1
|
Siti Mariam I, Norhidayah R, Zulaikha AB, Nazihah MY, Rosline H, Kausar GA, Sarina S, Azlan H, Ankathil R. Differential prognostic impact of stratified additional chromosome abnormalities on disease progression among Malaysian chronic myeloid leukemia patients undergoing treatment with imatinib mesylate. Front Oncol 2022; 12:720845. [PMID: 36003793 PMCID: PMC9393706 DOI: 10.3389/fonc.2022.720845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of additional chromosome abnormalities (ACAs) in chronic myeloid leukemia (CML) patients during treatment with a tyrosine kinase inhibitor (TKI) regime is generally associated with resistance to treatment and a sign of disease progression to accelerated phase or blast phase. We report the type, frequency, and differential prognostic impact of stratified ACAs with treatment response in 251 Malaysian CML patients undergoing TKI therapy. ACAs were observed in 40 patients (15.9%) of which 7 patients (17.5%) showed ACAs at time of initial diagnosis whereas 33 patients (82.5%) showed ACAs during the course of IM treatment. In order to assess the prognostic significance, we stratified the CML patients with ACAs into four groups, group 1 (+8/+Ph), group 2 (hypodiploidy), group 3 (structural/complex abnormalities); group 4 (high-risk complex abnormalities), and followed up the disease outcome of patients. Group 1 and group 2 relatively showed good prognosis while patients in group 3 and group 4 had progressed or transformed to AP or blast phase with a median survival rate of 12 months after progression. Novel ACAs consisting of rearrangements involving chromosome 11 and chromosome 12 were found to lead to myeloid BP while ACAs involving the deletion of 7q or monosomy 7 led toward a lymphoid blast phase. There was no evidence of group 2 abnormalities (hypodiploidy) contributing to disease progression. Compared to group 1 abnormalities, CML patients with group 3 and group 4 abnormalities showed a higher risk for disease progression. We conclude that the stratification based on individual ACAs has a differential prognostic impact and might be a potential novel risk predictive system to prognosticate and guide the treatment of CML patients at diagnosis and during treatment.
Collapse
Affiliation(s)
- Ismail Siti Mariam
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ramli Norhidayah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abu Bakar Zulaikha
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yunus Nazihah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hassan Rosline
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ghazali Anis Kausar
- Unit of Biostatstics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Sulong Sarina
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Ravindran Ankathil,
| |
Collapse
|
2
|
Affiliation(s)
- Rahman Jamal
- Department of Haematology, University College London Medical School, 98 Chenies Mews, London WC1E 6HX., Tel: , Fax:
| |
Collapse
|
3
|
Sharma N, Magistroni V, Piazza R, Citterio S, Mezzatesta C, Khandelwal P, Pirola A, Gambacorti-Passerini C. BCR/ABL1 and BCR are under the transcriptional control of the MYC oncogene. Mol Cancer 2015; 14:132. [PMID: 26179066 PMCID: PMC4504180 DOI: 10.1186/s12943-015-0407-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background Chronic Myeloid Leukaemia (CML) is caused by the BCR/ABL1 fusion gene. Both the presence and the levels of BCR/ABL1 expression seem to be critical for CML progression from chronic phase (CP) to blast crisis (BC). After the oncogenic translocation, the BCR/ABL1 gene is under the transcriptional control of BCR promoter but the molecular mechanisms involved in the regulation of oncogene expression are mostly unknown. Methods A region of 1443bp of the functional BCR promoter was studied for transcription factor binding sites through in-silico analysis and Chromatin Immunoprecipitation experiments. BCR and BCR/ABL1 expression levels were analysed in CML cell lines after over-expression or silencing of MYC transcription factor. A luciferase reporter assay was used to confirm its activity on BCR promoter. Results In the present study we demonstrate that MYC and its partner MAX bind to the BCR promoter, leading to up-regulation of BCR and BCR/ABL1 at both transcriptional and protein levels. Accordingly, silencing of MYC expression in various BCR/ABL1 positive cell lines causes significant downregulation of BCR and BCR/ABL1, which consequently leads to decreased proliferation and induction of cell death. Conclusions Here we describe a regulatory pathway modulating BCR and BCR/ABL1 expression, showing that the BCR promoter is under the transcriptional control of the MYC/MAX heterodimer. Since MYC is frequently over-expressed in BC, this phenomenon could play a critical role in BCR/ABL1 up-regulation and blast aggressiveness acquired during CML evolution.
Collapse
Affiliation(s)
- Nitesh Sharma
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Vera Magistroni
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Rocco Piazza
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy. .,Division of Haematology, San Gerardo Hospital, Monza, Italy.
| | - Stefania Citterio
- Department of Bioscience and Biotechnology, University of Milano Bicocca, Milano, Italy.
| | | | - Praveen Khandelwal
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Alessandra Pirola
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy. .,Division of Haematology, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
4
|
Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood 2011; 117:6660-8. [PMID: 21490338 DOI: 10.1182/blood-2010-08-304477] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prospective identification of patients whose chronic myeloid leukemia (CML) will progress to blast crisis is currently not possible. PP2A is a phosphatase and tumor suppressor that regulates cell proliferation, differentiation, and survival. Cancerous inhibitor of PP2A (CIP2A) is a recently described inhibitor of PP2A in breast and gastric cancer. The aim of this study was to investigate whether CIP2A played a role in CML and whether PP2A or its inhibitor proteins CIP2A or SET could predict clinical outcome. At the time of diagnosis of CML, patients who will later progress to blast crisis have significantly higher levels of CIP2A protein (P < .0001) than patients who do not progress, suggesting that PP2A is functionally inactive. We show that the potential mechanism for disease progression is via altered phosphorylation of the oncogene c-Myc. Knockdown of CIP2A results in increased PP2A activity, decreased c-Myc levels, and a decrease in BCR-ABL1 tyrosine kinase activity. We demonstrate that CIP2A levels at diagnosis can consistently predict patients who will progress to blast crisis. The data show that CIP2A is biologically and clinically important in CML and may be a novel therapeutic target.
Collapse
|
5
|
Albajar M, Gómez-Casares MT, Llorca J, Mauleon I, Vaqué JP, Acosta JC, Bermúdez A, Donato N, Delgado MD, León J. MYC in chronic myeloid leukemia: induction of aberrant DNA synthesis and association with poor response to imatinib. Mol Cancer Res 2011; 9:564-76. [PMID: 21460180 DOI: 10.1158/1541-7786.mcr-10-0356] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Untreated chronic myeloid leukemia (CML) progresses from chronic phase to blastic crisis (BC). Increased genomic instability, deregulated proliferation, and loss of differentiation appear associated to BC, but the molecular alterations underlying the progression of CML are poorly characterized. MYC oncogene is frequently deregulated in human cancer, often associated with tumor progression. Genomic instability and induction of aberrant DNA replication are described as effects of MYC. In this report, we studied MYC activities in CML cell lines with conditional MYC expression with and without exposure to imatinib, the front-line drug in CML therapy. In cells with conditional MYC expression, MYC did not rescue the proliferation arrest mediated by imatinib but provoked aberrant DNA synthesis and accumulation of cells with 4C content. We studied MYC mRNA expression in 66 CML patients at different phases of the disease, and we found that MYC expression was higher in CML patients at diagnosis than control bone marrows or in patients responding to imatinib. Further, high MYC levels at diagnosis correlated with a poor response to imatinib. MYC expression did not directly correlate with BCR-ABL levels in patients treated with imatinib. Overall our study suggests that, as in other tumor models, MYC-induced aberrant DNA synthesis in CML cells is consistent with MYC overexpression in untreated CML patients and nonresponding patients and supports a role for MYC in CML progression, possibly through promotion of genomic instability.
Collapse
Affiliation(s)
- Marta Albajar
- Departamento de Biología Molecular, Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria, Avda Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hosoya N, Sanada M, Nannya Y, Nakazaki K, Wang L, Hangaishi A, Kurokawa M, Chiba S, Ogawa S. Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization. Genes Chromosomes Cancer 2006; 45:482-94. [PMID: 16425296 DOI: 10.1002/gcc.20303] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic myelogenous leukemia (CML) evolves from an indolent chronic phase (CP) characterized by the Philadelphia chromosome. Without effective therapy, it progresses to an accelerated phase (AP) and eventually to a fatal blast crisis (BC). To identify the genes involved in stage progression in CML, we performed a genomewide screening of DNA copy number changes in a total of 55 CML patients in different stages with the use of the high-resolution array-based comparative genomic hybridization (array CGH) technique. We constructed Human 1M arrays that contained 3,151 bacterial artificial chromosome (BAC) DNAs, allowing for an average resolution of 1.0 Mb across the entire genome. In addition to common chromosomal abnormalities, array CGH analysis unveiled a number of novel copy number changes. These alterations included losses in 2q26.2-q37.3, 5q23.1-q23.3, 5q31.2-q32, 7p21.3-p11.2, 7q31.1-q31.33, 8pter-p12(p11.2), 9p, and 22q13.1-q13.31 and gains in 3q26.2-q29, 6p22.3, 7p15.2-p14.3, 8p12, 8p21.3, 8p23.2, 8q24.13-q24.21, 9q, 19p13.2-p12, and 22q13.1-q13.32 and occurred at a higher frequency in AP and BC. Minimal copy number changes affecting even a single BAC locus were also identified. Our data suggests that at least a proportion of CML patients carry still-unknown cryptic genomic alterations that could affect a gene or genes of importance in the disease progression of CML. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Noriko Hosoya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Hongo,Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, Willis AE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 2006; 107:2507-16. [PMID: 16293596 PMCID: PMC1895740 DOI: 10.1182/blood-2005-09-3732] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Altered mRNA translation is one of the effects exerted by the BCR/ABL oncoprotein in the blast crisis phase of chronic myelogenous leukemia (CML). Here, we report that in BCR/ABL+ cell lines and in patient-derived CML blast crisis mononuclear and CD34+ cells, p210(BCR/ABL) increases expression and activity of the transcriptional-inducer and translational-regulator heterogeneous nuclear ribonucleoprotein K (hnRNP K or HNRPK) in a dose- and kinase-dependent manner through the activation of the MAPK(ERK1/2) pathway. Furthermore, HNRPK down-regulation and interference with HNRPK translation-but not transcription-regulatory activity impairs cytokine-independent proliferation, clonogenic potential, and in vivo leukemogenic activity of BCR/ABL-expressing myeloid 32Dcl3 and/or primary CD34+ CML-BC patient cells. Mechanistically, we demonstrate that decreased internal ribosome entry site (IRES)-dependent Myc mRNA translation accounts for the phenotypic changes induced by inhibition of the BCR/ABL-ERK-dependent HNRPK translation-regulatory function. Accordingly, MYC protein but not mRNA levels are increased in the CD34+ fraction of patients with CML in accelerated and blastic phase but not in chronic phase CML patients and in the CD34+ fraction of marrow cells from healthy donors. Thus, BCR/ABL-dependent enhancement of HNRPK translation-regulation is important for BCR/ABL leukemogenesis and, perhaps, it might contribute to blast crisis transformation.
Collapse
Affiliation(s)
- Mario Notari
- Human Cancer Genetics Program, The Ohio State University Medical Center, Columbus, OH 43240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Beyer V, Mühlematter D, Parlier V, Cabrol C, Bougeon-Mamin S, Solenthaler M, Tobler A, Pugin P, Gregor M, Hitz F, Hess U, Chapuis B, Laurencet F, Schanz U, Schmidt PM, van Melle G, Jotterand M. Polysomy 8 defines a clinico-cytogenetic entity representing a subset of myeloid hematologic malignancies associated with a poor prognosis: report on a cohort of 12 patients and review of 105 published cases. ACTA ACUST UNITED AC 2005; 160:97-119. [PMID: 15993266 DOI: 10.1016/j.cancergencyto.2004.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/16/2004] [Accepted: 12/10/2004] [Indexed: 01/14/2023]
Abstract
Tetrasomy, pentasomy, and hexasomy 8 (polysomy 8) are relatively rare compared to trisomy 8. Here we report on a series of 12 patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or myeloproliferative disorder (MPD) associated with polysomy 8 as detected by conventional cytogenetics and fluorescence in situ hybridization (FISH). In an attempt to better characterize the clinical and hematological profile of this cytogenetic entity, our data were combined with those of 105 published patients. Tetrasomy 8 was the most common presentation of polysomy 8. In 60.7% of patients, polysomy 8 occurred as part of complex changes (16.2% with 11q23 rearrangements). No cryptic MLL rearrangements were found in cases in which polysomy 8 was the only karyotypic change. Our study demonstrates the existence of a polysomy 8 syndrome, which represents a subtype of AML, MDS, and MPD characterized by a high incidence of secondary diseases, myelomonocytic or monocytic involvement in AML and poor overall survival (6 months). Age significantly reduced median survival, but associated cytogenetic abnormalities did not modify it. Cytogenetic results further demonstrate an in vitro preferential growth of the cells with a high level of aneuploidy suggesting a selective advantage for polysomy 8 cells.
Collapse
Affiliation(s)
- Valérie Beyer
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vaqué JP, Navascues J, Shiio Y, Laiho M, Ajenjo N, Mauleon I, Matallanas D, Crespo P, León J. Myc antagonizes Ras-mediated growth arrest in leukemia cells through the inhibition of the Ras-ERK-p21Cip1 pathway. J Biol Chem 2004; 280:1112-22. [PMID: 15528212 DOI: 10.1074/jbc.m409503200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Even though RAS usually acts as a dominant transforming oncogene, in primary fibroblasts and some established cell lines Ras inhibits proliferation. This can explain the virtual absence of RAS mutations in some types of tumors, such as chronic myeloid leukemia (CML). We report that in the CML cell line K562 Ras induces p21Cip1 expression through the Raf-MEK-ERK pathway. Because K562 cells are deficient for p15INK4b, p16INK4a, p14ARF, and p53, this would be the main mechanism whereby Ras up-regulates p21 expression in these cells. Accordingly, we also found that Ras suppresses K562 growth by signaling through the Raf-ERK pathway. Because c-Myc and Ras cooperate in cell transformation and c-Myc is up-regulated in CML, we investigated the effect of c-Myc on Ras activity in K562 cells. c-Myc antagonized the induction of p21Cip1 mediated by oncogenic H-, K-, and N-Ras and by constitutively activated Raf and ERK2. Activation of the p21Cip1 promoter by Ras was dependent on Sp1/3 binding sites in K562. However, mutational analysis of the p21 promoter and the use of a Gal4-Sp1 chimeric protein strongly suggest that c-Myc affects Sp1 transcriptional activity but not the binding of Sp1 to the p21 promoter. c-Myc-mediated impairment of Ras activity on p21 expression required a transactivation domain, a DNA binding region, and a Max binding region. Moreover, the effect was independent of Miz1 binding to c-Myc. Consistent with its effect on p21Cip1 expression, c-Myc rescued cell growth inhibition induced by Ras. The data suggest that in particular tumor types, such as those associated with CML, c-Myc contributes to tumorigenesis by inhibiting Ras antiproliferative activity.
Collapse
Affiliation(s)
- Jose P Vaqué
- Grupo de Biología Molecular del Cáncer, Departamento de Biología Molecular, Unidad de Biomedicina del Consejo Superior de Investigaciones Cientiíficas, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality into blast crisis, which is often associated with additional chromosomal and molecular secondary changes. Although the pathogenic effects of most CML blast crisis secondary changes are still poorly understood, ample evidence suggests that the phenotype of CML blast crisis cells (enhanced proliferation and survival, differentiation arrest) depends on cooperation of BCR/ABL with genes dysregulated during disease progression. Most genetic abnormalities of CML blast crisis have a direct or indirect effect on p53 or Rb (or both) gene activity, which are primarily required for cell proliferation and survival, but not differentiation. Thus, the differentiation arrest of CML blast crisis cells is a secondary consequence of these abnormalities or is caused by dysregulation of differentiation-regulatory genes (ie, C/EBPalpha). Validation of the critical role of certain secondary changes (ie, loss of p53 or C/EBPalpha function) in murine models of CML blast crisis and in in vitro assays of BCR/ABL transformation of human hematopoietic progenitors might lead to the development of novel therapies based on targeting BCR/ABL and inhibiting or restoring the gene activity gained or lost during disease progression (ie, p53 or C/EBPalpha).
Collapse
Affiliation(s)
- Bruno Calabretta
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
11
|
Paulsson K, Fioretos T, Strömbeck B, Mauritzson N, Tanke HJ, Johansson B. Trisomy 8 as the sole chromosomal aberration in myelocytic malignancies: a multicolor and locus-specific fluorescence in situ hybridization study. CANCER GENETICS AND CYTOGENETICS 2003; 140:66-9. [PMID: 12550762 DOI: 10.1016/s0165-4608(02)00628-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trisomy 8 is the most common chromosomal aberration in myelocytic malignancies, occurring both as a sole change as well as in addition to other abnormalities. In spite of this, next to nothing is known about its pathogenetic importance or its molecular genetic consequences. Possible mechanisms involved in the transformation process include dosage effects of genes mapping to chromosome 8 and presence of specific mutations or cryptic fusion genes on the duplicated chromosome. In the latter case, +8 would be secondary to a cryptic primary rearrangement and not involved in leukemogenesis as such, but rather in tumor evolution. Although hidden genetic changes have been found in some trisomies, for example, mutations in KIT in acute myelocytic leukemia (AML) with +4 and in MET in hereditary papillary kidney carcinoma with trisomy 7, none associated with +8 have so far been discovered. To address this issue, we have investigated a total of 13 cases of AML, myelodysplastic syndromes, and chronic myeloproliferative disorders with trisomy 8 as the sole chromosomal anomaly. All cases were studied by combined binary ratio multicolor fluorescence in situ hybridization (FISH) and with FISH using locus-specific probes for both arms of chromosome 8, the subtelomeric regions of 8p and 8q, and the leukemia-associated genes FGFR1, MOZ, ETO, and MYC. No cryptic changes were detected, thus excluding the possibility of gross genetic rearrangements or aberrations involving these loci on chromosome 8.
Collapse
Affiliation(s)
- Kajsa Paulsson
- Department of Clinical Genetics, University Hospital, SE-221 85, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16:1402-11. [PMID: 12145676 DOI: 10.1038/sj.leu.2402577] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Accepted: 08/31/2001] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML), characterized by the BCR-ABL gene rearrangement, has been extensively studied. Significant progress has been made in the area of BCR-ABL-mediated intracellular signaling, which has led to a better understanding of BCR-ABL-mediated clinical features in chronic phase CML. Disease progression and blast crisis CML is associated with characteristic non-random cytogenetic and molecular events. These can be viewed as increased oncogenic activity or loss of tumor suppressor activity. However, what causes transformation and disease progression to blast crisis is only poorly understood. This is in part due to the lack of a good in vivo model of chronic phase CML even though animal models developed over the last few years have started to provide insights into blast crisis development. Thus, additional in vitro and in vivo studies will be needed to provide a complete understanding of the contribution of BCR-ABL and other genes to disease progression and to improve therapeutic approaches for blast crisis CML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Differentiation
- Chromosome Aberrations
- DNA Repair
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, Tumor Suppressor
- Hematopoietic Stem Cells/pathology
- Humans
- Immunologic Surveillance
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Models, Animal
- Models, Biological
- Neoplastic Stem Cells/pathology
- Oncogenes
- Signal Transduction
Collapse
Affiliation(s)
- A S Shet
- Stem Cell Institute and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
13
|
Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 2002; 107:76-94. [PMID: 11919388 DOI: 10.1159/000046636] [Citation(s) in RCA: 316] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic myeloid leukemia (CML) is genetically characterized by the presence of the reciprocal translocation t(9;22)(q34;q11), resulting in a BCR/ABL gene fusion on the derivative chromosome 22 called the Philadelphia (Ph) chromosome. In 2-10% of the cases, this chimeric gene is generated by variant rearrangements, involving 9q34, 22q11, and one or several other genomic regions. All chromosomes have been described as participating in these variants, but there is a marked breakpoint clustering to chromosome bands 1p36, 3p21, 5q13, 6p21, 9q22, 11q13, 12p13, 17p13, 17q21, 17q25, 19q13, 21q22, 22q12, and 22q13. Despite their genetically complex nature, available data indicate that variant rearrangements do not confer any specific phenotypic or prognostic impact as compared to CML with a standard Ph chromosome. In most instances, the t(9;22), or a variant thereof, is the sole chromosomal anomaly during the chronic phase (CP) of the disease, whereas additional genetic changes are demonstrable in 60-80% of cases in blast crisis (BC). The secondary chromosomal aberrations are clearly nonrandom, with the most common chromosomal abnormalities being +8 (34% of cases with additional changes), +Ph (30%), i(17q) (20%), +19 (13%), -Y (8% of males), +21 (7%), +17 (5%), and monosomy 7 (5%). We suggest that all these aberrations, occurring in >5% of CML with secondary changes, should be denoted major route abnormalities. Chromosome segments often involved in structural rearrangements include 1q, 3q21, 3q26, 7p, 9p, 11q23, 12p13, 13q11-14, 17p11, 17q10, 21q22, and 22q10. No clear-cut differences as regards type and prevalence of additional aberrations seem to exist between CML with standard t(9;22) and CML with variants, except for slightly lower frequencies of the most common changes in the latter group. The temporal order of the secondary changes varies, but the preferred pathway appears to start with i(17q), followed by +8 and +Ph, and then +19. Molecular genetic abnormalities preceding, or occurring during, BC include overexpression of the BCR/ABL transcript, upregulation of the EVI1 gene, increased telomerase activity, and mutations of the tumor suppressor genes RB1, TP53, and CDKN2A. The cytogenetic evolution patterns vary significantly in relation to treatment given during CP. For example, +8 is more common after busulfan than hydroxyurea therapy, and the secondary changes seen after interferon-alpha treatment or bone marrow transplantation are often unusual, seemingly random, and occasionally transient. Apart from the strong phenotypic impact of addition of acute myeloid leukemia/myelodysplasia-associated translocations and inversions, such as inv(3)(q21q26), t(3;21)(q26;q22), and t(15;17)(q22;q12-21), in CML BC, only a few significant differences between myeloid and lymphoid BC are discerned, with i(17q) and TP53 mutations being more common in myeloid BC and monosomy 7, hypodiploidy, and CDKN2A deletions being more frequent in lymphoid BC. The prognostic significance of the secondary genetic changes is not uniform, although abnormalities involving chromosome 17, e.g., i(17q), have repeatedly been shown to be ominous. However, the clinical impact of additional cytogenetic and molecular genetic aberrations is most likely modified by the treatment modalities used.
Collapse
MESH Headings
- Cytogenetic Analysis
- Disease Progression
- Evolution, Molecular
- Gene Rearrangement
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Philadelphia Chromosome
- Translocation, Genetic
Collapse
Affiliation(s)
- Bertil Johansson
- Department of Clinical Genetics, Lund University Hospital, Sweden
| | | | | |
Collapse
|
14
|
Kimura S, Kuroda J, Akaogi T, Hayashi H, Kobayashi Y, Kondo M. Trisomy 8 involved in myelodysplastic syndromes as a risk factor for intestinal ulcers and thrombosis--Behçet's syndrome. Leuk Lymphoma 2001; 42:115-21. [PMID: 11699198 DOI: 10.3109/10428190109097683] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Only 12 myelodysplastic syndrome (MDS) cases with Behçet's syndrome have been previously reported and trisomy 8 was found to have accumulated in all these patients. Five of the cases had complications in the form of multiple intestinal ulcers, which is one of the symptoms of Behçet's syndrome. To investigate the relationship between trisomy 8 and multiple intestinal ulcers in MDS patients, we analyzed 46 MDS cases treated in our hospital over the last decade, and trisomy 8 was observed in eight of them. Three of these cases had complications of both multiple intestinal ulcers and thrombosis, and two cases showed episodes of thrombosis without intestinal ulcers. All these five cases featured trisomy 8, while the other 38 MDS patients without trisomy 8 had no episode of either intestinal ulcer or thrombosis. Two of the three cases suffering from multiple intestinal ulcers were treated with granulocyte-colony stimulating factor (G-CSF), which resulted in aggravation of the symptoms. Although the influence of G-CSF on such symptoms in MDS patients with trisomy 8 remains unclear, it seems advisable to exercise caution in the use of G-CSF when an MDS patient with trisomy 8 has intestinal ulcers or thrombosis.
Collapse
Affiliation(s)
- S Kimura
- Division of Hematology, Kyoto Second Red Cross Hospital, 355-5 Haruobi Kamigyo-ku, First Department of Internal Medicine, Kyoto Prefectural University of Medicine, 465 Kajii Kamigyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Jennings BA, Mills KI. c-myc locus amplification and the acquisition of trisomy 8 in the evolution of chronic myeloid leukaemia. Leuk Res 1998; 22:899-903. [PMID: 9766750 DOI: 10.1016/s0145-2126(98)00097-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biological progression of chronic myeloid leukaemia is often associated with secondary cytogenetic abnormalities but the molecular mechanisms underlying this progression are poorly understood. This study explores the association of c-myc gene amplification with the progression of chronic myeloid leukaemia in fourteen individuals. Three of these cases showed amplification of c-myc during the course of their disease. Cytogenetic and molecular analysis of serial samples from some patients suggested the successive expansion of distinct clones of malignant cells. Our findings also suggest that trisomy 8 and locus amplification could represent alternative mechanisms for increasing c-myc gene dosage.
Collapse
Affiliation(s)
- B A Jennings
- Molecular Genetics, Norfolk and Norwich Hospital, Norwich, UK
| | | |
Collapse
|
16
|
Beck Z, Bácsi A, Kovács E, Kiss J, Kiss A, Balogh E, Telek B, Tóth FD, Andirkó I, Oláh E, Udvardy M, Rak K. Changes in oncogene expression implicated in evolution of chronic granulocytic leukemia from its chronic phase to acceleration. Leuk Lymphoma 1998; 30:293-306. [PMID: 9713961 DOI: 10.3109/10428199809057542] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of nine oncogenes was investigated in cell samples from fifteen patients with Philadelphia chromosome (Ph)-positive chronic granulocytic leukemia (CGL) both at diagnosis and at the onset of accelerated phase (AP) of the disease. The bcr-abl fusion gene, the H-ras gene and the c-myb gene were universally expressed. In comparison with the chronic phase (CP) of the disease, an increase in the levels of bcr-abl-, c-myb- and H-ras-related transcripts was found in three, two and three AP samples, respectively. Elevation of the bcr-abl-related message was associated with duplication of the Ph chromosome and amplification of the bcr-abl fusion gene in one AP sample. No CP samples were positive for c-myc or c-sis expression. On the contrary, c-myc and c-sis were expressed in three and four AP samples, respectively. The presence of c-myc-related transcript was associated with trisomy 8 with or without amplification of the c-myc oncogene in leukemia cells of two patients with CGL in AP. No changes of oncogene expression were found in four AP samples. However, we observed deletions of chromosome 13 and 17 or i(17q) in three of them, suggesting that tumor suppressor gene alterations may also be responsible for the development of AP of CGL. Our data indicate that heterogeneous alterations in oncogenes and tumor suppressor genes accompany the evolution of CGL-CP to the AP of the disease.
Collapse
Affiliation(s)
- Z Beck
- Institute of Microbiology, University Medical School, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Abstract
We previously reported that the abl promoter (Pa) undergoes de novo DNA methylation in the course of chronic myelocytic leukemia (CML). The clinical implications of this finding are the subject of the present study in which samples of CML patients, including a group treated with interferon α (IFNα) were surveyed. The methylation status of the abl promoter was monitored by polymerase chain reaction (PCR) amplification of the Pa region after digestion with several site-methylation sensitive restriction enzymes. Some 74% of the DNA samples from blood and marrow drawn in the chronic phase were nonmethylated, similar to control samples from non-CML patients. The remaining 26% were partially methylated in the abl Pa region. The latter samples were derived from patients who were indistinguishable from the others on the basis of clinical presentation. Methylated samples were mostly derived from patients known to have a disease of longer duration (26 months v 7.5 months, P = .01). Samples of 30 IFNα-treated patients were sequentially analyzed in the course of treatment. Fifteen patients with no evidence of Pa methylation before treatment remained methylation-free. The remainder, who displayed Pa methylation before treatment, reverted to the methylation-free status. The outcome is attributed to IFNα therapy, as the Pa methylation status was not reversed in any of the patients treated with hydroxyurea. Methylation of the abl promoter indicates a disease of long-standing, most likely associated with a higher probability of imminent blastic transformation. It appears to predict the outcome of IFNα therapy far better than the cytogenetic response.
Collapse
|
18
|
Abstract
We previously reported that the abl promoter (Pa) undergoes de novo DNA methylation in the course of chronic myelocytic leukemia (CML). The clinical implications of this finding are the subject of the present study in which samples of CML patients, including a group treated with interferon α (IFNα) were surveyed. The methylation status of the abl promoter was monitored by polymerase chain reaction (PCR) amplification of the Pa region after digestion with several site-methylation sensitive restriction enzymes. Some 74% of the DNA samples from blood and marrow drawn in the chronic phase were nonmethylated, similar to control samples from non-CML patients. The remaining 26% were partially methylated in the abl Pa region. The latter samples were derived from patients who were indistinguishable from the others on the basis of clinical presentation. Methylated samples were mostly derived from patients known to have a disease of longer duration (26 months v 7.5 months, P = .01). Samples of 30 IFNα-treated patients were sequentially analyzed in the course of treatment. Fifteen patients with no evidence of Pa methylation before treatment remained methylation-free. The remainder, who displayed Pa methylation before treatment, reverted to the methylation-free status. The outcome is attributed to IFNα therapy, as the Pa methylation status was not reversed in any of the patients treated with hydroxyurea. Methylation of the abl promoter indicates a disease of long-standing, most likely associated with a higher probability of imminent blastic transformation. It appears to predict the outcome of IFNα therapy far better than the cytogenetic response.
Collapse
|
19
|
Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM, Burke P, Rose S, Gaskin F, Raza A, Preisler HD. Bcl-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 1997; 21:479-89. [PMID: 9279359 DOI: 10.1016/s0145-2126(97)00006-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic myelogenous leukemia (CML) has a progressive course but little is known about the biologic characteristics of disease progression. This study was designed to assess the changes in cell proliferative characteristics, apoptosis, the expression of the bcl-2 and c-myc genes between the time of initial diagnosis and entrance into the blastic phase of the disease. We observed that the rate of cell proliferation decreased and the cell death rate did not significantly change as the disease accelerated. The level of bcl-2 expression was significantly higher in accelerated/blastic phase cells than in the chronic phase cells in the population as a whole, however, the bcl-2 expression level did not change in blast cell subpopulation. c-myc Expression was significantly higher in the blast cell subpopulation of accelerated/blastic phase than in that of earlier phases of the disease. In conclusion, the characteristics of CML cells, namely proliferation rate, c-myc and bcl-2 change during the course of the disease. It is possible that the change in c-myc expression plays a causative role in evolution of the blastic phase from the chronic phase.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/genetics
- Bone Marrow/pathology
- Cell Cycle/genetics
- Disease Progression
- Female
- Flow Cytometry
- Gene Expression
- Genes, bcl-2
- Genes, myc
- Humans
- Interleukin-1/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocyte Count
- Male
- Middle Aged
- Proto-Oncogenes
Collapse
Affiliation(s)
- H Handa
- Rush Cancer Institute, Rush Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin ES, Joseph A, Ahmad MA, Borgaonkar DS, Martin SE. Complex chromosome 4, 9, and 22 rearrangement in a patient presenting with AML-FAB M2. CANCER GENETICS AND CYTOGENETICS 1997; 93:119-24. [PMID: 9078296 DOI: 10.1016/s0165-4608(96)00187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescence in situ hybridization (FISH) and the reverse transcription-polymerase chain reaction (RT-PCR) were used to examine a patient presenting with acute myelogenous leukemia (AML) FAB M2, and a complex t(4;9;22)(p14;q34;q11.2). The patient's clinical course was characterized by an aggressive leukemia, resistant to intensive therapy including allogeneic bone marrow transplantation. FISH analysis, using two chromosome painting probes and a BCR/ABL specific probe, confirmed the cytogenetic observation of a 22q11.2-->4p14 and a 4p14-->9q34 exchange, and revealed the presence of a 9q34-->22q11.2, respectively. In addition, RT-PCR demonstrated the presence of a BCR/ABL transcript derived from the major breakpoint cluster region (M-bcr) of the BCR gene. This transcript has been shown to generate an active 210 kDa tyrosine kinase protein more commonly observed in chronic myelogenous leukemia. Because the presentation of AML with this ABL-->BCR fusion product is a rare event, it would seem likely that the additional complex chromosomal rearrangement involving chromosomes 4, 9, and 22 played a role in the aggressive presentation and clinical behavior of this patient's leukemia.
Collapse
MESH Headings
- Adult
- Antigens, CD/analysis
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow Transplantation
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 9/genetics
- Combined Modality Therapy
- Fusion Proteins, bcr-abl/analysis
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Philadelphia Chromosome
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- E S Martin
- Department of Pathology and Laboratory Medicine, Medical Center of Delaware, Newark 19718-0001, USA
| | | | | | | | | |
Collapse
|
21
|
Léglise MC, Pluchon-Rivière E, Le Calvez G, Abgrall JF, Berthou C, Autrand C, Sensebé L, Balcon D, LeRoux AM. Molecular diagnosis and follow up in myeloproliferative syndromes and acute leukemias: correlation between expression of fusion transcripts and disease progression in chronic myeloid leukemia. Leuk Lymphoma 1996; 21:187-99. [PMID: 8726399 DOI: 10.3109/10428199209067600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
MESH Headings
- Adult
- Base Sequence
- Child
- Disease Progression
- Follow-Up Studies
- Fusion Proteins, bcr-abl/biosynthesis
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Molecular Sequence Data
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/metabolism
- Polymerase Chain Reaction
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- M C Léglise
- Laboratoire d' Hématologie, Centre Hospitalier Universitaire de Brest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Wetzler M, Talpaz M, Van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J Clin Invest 1993; 92:1925-39. [PMID: 8408645 PMCID: PMC288359 DOI: 10.1172/jci116786] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We used specific antisera and immunohistochemical methods to investigate the subcellular localization and expression of Bcr, Abl, and Bcr-Abl proteins in leukemic cell lines and in fresh human leukemic and normal samples at various stages of myeloid differentiation. Earlier studies of the subcellular localization of transfected murine type IV c-Abl protein in fibroblasts have shown that this molecule resides largely in the nucleus, whereas transforming deletion variants are localized exclusively in the cytoplasm. Here, we demonstrate that the murine type IV c-Abl protein is also found in the nucleus when overexpressed in a mouse hematopoietic cell line. However, in both normal and leukemic human hematopoietic cells, c-Abl is discerned predominantly in the cytoplasm, with nuclear staining present, albeit at a lower level. In contrast, normal endogenous Bcr protein, as well as the aberrant p210BCR-ABL and p190BCR-ABL proteins consistently localize to the cytoplasm in both cell lines and fresh cells. The results with p210BCR-ABL were confirmed in a unique Ph1-positive chronic myelogenous leukemia (CML) cell line, KBM5, which lacks the normal chromosome 9 and hence the normal c-Abl product. Because the p210BCR-ABL protein appears cytoplasmic in both chronic phase and blast crisis CML cells, as does the p190BCR-ABL in Ph1-positive acute leukemia, a change in subcellular location of Bcr-Abl proteins between cytoplasm and nucleus cannot explain the different spectrum of leukemias associated with p210 and p190, nor the transition from the chronic to the acute leukemia phenotype seen in CML. Further analysis of fresh CML and normal hematopoietic bone marrow cells reveals that p210BCR-ABL, as well as the normal Bcr and Abl proteins, are expressed primarily in the early stages of myeloid maturation, and that levels of expression are reduced significantly as the cells mature to polymorphonuclear leukocytes. Similarly, a decrease in Bcr and Abl levels occurs in HL-60 cells induced by DMSO to undergo granulocytic differentiation. The action of p210BCR-ABL and its normal counterparts may, therefore, take place during the earlier stages of myeloid development.
Collapse
Affiliation(s)
- M Wetzler
- Department of Clinical Investigation, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
24
|
Wetzler M, Talpaz M, Estrov Z, Kurzrock R. CML: mechanisms of disease initiation and progression. Leuk Lymphoma 1993; 11 Suppl 1:47-50. [PMID: 8251916 DOI: 10.3109/10428199309047863] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic myelogenous leukemia (CML) is a hematological stem cell disorder characterized by excessive proliferation of the myeloid lineage. It has a progressive course typified by the transition from the chronic phase to the accelerated phase and on to blast crisis. The hallmark of CML is the translocation between chromosomes 9 and 22 that results in the chimeric BCR-ABL gene encoding p210BCR-ABL. The oncogenic potential of this protein has been validated, and it is believed that it contributes in a critical way to the initiation of CML. However, the secondary genetic forces responsible for the transition from the chronic state to the fully blastic stage are not clear. Evidence for chromosomal instability includes the clonal evolution which characterizes advanced CML. In regard to specific genetic aberrations, sporadic reports have shown alterations in H-RAS, c-MYC, retinoblastoma, and P53 genes, as well as production of p190BCR-ABL during the progression of CML. In addition, we have recently found evidence for excessive interleukin-1 beta production, acting in an autocrine and/or paracrine manner, in the more advanced stages of the disease. Taken together, current data suggest that multiple molecular pathways lead to disease progression, and that distinct subsets of genetic alterations exist in blast crisis patients.
Collapse
MESH Headings
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cytokines/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Genes, myc
- Genes, ras
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Accelerated Phase/pathology
- Oncogenes
Collapse
Affiliation(s)
- M Wetzler
- Department of Clinical Investigation, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
25
|
Abstract
The BCR-ABL gene plays a central role in the pathogenesis of chronic myelogenous leukemia. Despite a detailed understanding of the regions of BCR and ABL required for transformation by BCR-ABL, little is known about the signalling pathway by which BCR-ABL causes transformation. The nuclear oncogene c-myc plays a critical role in BCR-ABL transformation. Levels of c-myc RNA are high in cells transformed by BCR-ABL, and overexpression of dominant negative forms of myc blocks transformation by BCR-ABL. These findings suggest that myc may be a useful therapeutic target in BCR-ABL-related leukemias.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, abl
- Genes, myc
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Rats
Collapse
Affiliation(s)
- C L Sawyers
- Department of Medicine, University of California Los Angeles 90014
| |
Collapse
|
26
|
Abstract
A link between ABL oncogenes and MYC is suggested by the transformation synergy that is observed when MYC is expressed at high levels. Dominant negative MYC proteins were overexpressed in fibroblasts to determine if MYC complements ABL oncogene transformation or is essential for this process. Transformation by both v-abl and BCR-ABL oncogenes was reduced 5- to 10-fold, whereas transformation by the serine/threonine kinase oncogene v-mos was unaffected. Using a retrovirus construct modified to express BCR-ABL and MYC genes simultaneously, we show that dominant negative MYC suppressed transformation of primary mouse bone marrow pre-B cells by BCR-ABL. These observations demonstrate that c-MYC is essential for transformation and help define the pathway by which these proteins cause transformation.
Collapse
Affiliation(s)
- C L Sawyers
- Department of Medicine, Howard Hughes Medical Institute, University of California, Los Angeles 90024
| | | | | |
Collapse
|
27
|
Abstract
The first consistent karyotypic abnormality found to be associated with neoplastic disease was the Philadelphia (Ph) chromosome (Nowell & Hungerford, 1960). Furthermore, the best-studied example of translocation-mediated gene activation occurs in leukaemia patients bearing this abnormality (reviewed by Kurzrock et al, 1988). In these individuals, the Ph translocation (t(9;22)(q34;q11)) results in transposition of the ABL proto-oncogene from chromosome 9q34 to 22q11, where it is fused with part of the BCR gene. It is now known that as a result of the Ph translocation, p160BCR and p145ABL (the normal BCR and ABL gene products) are replaced by p210BCR-ABL. This aberrant protein constitutes the molecular fingerprint of CML. The enhanced tyrosine phosphokinase enzymatic activity (a property possessed by some growth factor receptors and transformation-inducing oncogenes) of p210BCR-ABL implicates a direct role for this molecule in the pathogenesis of CML. Because the Ph translocation is present in the early chronic phase, the union of the BCR and ABL genes is probably involved in the initiation of the leukaemic process. The secondary molecular forces driving progression of CML to blast crisis are however unknown, and may differ from patient to patient. Approximately 10% of CML patients lack a Ph chromosome. One-half of these individuals have bcr rearrangement and express p210BCR-ABL. Ph+ and Ph- bcr+ (p210+) CML are identical and should be treated the same. Molecular follow-up of diploid bcr+ CML patients is essential for detection of persistent malignancy after therapy. The presence of a specific marker--the BCR-ABL message--permits the development of new diagnostic approaches for CML. For instance, detection of a BCR-ABL message with the use of the highly sensitive polymerase chain reaction, a technique capable of detecting up to one leukaemia cell amongst one million normal cells, yields important information about minimal residual disease. Finally, the use of therapy directed against the BCR-ABL product may be a worthwhile strategy which deserves investigation, and may prompt a new era of tumour-specific treatment.
Collapse
MESH Headings
- Blast Crisis/genetics
- Genes, abl/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Proto-Oncogene Mas
Collapse
Affiliation(s)
- R Kurzrock
- Department of Clinical Immunology and Biological Therapy, M. D. Anderson Cancer Center, Houston, Texas 77030
| | | |
Collapse
|
28
|
Haus O, Noworolska A, Laskowski M, Kuliszkiewicz-Janus M, Kozłowska J, Harłozińska-Szmyrka A, Jagielski J, Kotlarek-Haus S. Prognostic significance of secondary cytogenetic changes and nonspecific cross-reacting antigen (NCA) in patients with Ph-positive chronic myeloid leukemia. Exp Mol Pathol 1990; 52:235-42. [PMID: 2332039 DOI: 10.1016/0014-4800(90)90008-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytogenetic analyses were carried out on peripheral blood and bone marrow cells of 31 chronic myeloid leukemia (CML) patients who presented with blastic, accelerated, or chronic phases. The percentage of cytoplasmic nonspecific cross-reacting antigen (cNCA, a marker of myelocytic differentiation)-containing cells was determined in the same blood or bone marrow samples. The patients were divided in two groups according to cytogenetic results: those with aberrations in addition to the Philadelphia chromosome (Ph1) and those with Ph1 only. Among the additional aberrations such changes, not typical of CML, were found: del(2)(p21), t(6;11)(q25;q23), and t(12;?)(p13;?). The survival time and the percentage of cNCA-positive cells of patients in blastic and accelerated phases were compared between the above-mentioned two groups of patients using the Student t test and the Kaplan-Meier estimator. The percentage of cNCA-positive cells was significantly lower and the survival time significantly shorter in the group of patients with additional aberrations. The probability of survival according to the Kaplan-Meier estimator was also lower for this group. These data suggest that the immunologically determined lower degree of maturity, that characterized cells bearing additional aberrations, coincides with and/or results in more rapid progression of the disease.
Collapse
MESH Headings
- Adult
- Antigens, Neoplasm/analysis
- Bone Marrow/pathology
- Cell Adhesion Molecules
- Chromosome Banding
- Female
- Follow-Up Studies
- Glycoproteins/analysis
- Humans
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Probability
- Prognosis
Collapse
Affiliation(s)
- O Haus
- Department of Pathophysiology, Medical University, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- R Kurzrock
- Department of Clinical Immunology and Biological Therapy, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
30
|
Eisbruch A, Blick M, Evinger-Hodges MJ, Beran M, Andersson B, Gutterman JU, Kurzrock R. Effect of differentiation-inducing agents on oncogene expression in a chronic myelogenous leukemia cell line. Cancer 1988; 62:1171-8. [PMID: 3044574 DOI: 10.1002/1097-0142(19880915)62:6<1171::aid-cncr2820620621>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
K562 is a Philadelphia (Ph) chromosome-positive chronic myelogenous leukemia (CML) blast crisis cell line representing a pluripotent precursor cell. At the molecular level, K562 cells express high levels of the aberrant bcr-abl product, p210bcr-abl, believed to be critical to the pathogenesis of CML. The authors demonstrate that exposure of K562 cells to hemin causes a state of partial, reversible erythroid maturation, accompanied by a marked decrease in p210bcr-abl. The change in bcr-abl expression may be mediated at the translational level since steady state amounts and enzymatic activity of the bcr-abl protein are reduced whereas bcr-abl mRNA levels are unaltered. The decrease in p210bcr-abl phosphokinase enzymatic activity can be detected within 2 hours after addition of hemin to the culture media, indicating that changes in expression of this oncogene probably occur before or concurrent with differentiation. No change in bcr-abl protein occurred in a CML cell line (KBM-5) which did not undergo differentiation after exposure to hemin, consistent with a direct relationship between altered p210bcr-abl expression and hemin-induced erythroid differentiation. Importantly, the marked diminution in bcr-abl protein was not associated with a disruption in K562 growth rates, indicating that the proliferative capacity of these cells may be independent of the bcr-abl product. In contrast to hemin, cytosine arabinoside (Ara-C) caused terminal erythroid differentiation of K562 cells, characterized by irreversible hemoglobin accumulation and cytostasis; and no change in bcr-abl protein expression was observed. The distinct effects of Ara-C and hemin could reflect the existence of pleiotropic differentiation pathways. Both Ara-C and hemin-exposed cells showed a decrease in c-myc and c-myb transcripts, suggesting that altered levels of these proto-oncogenes may be associated with erythroid maturation, regardless of the rate of cell division. K562 cells provide a useful model for analyzing the interaction between oncogene expression and CML cell growth and differentiation.
Collapse
Affiliation(s)
- A Eisbruch
- Department of Oncology, Tel-Hashomer Hospital, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The Ph chromosome is the hallmark of CML, where it is found in more than 90% of the cases. Cytogenetically, it usually results from a t(9;22)(q34;q11). The Ph arises in a stem cell and in chronic phase is found in all haematopoietic cell lineages, although it causes only increased granulopoiesis, and sometimes increased thrombopoiesis; furthermore blast crisis may occur in all differentiative patterns of the pluripotent stem cell. Recently, molecular investigations of Ph positive CML cases have revealed a consistent genomic recombination between two genes, BCR on chromosome 22 and the ABL oncogene. The latter is translocated from 9q34, its normal site, to the 22q- or Ph chromosome. This molecular rearrangement expresses a unique 8.5 kb BCR-ABL hybrid mRNA transcript, that encodes an altered BCR-ABL protein of approximately 210 kD with enhanced in vitro tyrosine kinase activity. The breakpoints on chromosome 22q- are clustered in a 5 kb DNA fragment, allowing their study using Southern blot analysis. Cytogenetic variant forms of the Ph translocation involving three or more chromosomes are found in about 5% of the cases. Southern blot and in situ hybridization studies have demonstrated that these variants are cytogenetically more complex than the standard t(9;22) but molecularly they show the same essential genomic recombination. This is also true for a small number of cases of Ph negative CML. Clonal progression, indicated by the presence of clonal, non-random chromosome abnormalities, in addition to the Ph is rare during chronic phase but is found in 80% of blast crisis. These additional aberrations may precede BC by weeks or months and have therefore a clear prognostic value. Ph is not restricted to CML, since it is also found in ALL (20% of adult cases) and rarely in AML. Ph in acute leukaemia is cytogenetically indistinguishable from Ph in CML, but molecular studies have shown that in 50% of the cases the breakpoint on chromosome 22 is different from the very consistent and characteristic breakpoint in CML. Nevertheless genomic recombination takes place that results in a novel ABL protein at least in some of the cases. Despite extensive cytogenetic and molecular investigations, the mechanisms underlying the formation of the Ph as well as the pathogenesis of Ph positive CML are still unknown but are now the object of intensive research.
Collapse
MESH Headings
- Blast Crisis
- Chromosome Aberrations/genetics
- Chromosome Disorders
- DNA Probes
- Gene Expression Regulation
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Nucleic Acid Hybridization
- Philadelphia Chromosome
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Time Factors
Collapse
|