1
|
Adachi T, Odaka T, Harada A, Yamaguchi H. Direct Chiral Separation of Binaphthyl Derivatives Using Atroposelective Antibodies. ChemistrySelect 2017. [DOI: 10.1002/slct.201700231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuma Adachi
- Department of Macromolecular Science, Graduate School of Science; Osaka University, Toyonaka; Osaka 560-0043 Japan
| | - Tomoki Odaka
- Department of Macromolecular Science, Graduate School of Science; Osaka University, Toyonaka; Osaka 560-0043 Japan
| | - Akira Harada
- Project Research Center for Fundamental Sciences, Graduate School of Science; Osaka University, Toyonaka; Osaka 560-0043 Japan
- JST-ImPACT; Chiyoda-ku; Tokyo 100-8914 Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science; Osaka University, Toyonaka; Osaka 560-0043 Japan
| |
Collapse
|
2
|
Ganina TA, Chertkov VA. Dynamic structure of organic compounds in solution according to NMR data and quantum mechanical calculations: I. Soman. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
4
|
Chen S, Zhang J, Lumley L, Cashman JR. Immunodetection of serum albumin adducts as biomarkers for organophosphorus exposure. J Pharmacol Exp Ther 2013; 344:531-41. [PMID: 23192655 PMCID: PMC3558817 DOI: 10.1124/jpet.112.201368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/27/2012] [Indexed: 11/22/2022] Open
Abstract
A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals.
Collapse
Affiliation(s)
- Sigeng Chen
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
5
|
Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results. Anal Biochem 2012; 424:108-13. [DOI: 10.1016/j.ab.2012.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 11/22/2022]
|
6
|
Sathe M, Ghorpade R, Merwyn S, Agarwal GS, Kaushik MP. Direct hapten-linked competitive inhibition enzyme-linked immunosorbent assay (CIELISA) for the detection of O-pinacolyl methylphosphonic acid. Analyst 2012; 137:406-13. [DOI: 10.1039/c1an15773f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kim K, Tsay OG, Atwood DA, Churchill DG. Destruction and detection of chemical warfare agents. Chem Rev 2011; 111:5345-403. [PMID: 21667946 DOI: 10.1021/cr100193y] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Bruno JG, Carrillo MP, Cadieux CL, Lenz DE, Cerasoli DM, Phillips T. DNA aptamers developed against a soman derivative cross-react with the methylphosphonic acid core but not with flanking hydrophobic groups. J Mol Recognit 2009; 22:197-204. [PMID: 19051203 DOI: 10.1002/jmr.932] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Twelve rounds of systematic evolution of ligands by exponential enrichment (SELEX) were conducted against a magnetic bead conjugate of the para-aminophenylpinacolylmethylphosphonate (PAPMP) derivative of the organophosphorus (OP) nerve agent soman (GD). The goal was to develop DNA aptamers that could scavenge GD in vivo, thereby reducing or eliminating the toxic effects of this dangerous compound. Aptamers were sequenced and screened in peroxidase-based colorimetric plate assays after rounds 8 and 12 of SELEX. The aptamer candidate sequences exhibiting the highest affinity for the GD derivative from round 8 also reappeared in several clones from round 12. Each of the highest affinity PAPMP-binding aptamers also bound methylphosphonic acid (MPA). In addition, the aptamer with the highest overall affinity for PAPMP carried a sequence motif (TTTAGT) thought to bind MPA based on previously published data (J. Fluoresc 18: 867-876, 2008). This sequence motif was found in several other relatively high affinity PAPMP aptamer candidates as well. In studies with the nerve agent GD, pre-incubation of a large molar excess of aptamer candidates failed to protect human butyrylcholinesterase (BuChE) from inhibition. With the aid of three-dimensional molecular modeling of the GD derivative it appears that a hydrophilic cleft sandwiched between the pinacolyl group and the p-aminophenyl ring might channel nucleotide interactions to the phosphonate portion of the immobilized GD derivative. However, bona fide GD free in solution may be repulsed by the negative phosphate backbone of aptamers and rotate its phosphonate and fluorine moieties away from the aptamer to avoid being bound. Future attempts to develop aptamers to GD might benefit from immobilizing the pinacolyl group of bona fide GD to enhance exposure of the phosphonate and fluorine to the random DNA library.
Collapse
Affiliation(s)
- John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite 230, San Antonio, TX 78229-4253, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Hofstetter H, Hofstetter O. Antibodies as tailor-made chiral selectors for detection and separation of stereoisomers. Trends Analyt Chem 2005. [DOI: 10.1016/j.trac.2005.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Johnson JK, Cerasoli DM, Lenz DE. Role of immunogen design in induction of soman-specific monoclonal antibodies. Immunol Lett 2005; 96:121-7. [PMID: 15585315 DOI: 10.1016/j.imlet.2004.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/13/2004] [Accepted: 08/15/2004] [Indexed: 11/28/2022]
Abstract
The study of monoclonal antibodies raised against defined hapten epitopes has been a useful approach to understanding antibody repertoire. The situation in which antibodies are raised against different epitopes of the same hapten but have some common recognition or binding features has been less frequently examined. To explore the latter situation, we have characterized three monoclonal antibodies previously raised against two structurally different epitopes of the same organophosphorus nerve agent hapten, pinacolymethyl phosphonofluoridate (soman). Two antibodies, BE2-IA10 (BE2) and CC1-IIA4 (CC1), raised against the hydrophobic pinacolyl motif of soman, bind exclusively to soman and not to any other organophosphorus nerve agents. We determined that these antibodies have the same heavy chain sequence, which they share with the unrelated antibodies MOPC 21 and H17-L19. While all these antibodies share the same heavy chain sequence, they each possess different light chain sequences. Binding studies revealed that each of these antibodies has a unique reactivity with a panel of structurally related ligands, suggesting that the light chains are critically important in determining specificity in these antibodies. The third antibody, #2.ID8.2, raised against the methyl phosphoryl portion of soman, has unique heavy and light chain sequences. This antibody binds to all the currently identified chemical warfare agents. Given that the presenting epitope used to induce #2.ID8.2 is common to sarin, soman, tabun and VX, the ability of this antibody to recognize each of these haptens versus the inability of BE2 or CC1 to do so demonstrates the important role that immunogen design can play in the specificity of an antibody response.
Collapse
Affiliation(s)
- Jennifer K Johnson
- Department of OCBS, University of Maryland, 666 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
11
|
Russell AJ, Berberich JA, Drevon GF, Koepsel RR. Biomaterials for mediation of chemical and biological warfare agents. Annu Rev Biomed Eng 2004; 5:1-27. [PMID: 12704086 DOI: 10.1146/annurev.bioeng.5.121202.125602] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.
Collapse
Affiliation(s)
- Alan J Russell
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
| | | | | | | |
Collapse
|
12
|
Geva M, Izhaky D, Mickus DE, Rychnovsky SD, Addadi L. Stereoselective recognition of monolayers of cholesterol, ent-cholesterol, and epicholesterol by an antibody. Chembiochem 2001; 2:265-71. [PMID: 11828454 DOI: 10.1002/1439-7633(20010401)2:4<265::aid-cbic265>3.0.co;2-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction between a monoclonal antibody and four distinct monolayers with varying degrees of structural, chemical, and stereochemical similarity were studied and quantified. The antibody, raised and selected against cholesterol monohydrate crystals, interacts with cholesterol monolayers stereospecifically, but not enantiospecifically. Monolayers of ent-cholesterol molecules, which are chemically identical to cholesterol and whose structure is the exact mirror image of the cholesterol monolayer, interact with the antibody to the same extent as the cholesterol monolayers. The affinity of the antibody for both enantiomeric monolayers is extremely high. However, the antibody does not interact with monolayers of epicholesterol, which is an epimer of cholesterol: The hydroxy group in epicholesterol is in the 3alpha position rather than in the 3beta position, imposing a different angle between the hydroxy group and the rigid steroid backbone, and a different packing of the molecules. Monolayers of triacontanol, a long-chain primary aliphatic alcohol, interact with the antibody to a lesser extent than the cholesterol and ent-cholesterol monolayers, presumably due to the structural flexibility of the triacontanol molecule. The lack of chiral discrimination by the antibody is thus correlated to the level at which the chirality is exposed at the surface of the monolayers.
Collapse
Affiliation(s)
- M Geva
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | |
Collapse
|
13
|
Hofstetter H, Hofstetter O, Wistuba D. Chiral interaction of a polyclonal anti-dinitrophenyl antibody with dinitrophenyl-amino acids determined by an enantioselective enzyme-linked immunosorbent assay. Anal Chim Acta 1996. [DOI: 10.1016/0003-2670(96)00249-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|