1
|
Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, Hanna P, Smith EH, Hoover DB, Chen J, Cheng Z(J, Ardell JL, Shivkumar K, Schwaber JS, Vadigepalli R. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience 2021; 24:102713. [PMID: 34337356 PMCID: PMC8324809 DOI: 10.1016/j.isci.2021.102713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott Turick
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sean Nieves
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Donald B. Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jeffrey L. Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Borodinova AA, Abramochkin DV, Sukhova GS. Non-quantal release of acetylcholine in rat atrial myocardium is inhibited by noradrenaline. Exp Physiol 2013; 98:1659-67. [DOI: 10.1113/expphysiol.2013.074989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Vadigepalli R, Doyle FJ, Schwaber JS. Analysis and neuronal modeling of the nonlinear characteristics of a local cardiac reflex in the rat. Neural Comput 2001; 13:2239-71. [PMID: 11570998 DOI: 10.1162/089976601750541796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous experimental results have suggested the existence of a local cardiac reflex in the rat. In this study, the putative role of such a local reflex in cardiovascular regulation is quantitatively analyzed. A model for the local reflex is developed from anatomical experimental results and physiological data in the literature. Using this model, a systems-level analysis is conducted. Simulation results indicate that the neuromodulatory mechanism of the local reflex attenuates the nonlinearity of the relationship between cardiac vagal drive and arterial pressure. This behavior is characterized through coherence analysis. Furthermore, the modulation of phase-related characteristics of the cardiovascular system is suggested as a plausible mechanism for the nonlinear attenuation. Based on these results, it is plausible that the functional role of the local reflex is highly robust nonlinear compensation at the heart, which results in less complex dynamics in other parts of the reflex.
Collapse
Affiliation(s)
- R Vadigepalli
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
4
|
Her WY, Fu YS, Liu TS, Liu KM. Morphological study of cultured cardiac ganglionic neurons from different postnatal stages of rats. Auton Neurosci 2000; 84:89-97. [PMID: 11109993 DOI: 10.1016/s1566-0702(00)00191-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study sought to establish a culture model of cardiac ganglia (CG) neurons of the Sprague-Dawley (SD) rat which could by used to study the distinct characteristics of CG neurons. After culturing, the morphology and immunocytochemistry of CG neurons obtained on different days after birth were compared. Samples of CG neurons were taken from the posterior atrial wall of rats aged 7, 14, 21 and 40 postnatal days (designated as P7, P14, P21 and P40, respectively). During 3-6 days of culture, the morphological changes of the cultured neurons were monitored using a light microscope. Immunocytochemical staining of the neurofilaments (NF-L, -M and -H) was performed to identify the CG neurons and the changes in morphology. The differences in size of the CG soma of each culture were compared by morphometry. Frozen sections of CG neurons were used as the in vivo control of the above experiments. The results showed that the rate of growth in size of the CG soma was highest in the P7 group, and was slower after weaning (21 days after birth). Cultured neurons were categorized into unipolar-like (Type I), multipolar-like (Type II), and bipolar-like (Type III) based on their morphological characteristics. In NF immuocytochemical staining, there were strong responses to NF-H and NF-M in all cultures, but not to NF-L. More specifically, responses to NF-H were mainly observed in perikaryons and neurites, whereas the responses to NF-M were mainly in perikaryons. The present study has established a culture system for cardiac ganglia neurons of SD rats. Our results show that the intracardiac neurons were still developing in their somata and the processes and that various responses to different antibodies of NF for CG neurons occurred in different postnatal stages in rats.
Collapse
Affiliation(s)
- W Y Her
- Department of Anatomy, Kaohsiung Medical University, Taiwan, ROC
| | | | | | | |
Collapse
|
5
|
Cheng Z, Powley TL, Schwaber JS, Doyle FJ. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 1997; 381:1-17. [PMID: 9087415 DOI: 10.1002/(sici)1096-9861(19970428)381:1<1::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used confocal microscopy to analyze the vagal afferent innervation of the rat heart. Afferents were labeled by injecting 1,1'-dioleyl-3,3,3',3'-tetramethylindocarbocyanine methanesulfonate (DiI) into the nodose ganglia of animals with prior supranodose de-efferentations, autonomic ganglia were stained with Fluoro-gold, and tissues were examined in whole mounts. Distinctively different fiber specializations were observed in the epi-, myo-, and endocardium: Afferents to the epicardium formed complexes associated with cardiac ganglia. These ganglia consisted of four major ganglionated plexuses, two on each atrium, at junctions of the major vessels with the atria. Ganglionic locations and sizes (left > right) were consistent across animals. In addition to principal neurons (PNs), significant numbers of small intensely fluorescent (SIF) cells were located in each of these plexuses, and vagal afferents provided dense pericellular varicose endings around the SIF cells in each ganglionic plexus, with few if any terminations on PNs. In the myocardium, vagal afferents formed close contacts with cardiac muscles, including conduction fibers. In the endocardium, vagal fibers formed "flower-spray" and "end-net" terminals in connective tissue. With three-dimensional reconstruction of confocal optical sections, a novel polymorphism was seen: Some fibers had one or more collaterals ending as endocardial flower sprays and other collaterals ending as myocardial intramuscular endings. Some unipolar or pseudounipolar neurons within each cardiac ganglionic plexus were retrogradely labeled from the nodose ganglia. In conclusion, vagal afferents form a heterogeneity of differentiated endings in the heart, including structured elements which may mediate chemoreceptor function, stretch reception, and local cardiac reflexes.
Collapse
Affiliation(s)
- Z Cheng
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47097, USA.
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- P A Smith
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Smith FM, Hopkins DA, Armour JA. Electrophysiological properties of in vitro intrinsic cardiac neurons in the pig (Sus scrofa). Brain Res Bull 1992; 28:715-25. [PMID: 1617456 DOI: 10.1016/0361-9230(92)90251-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Physiological properties and synaptically mediated responses of 34 ganglionated plexus neurons from the right atrium of the pig heart were studied with in vitro intracellular recording techniques. Whole-cell input resistance of these neurons was lower, time constant was shorter, and threshold for directly evoked action potentials was higher than the same properties in extracardiac autonomic neurons. Long intracellular depolarizing current pulses (400-500 ms) failed to generate more than one or two action potentials. Nicotinic and non-nicotinic synapses were present on neurons in cardiac ganglia and neuronal properties could be modified by norepinephrine. Based on their physiological properties, cardiac ganglionated plexus neurons in the pig appear to represent a distinct population of autonomic neurons that may be capable of intracardiac integration of efferent information to the heart.
Collapse
Affiliation(s)
- F M Smith
- Department of Anatomy, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
8
|
Melinek R, Mirolli M. Histochemical study of the heart of the axolotl (Ambystoma mexicanum). Anat Rec (Hoboken) 1992; 233:13-7. [PMID: 1376564 DOI: 10.1002/ar.1092330103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the presence of cells containing monoamines, substance P, and neuron-specific enolase (NSE) in the heart and in the pericardial wall of a urodele amphibian, the axolotl. Fibers containing substance P-like immunoreactivity were present in the heart but not in the pericardial wall. Also present in the heart were small branched cells, which stained metachromatically with toluidine blue. Similar cells were found in the peritoneum and were tentatively identified as mast cells. NSE-immunoreactive fibers were found both in the heart and in the pericardial wall. Small intensely fluorescent (SIF) cells of the pericardial wall contained a high concentration of norepinephrine but no other monoamines, substance P, or NSE. Comparison with data available for the mudpuppy, Necturus maculosus, a closely related amphibian species, suggests that the innervation of the heart in the axolotl is substantially different.
Collapse
Affiliation(s)
- R Melinek
- Medical Sciences Program, Indiana University, Bloomington 47405
| | | |
Collapse
|
9
|
Selyanko AA, Zidichouski JA, Smith PA. The effects of muscarine and adrenaline on patch-clamped frog cardiac parasympathetic neurones. J Physiol 1991; 443:355-70. [PMID: 1668340 PMCID: PMC1179845 DOI: 10.1113/jphysiol.1991.sp018837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The whole-cell patch-clamp technique was used to record membrane currents from neurones which were acutely dissociated from the intra-atrial parasympathetic ganglia of Rana pipiens. The effects of muscarine and adrenaline were observed at a holding potential of -30 mV. Extracellular potassium concentration ([K+]o) was 2, 6 or 20 mM. 2. Muscarine (10 microM) produced inward current in thirteen cells, outward current in eighteen cells and seven cells were unaffected. Inward currents were observed in six out of ten neurones in which the intracellular solution contained adenosine triphosphate (ATP; 100 microM) and outward currents were seen in eleven out of fourteen neurones which contained adenosine 3',5'-cyclic monophosphate (cyclic AMP; 100 microM). 3. In five out of nine cells tested, the inward current produced by muscarine was attributable to a 30% depression of a voltage-dependent current which resembled the M-current (IM). Muscarine-induced inward current in the other four cells involved a steady-state conductance increase that reached a null potential at -10 mV. Modest IM suppression also contributed to the response in three of these four cells. 4. Adrenaline (10 or 100 microM) produced inward currents in twelve cells, outward current in ten cells and three cells were unaffected. Outward currents were only seen in cells which contained ATP or cyclic AMP (ten out of sixteen cells) whereas inward currents were seen in eight out of nine cells which did not contain adenosine nucleotides. These inward currents were always attributable to IM suppression. 5. The outward currents induced by muscarine and adrenaline resulted from an increase in a potassium conductance (GK) that exhibited inward rectification.
Collapse
Affiliation(s)
- A A Selyanko
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
10
|
Parsons RL, Neel DS, Konopka LM, McKeon TW. The presence and possible role of a galanin-like peptide in the mudpuppy heart. Neuroscience 1989; 29:749-59. [PMID: 2472581 DOI: 10.1016/0306-4522(89)90146-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A correlated histochemical and pharmacological study was undertaken to establish the presence, origin, and possible function of nerve fibers containing a galanin-like peptide in the mudpuppy (Necturus maculosus) heart. Whole mount preparations of septum-sinus venosus or atria and sections of ventricular muscle were prepared for immunocytochemistry. Galanin-immunoreactive fibers were found coursing diffusely across the septum-sinus venosus to form complex networks over cardiac muscle strands. Individual atrial muscle strands were densely innervated by galanin-immunoreactive fibers and galanin-immunoreactive fibers were also observed in the epicardial and myocardial layers of the ventricle. Most of the parasympathetic postganglionic neurons in the cardiac ganglion and many of the small intensely fluorescent-like cells exhibited galanin immunoreactivity. Galanin-immunoreactive fibers were present in the nerve trunks connecting clusters of parasympathetic postganglionic neurons. Close associations between galanin-positive fibers and individual parasympathetic postganglionic neurons were also observed. The presence of the galanin-immunoreactive fibers was similar in preparations taken from animals pretreated with 6-hydroxydopamine to that seen in preparations taken from control animals, indicating that the galanin-positive fibers were not sympathetic postganglionic axons. Moreover, the galanin-immunoreactive nerve fibers were separate from fibers containing substance P and/or calcitonin gene-related peptide that have previously been shown to be processes of afferent fibers. In twitch-tension experiments, galanin in the range 1 x 10(-7) to 1 x 10(-6) M caused cardioinhibition of spontaneously beating isolated septal-sinus venosus preparations. Galanin also produced a concentration-dependent (1 x 10(-7) to 1 x 10(-6) M) decrease in the twitch-tension development of electrically stimulated atrial or ventricular preparations. Local application of galanin produced hyperpolarization of cardiac muscle fibers in both isolated septal-sinus venosus preparations and atrial preparations. The response of individual parasympathetic ganglion cells to local application of galanin varied between neurons; some neurons were depolarized whereas others were hyperpolarized. We conclude that a galanin-like peptide is contained in both the parasympathetic postganglionic neurons and small intensely fluorescent-like cells and their processes. Further, we hypothesize that in the case of the parasympathetic postganglionic neurons, the galanin-like peptide may work in conjunction with acetylcholine to regulate cardiac activity.
Collapse
Affiliation(s)
- R L Parsons
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington 05405
| | | | | | | |
Collapse
|
11
|
Melinek R, Mirolli M. The organization of the cardiac ganglion of the axolotl (Ambystoma mexicanum). JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1988; 24:29-39. [PMID: 3209798 DOI: 10.1016/0165-1838(88)90132-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heart of the axolotl Ambystoma mexicanum was studied with histochemical methods to determine the distribution of neurons containing acetylcholine esterase, catecholamines and 5-hydroxytryptamine. The cardiac ganglion is made up of cholinergic nerve fibers and somata, and of catecholaminergic fibers. Small intensely fluorescent cells were found along blood vessels in the pericardial wall at the base of the heart, but not in the heart itself, except, in a few instances, in the region bordering the pericardial wall. Both the cholinergic and the catecholaminergic innervation of the heart were poorly developed at hatching and reached their mature state after a few months. Cholinesterase staining fibers appeared several weeks before catecholaminergic fibers. The number of postganglionic cholinergic neurons in the heart increased several-fold during the first month after hatching. Histofluorescence studies of organ cultures suggested that all the catecholamine present in the heart are of extrinsic origin. Liquid chromatography with electrochemical detection demonstrated that the dominant catecholamine in the heart is norepinephrine. No neurons containing 5-hydroxytryptamine were found.
Collapse
Affiliation(s)
- R Melinek
- Medical Sciences Program, Indiana University Bloomington 47405
| | | |
Collapse
|
12
|
Parsons RL, Neel DS. Distribution of calcitonin gene-related peptide immunoreactive nerve fibers in the mudpuppy cardiac septum. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1987; 21:135-43. [PMID: 2453547 DOI: 10.1016/0165-1838(87)90016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An immunohistochemical study was undertaken to determine the distribution of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the cardiac septum of the mudpuppy, Necturus maculosus. Numerous long, CGRP-immunoreactive nerve fibers course across the septum, run in the nerve trunks connecting clusters of postganglionic parasympathetic cells, form complexes over groups of ganglion cells and make pericellular networks around individual ganglion cells. The postganglionic parasympathetic neurons and small intensely fluorescent (SIF)-like cells did not exhibit CGRP immunoreactivity. Most of the CGRP-immunoreactive nerve fibers also are labeled for substance P. In freshly dissected preparations, the staining pattern for CGRP was not similar to that obtained using an antiserum against synaptic vesicle membrane, which appears to preferentially label cholinergic preganglionic terminals on all postganglionic parasympathetic cells in the mudpuppy preparation. Further, in explanted ganglia (maintained 10 days in culture) almost no reactivity was obtained with the antivesicle antiserum whereas numerous nerve fibers still exhibited CGRP-immunoreactivity. These observations demonstrate that the CGRP-immunoreactive nerve fibers are not parasympathetic preganglionic axons. Rather we suggest that the CGRP-immunoreactive nerve fibers are processes of primary sensory fibers.
Collapse
Affiliation(s)
- R L Parsons
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington 05405
| | | |
Collapse
|