Two polymorphisms, an insertion/deletion in the promoter region and a 12 repeat allele in a variable nucleotide tandem repeat (VNTR) in intron 2, drive higher expression of the 5-HTT gene. Four studies have shown nominally significant excess transmission of alleles of the 5-HTT gene in autism, while three studies have reported no excess transmission. This present study investigates the role of 5-HTT in the genetically homogenous Irish population. In all, 84 families were genotyped for five polymorphisms (three SNPs, a VNTR and an in/del). The analysis of allele transmissions using the transmission disequilibrium test (TDT) was undertaken and indicated preferential transmission of the short promoter allele (TDT P-value=0.0334). Linkage disequilibrium between markers was calculated and haplotypes were assessed for excess transmission and odds ratios (ORs) to affected children. A number of haplotypes, especially those involving and surrounding SNP10, showed evidence of association. The ORs ranged from 1.2 to 2.4. The most significant haplotype associated with transmission to affected probands was the SNP10-VNTR-SNP18 haplotype (chi(2)=7.3023, P=0.0069, odds ratio=1.8). This haplotype included the 12 repeat allele of the VNTR, which is associated with increased expression and may play a subtle role in the early development of the brain in affected probands.
Collapse
Affiliation(s)
- J Conroy
- Department of Genetics, Smurfit Institute, Trinity College, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
26
|
Akhondzadeh S, Erfani S, Mohammadi MR, Tehrani-Doost M, Amini H, Gudarzi SS, Yasamy MT. Cyproheptadine in the treatment of autistic disorder: a double-blind placebo-controlled trial. J Clin Pharm Ther 2004; 29:145-50. [PMID: 15068403 DOI: 10.1111/j.1365-2710.2004.00546.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Autism is a childhood-onset disorder of unknown, possibly of multiple aetiologies. The core symptoms of autism are abnormalities in social interaction, communication and behaviour. The involvement of neurotransmitters such as 5-HT has been suggested in neuropsychiatric disorders and particularly in autistic disorder. Increased platelet 5-HT levels were found in 40% of the autistic population, suggesting that hyperserotonaemia may be a pathologic factor in infantile autism. Therefore, it is of interest to assess the efficacy of cyproheptadine, a 5-HT2 antagonist in the treatment of autistic disorder. In this 8-week double-blind, placebo-controlled trial, we assessed the effects of cyproheptadine plus haloperidol in the treatment of autistic disorder. METHODS Children between the ages 3 and 11 years (inclusive) with a DSM IV clinical diagnosis of autism and who were outpatients from a specialty clinic for children at Roozbeh Psychiatric Teaching Hospital were recruited. The children presented with a chief complaint of severely disruptive symptoms related to autistic disorder. Patients were randomly allocated to cyproheptadine + haloperidol (Group A) or haloperidol + placebo (Group B) for an 8-week, double-blind, placebo-controlled study. The dose of haloperidol and cyproheptadine was titrated up to 0.05 and 0.2 mg/kg/day respectively. Patients were assessed by a third-year resident of psychiatry at baseline and after 2, 4, 6 and 8 weeks of starting medication. The primary measure of the outcome was the Aberrant Behaviour Checklist-Community (ABC-C) and the secondary measure of the outcome was the Childhood Autism Rating Scale (relating to people and verbal communication). Side effects and extrapyramidal symptoms were systematically recorded throughout the study and were assessed using a checklist and the Extrapyramidal Symptoms Rating Scale, administered by a resident of psychiatry during weeks 1, 2, 4, 6 and 8. RESULTS The ABC-C and the Childhood Autism Rating Scale scores improved with cyproheptadine. The behaviour of the two treatments was not homogeneous across time (groups-by-time interaction, Greenhouse-Geisser correction; F = 7.30, d.f. = 1.68, P = 0.002; F = 8.21, d.f. = 1.19, P = 0.004 respectively). The difference between the two treatments was significant as indicated by the effect of group, and the between-subjects factor (F = 4.17, d.f. = 1, P = 0.048; F = 4.29, d.f. = 1, P = 0.045 respectively). No significant difference was observed between the two groups in terms of extrapyramidal symptoms (P = 0.23). The difference between the two groups in the frequency of side effects was not significant. CONCLUSION The results suggest that the combination of cyproheptadine with a conventional antipsychotic may be superior to conventional antipsychotic alone for children with autistic disorder. However the results need confirmation by a larger randomized controlled trial.
Collapse
Affiliation(s)
- S Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Autism is reaching epidemic proportions. The diagnosis can be made as early as 2 years of age, and autistic patients are expected to have a normal life span. Thus, in terms of the number of 'patient years', autism spectrum disorder (ASD) represents a market that is as large as that of the biggest neurological indication, Alzheimer's disease. However, despite the clear unmet medical need no effective treatment is yet available. This could be because the biology of ASD is not clearly understood and thus proper drug treatment has not been possible. However, significant advances are being made toward understanding the mechanisms of the disease. Here, we review the most recent preclinical advances in the hope that they will lead to a breakthrough in the near future.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology University of Hawai'i at Manoa, 2430 Campus Road Honolulu, HI 96822-2216, USA.
| | | |
Collapse
|
28
|
Abstract
Autism has been becoming the focus of attention as its apparently increasing prevalence is better appreciated. According to some estimates, the frequency of children with autistic spectrum disorder (ASD) can be as high as 1 in 150. The diagnosis can be made as early as 2 years of age, and autistic patients often have a normal life span. Thus, in terms of the number of "patient years," ASD represents a market that is as large as that of the biggest neurological indication, Alzheimer's disease. Despite the clear unmet medical need, no effective treatment is available. This may be because the mechanism of ASD is not understood. The aim of the present paper is to review recent advances in autism research and to discuss some of the most stressing problems mainly from a preclinical research standpoint. We hope to draw attention to the need to study this devastating disease that places an enormous burden on the society in general and the relatives and caregivers of autistic patients in particular.
Collapse
Affiliation(s)
- Julia Gerlai
- Neuroscience Discovery Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | |
Collapse
|
29
|
Persico AM, Pascucci T, Puglisi-Allegra S, Militerni R, Bravaccio C, Schneider C, Melmed R, Trillo S, Montecchi F, Palermo M, Rabinowitz D, Reichelt KL, Conciatori M, Marino R, Keller F. Serotonin transporter gene promoter variants do not explain the hyperserotoninemia in autistic children. Mol Psychiatry 2003; 7:795-800. [PMID: 12192626 DOI: 10.1038/sj.mp.4001069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Accepted: 11/20/2001] [Indexed: 11/09/2022]
Abstract
Autism is a biologically-heterogeneous disease. Distinct subgroups of autistic patients may be marked by intermediate phenotypes, such as elevated serotonin (5-HT) blood levels, potentially associated with different underlying disease mechanisms. This could lead to inconsistent genetic association results, such as those of prior studies on serotonin transporter (5-HTT) gene promoter variants and autistic disorder. Contributions of 5-HTT gene promoter alleles to 5-HT blood levels were thus investigated in 134 autistic patients and 291 first-degree relatives. Mean 5-HT blood levels are 11% higher in autistic patients carrying the L/L genotype, compared to patients with the S/S or S/L genotype; this trend is not observed in first-degree relatives. The probability of inheriting L or S alleles is significantly enhanced in patients with 5-HT blood levels above or below the mean, respectively (P < 0.05), but quantitative TDT analyses yield a non-significant trend (P = 0.10), as this polymorphism explains only 2.5% of the variance in 5-HT blood levels of autistic patients. In conclusion, 5-HTT gene promoter variants seemingly exert a small effect on 5-HT blood levels in autistic children, which largely does not account for hyperserotoninemia. Nonetheless, the inconsistent outcome of prior association studies could partly stem from a selection bias of hyper- or hypo-serotoninemic probands.
Collapse
Affiliation(s)
- A M Persico
- Laboratory of Neuroscience, Interdisciplinary Center for Biomedical Research (CIR), Università Campus Bio-Medico, Via Longoni 83, I-00155 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Autistic disorder is a behavioural syndrome beginning before the age of 3 years and lasting over the whole lifetime. It is characterised by impaired communication, impaired social interactions, and repetitive interests and behaviour. The prevalence is about 7/10,000 taking a restrictive definition and more than 1/500 with a broader definition, including all the pervasive developmental disorders. The importance of genetic factors has been highlighted by epidemiological studies showing that autistic disorder is one of the most genetic neuropsychiatric diseases. The relative risk of first relatives is about 100-fold higher than the risk in the normal population and the concordance in monozygotic twin is about 60%. Different strategies have been applied on the track of susceptibility genes. The systematic search of linked loci led to contradictory results, in part due to the heterogeneity of the clinical definitions, to the differences in the DNA markers, and to the different methods of analysis used. An oversimplification of the inferred model is probably also cause of our disappointment. More work is necessary to give a clearer picture. One region emerges more frequently: the long arm of chromosome 7. Several candidate genes have been studied and some gave indications of association: the Reelin gene and the Wnt2 gene. Cytogenetical abnormalities are frequent at 15q11-13, the region of the Angelman and Prader-Willi syndrome. Imprinting plays an important role in this region, no candidate gene has been identified in autism. Biochemical abnormalities have been found in the serotonin system. Association and linkage studies gave no consistent results with some serotonin receptors and in the transporter, although it seems interesting to go further in the biochemical characterisation of the serotonin transporter activity, particularly in platelets, easily accessible. Two monogenic diseases have been associated with autistic disorder: tuberous sclerosis and fragile X. A better knowledge of the pathophysiology of these disorders can help to understand autism. Different other candidate genes have been tested, positive results await replications in other samples. Animal models have been developed, generally by knocking out the different candidate genes. Behaviour studies have mainly focused on anxiety and learning paradigms. Another group of models results from surgical or toxic lesions of candidate regions in the brain, in general during development. The tools to analyse these animals are not yet standardised, and an important effort needs to be undertaken.
Collapse
|
31
|
Gross-Isseroff R, Hermesh H, Weizman A. Obsessive compulsive behaviour in autism--towards an autistic-obsessive compulsive syndrome? World J Biol Psychiatry 2001; 2:193-7. [PMID: 12587149 DOI: 10.3109/15622970109026809] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A portion of autistic patients exhibit compulsive-like behaviours. In addition it has been suggested that serotonin plays a major role in both obsessive compulsive disorder (OCD) and autistic disorder. Other neurohumors such as endogenous opioids and oxytocin have also been implicated in the two disorders. There is also some pharmacological overlap between the two disorders, as well as some similar neuroimaging studies. These similarities and overlaps have led us to propose a putative OCD-autistic disorder, which should be studied in greater detail.
Collapse
Affiliation(s)
- R Gross-Isseroff
- Outpatient Department, Geha Psychiatric Hospital, P.O.B. 102, Petach Tikva 49100, Israel.
| | | | | |
Collapse
|
32
|
Vancassel S, Durand G, Barthélémy C, Lejeune B, Martineau J, Guilloteau D, Andrès C, Chalon S. Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 2001; 65:1-7. [PMID: 11487301 DOI: 10.1054/plef.2001.0281] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipid fatty acids are major structural components of neuronal cell membranes, which modulate membrane fluidity and hence function. Evidence from clinical and biochemical sources have indicated changes in the metabolism of fatty acids in several psychiatric disorders. We examined the phospholipid fatty acids in the plasma of a population of autistic subjects compared to mentally retarded controls. Our results showed a marked reduction in the levels of 22: 6n-3 (23%) in the autistic subjects, resulting in significantly lower levels of total (n-3) polyunsaturated fatty acids (PUFA) (20%), without significant reduction in the (n-6) PUFA series, and consequently a significant increase in the (n-6)/(n-3) ratio (25%). These variations are discussed in terms of potential differences in PUFA dietary intake, metabolism, or incorporation into cellular membranes between the two groups of subjects. These results open up interesting perspectives for the investigation of new biological indices in autism. Moreover, this might have new therapeutic implications in terms of child nutrition.
Collapse
Affiliation(s)
- S Vancassel
- Laboratoire de Nutrition et Sécurité Alimentaire, INRA, domaine de Vilvert, 78352 Jouy-en-Josas cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Buitelaar JK, Willemsen-Swinkels SH. Medication treatment in subjects with autistic spectrum disorders. Eur Child Adolesc Psychiatry 2001; 9 Suppl 1:I85-97. [PMID: 11140783 DOI: 10.1007/s007870070022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autism is a pervasive developmental disorder that is aetiologically and clinically heterogeneous. Twin and family genetic studies provide evidence for strong genetic components. An international consortium using an affected sib pair strategy has found a promising linkage to a region on chromosome 7. In 10-15 % of the cases autism is due to associated medical conditions that affect normal brain functioning. Post-mortem studies on small case series report cellular abnormalities in the limbic system and cerebellum. Between 10 and 20 % of subjects with autism have macrocephalia, which is in accordance with MRI findings of an increased total brain tissue volume and enlargement most prominent in the occipital and parietal lobes. The most robust and well-replicated neurobiological abnormality in autism is an elevation of whole blood serotonin found in over 30% of the patients. Pharmacological interventions with serotonin reuptake blockers or with atypical neuroleptics that block both dopamine (D2) and serotonin (5-HT2) receptors seem to offer clinical benefit and merit further study.
Collapse
Affiliation(s)
- J K Buitelaar
- University Medical Center Utrecht, Dept of Child Psychiatry, The Netherlands.
| | | |
Collapse
|
34
|
Abstract
OBJECTIVE To summarize recent advances about the nature, diagnosis, and treatment of pervasive developmental disorders. METHOD Review of Medline databases, books, and book chapters published between July 1989 and November 1999. RESULTS Clinical and genetic studies support expansion of the concept of autism to include a broader spectrum of social communication handicaps. The prevalence of autism is approximately 1 per 2,000; the prevalence of autism and Asperger's disorder together is 1 per 1,000. The Checklist for Autism in Toddlers is a useful screening instrument for 18-month-old children; the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule are instruments of choice for research. Although twin and family studies clearly support genetic factors as important in autism, linkage analysis studies indicate that many genes may be involved. There is no one treatment of choice. Social-pragmatic approaches, augmented by individualized strategies and social coaching, may be best for teaching social communication skills. Pharmacological interventions have a limited role in improving social communication, but selective serotonin reuptake inhibitors and atypical neuroleptic medications may help ameliorate aggression, hyperactivity, and other secondary problems. CONCLUSIONS Private and government agencies must continue to support basic and applied research.
Collapse
Affiliation(s)
- P E Tanguay
- Department of Psychiatry, University of Louisville School of Medicine, KY 40202, USA.
| |
Collapse
|
35
|
Buitelaar JK, Willemsen-Swinkels SH. Autism: current theories regarding its pathogenesis and implications for rational pharmacotherapy. Paediatr Drugs 2000; 2:67-81. [PMID: 10937459 DOI: 10.2165/00148581-200002010-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism is a pervasive developmental disorder that is aetiologically and clinically heterogeneous. Twin and family-genetic studies provide evidence for strong genetic components. An international consortium using an affected sib pair strategy has found a promising linkage to a region on chromosome 7. In 10 to 15% of cases autism is due to associated medical conditions that affect normal brain functioning. Postmortem studies on small case series report cellular abnormalities in the limbic system and cerebellum. Between 10 and 20% of individuals with autism have macrocephalia, which is in accordance with magnetic resonance imaging (MRI) findings of an increased total brain tissue volume and enlargement most prominent in the occipital and parietal lobes. The most robust and well replicated neurobiological abnormality in autism is an elevation of whole blood serotonin (5-hydroxytryptamine; 5-HT) found in over 30% of patients. Pharmacological interventions with serotonin reuptake inhibitors or with atypical neuroleptics that block both dopamine (D2) and serotonin (5-HT2) receptors seem to offer clinical benefit and merit further study.
Collapse
Affiliation(s)
- J K Buitelaar
- Department of Child Psychiatry, University Medical Centre Utrecht, The Netherlands.
| | | |
Collapse
|