1
|
Abstract
Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca2+ metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.
Collapse
|
2
|
Cellot S, Hope KJ, Chagraoui J, Sauvageau M, Deneault É, MacRae T, Mayotte N, Wilhelm BT, Landry JR, Ting SB, Krosl J, Humphries K, Thompson A, Sauvageau G. RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity. Blood 2013; 122:1545-55. [PMID: 23777767 PMCID: PMC5289888 DOI: 10.1182/blood-2013-04-496281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members that target mono-, di-, and trimethylated lysine residues of histone (or nonhistone) proteins. To evaluate their role in regulation of hematopoietic stem cell (HSC) behavior, we performed an in vivo RNAi-based functional screen and demonstrated that Jarid1b and Jhdm1f play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSCs with preserved long-term in vivo lymphomyeloid differentiation potential. Through RNA sequencing analysis, Jarid1b knockdown was associated with increased expression levels of several HSC regulators (Hoxa7, Hoxa9, Hoxa10, Hes1, Gata2) and reduced levels of differentiation-associated genes. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative regulator of HSC activity and Jhdmlf as a positive regulator of HSC activity.
Collapse
Affiliation(s)
- Sonia Cellot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology, Ste-Justine Hospital, Montréal, QC, Canada
| | - Kristin J. Hope
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Deneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Brian T. Wilhelm
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Josette R. Landry
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Stephen B. Ting
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Monash University, Melbourne, Australia
| | - Jana Krosl
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Thompson
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| |
Collapse
|
3
|
Walker A, Mrózek K, Kohlschmidt J, Rao KW, Pettenati MJ, Sterling LJ, Marcucci G, Carroll AJ, Bloomfield CD. New recurrent balanced translocations in acute myeloid leukemia and myelodysplastic syndromes: cancer and leukemia group B 8461. Genes Chromosomes Cancer 2013; 52:385-401. [PMID: 23225546 PMCID: PMC3874732 DOI: 10.1002/gcc.22036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Acquired chromosome abnormalities in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are among the most valuable determinants of diagnosis and prognosis. In search of new recurrent balanced translocations, we reviewed the Cancer and Leukemia Group B (CALGB) cytogenetics database containing pretreatment and relapse karyotypes of 4,701 adults with AML and 565 with MDS who were treated on CALGB trials. We identified all cases with balanced structural rearrangements occurring as a sole abnormality or in addition to one other abnormality, excluded abnormalities known to be recurrent, and then reviewed the literature to determine whether any of what we considered unique, previously unknown abnormalities had been reported. As a result, we identified seven new recurrent balanced translocations in AML or MDS: t(7;11)(q22;p15.5), t(10;11)(q23;p15), t(2;12)(p13;p13), t(12;17)(p13;q12), t(2;3)(p21;p21), t(5;21)(q31;q22), and t(8;14)(q24.1;q32.2), and additionally, t(10;12)(p11;q15), a new translocation in AML previously reported in a case of acute lymphoblastic leukemia. Herein, we report hematologic and clinical characteristics and treatment outcomes of patients with these newly recognized recurrent translocations. We also report 52 unique balanced translocations, together with the clinical data of patients harboring them, which to our knowledge have not been previously published. We hope that once the awareness of their existence is increased, some of these translocations may become recognized as novel recurring abnormalities. Identification of additional cases with both the new recurrent and the unique balanced translocations will enable determination of their prognostic significance and help to provide insights into the mechanisms of disease pathogenesis in patients with these rare abnormalities.
Collapse
Affiliation(s)
- Alison Walker
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
| | - Krzysztof Mrózek
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
| | - Jessica Kohlschmidt
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Kathleen W. Rao
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark J. Pettenati
- Comprehensive Cancer Center Wake Forest University, Winston-Salem, NC
| | - Lisa J. Sterling
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
| | - Guido Marcucci
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
| | | | - Clara D. Bloomfield
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
4
|
Schmidt-Hieber M, Blau IW, Richter G, Türkmen S, Bommer C, Thiel G, Neitzel H, Stroux A, Uharek L, Thiel E, Blau O. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. ACTA ACUST UNITED AC 2010; 198:135-43. [PMID: 20362228 DOI: 10.1016/j.cancergencyto.2010.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/04/2010] [Accepted: 01/12/2010] [Indexed: 11/19/2022]
Abstract
We analyzed karyotype stability in 22 patients with acute leukemia at relapse or disease progression after allogeneic stem cell transplantation (allo-SCT). Karyotypes before and at relapse after allo-SCT were different in 15 patients (68%), the most frequent type being clonal evolution either alone or combined with clonal devolution (13 patients). Patients with and without a karyotype change did not differ significantly in overall survival (OS) (median, 399 vs. 452 days; P = 0.889) and survival after relapse (median, 120 vs. 370 days; P = 0.923). However, acquisition of additional structural chromosome 1 abnormalities at relapse after allo-SCT occurred more frequently than expected and was associated with reduced OS (median, 125 vs. 478 days; P = 0.008) and shorter survival after relapse (median, 37 vs. 370 days; P = 0.002). We identified a previously undescribed clonal evolution involving t(15;17) without PML-RARA rearrangement in an AML patient. We conclude that a karyotype change is common at relapse after allo-SCT in acute leukemia patients. Moreover, our data suggest that additional structural chromosome 1 abnormalities are overrepresented at relapse after allo-SCT in these patients and, in contrast to a karyotype change per se, are associated with reduced OS and shorter survival after relapse.
Collapse
Affiliation(s)
- Martin Schmidt-Hieber
- Medical Department III (Hematology, Oncology and Transfusion Medicine), Charité Campus Benjamin Franklin, 12200 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Van Den Akker J, Coppo P, Portnoï MF, Barbu V, Bories D, Gorin NC. Simultaneous regression of Philadelphia chromosome and multiple nonrecurrent clonal chromosomal abnormalities with imatinib mesylate in a patient autografted 22 years before for chronic myelogenous leukemia. Leuk Lymphoma 2007; 48:1858-65. [PMID: 17786726 DOI: 10.1080/10428190701534440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A 31-year-old patient developed chronic myelogenous leukemia (CML) in November, 1983. In November 1984, following a diagnosis of acceleration, he received an autologous hemopoietic transplant after conditioning with cyclophosphamide and total body irradiation. The autologous marrow was purged with mafosfamide. Over 20 years, the patient remained in chronic phase of CML. Multiple nonrecurrent clonal chromosomal abnormalities appeared leading to a very complex karyotype, including among others involvement of chromosomes 1, 7, 9, 13, 19, and X. Fluorescent in situ hybridization showed that the two chromosomes 9 were involved. Acute myeloid crisis was diagnosed in February, 2004. Treatment with imatinib mesylate resulted within 6 months in a total disappearance of all chromosomal abnormalities with a complete cytogenetic and molecular response, which persists 3 years later. We question whether the ex vivo purging procedure with mafosfamide has favored the occurrence of these particular cytogenetic abnormalities (with no independent oncogenic potential) within the original leukemic stem cell pool. It remains unclear whether the autologous transplantation has indeed resulted into some prolongation of the duration of the chronic phase, which lasted for 20 years. At time of acute crisis, the dramatic response to imatinib mesylate leading to a complete cytogenetic and molecular response is noteworthy.
Collapse
|
6
|
Karrman K, Sallerfors B, Lenhoff S, Fioretos T, Johansson B. Cytogenetic evolution patterns in CML post-SCT. Bone Marrow Transplant 2007; 39:165-71. [PMID: 17211433 DOI: 10.1038/sj.bmt.1705560] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytogenetic evolution patterns in chronic myeloid leukemia (CML) after allogeneic (allo) stem cell transplantation (SCT) are different from the ones observed in non-transplanted patients, a phenomenon suggested to be caused by the conditioning regime. We reviewed 131 CMLs displaying karyotypic evolution after SCT (122 allo, nine autologous (auto)), treated at Lund University Hospital or reported in the literature. Major route abnormalities (i.e., +8, +Ph, i(17q), +19, +21, +17 and -7) were seen in 14%, balanced aberrations in 61%, hyperdiploidy in 19%, pseudodiploidy in 79%, divergent clones in 14%, and Ph-negative clones in 21%. The breakpoints involved in secondary structural rearrangements clustered at 1q21, 1q32, 7q22, 9q34, 11q13, 11q23, 12q24, 13q14, 17q10 and 22q11. Cytogenetic abnormalities common in AML after genotoxic exposure, that is, der(1;7)(q10;p10), del(3p), -5, del(5q), -7, -17, der(17p), -18, and -21, were only rarely seen post-SCT. Comparing the cytogenetic features in relation to type of SCT revealed that balanced aberrations were significantly more common after allo than after auto SCT (64 and 22%, respectively, P=0.03). In addition, there was a trend as regards hyperdiploidy being more common after auto (P=0.07) and pseudodiploidy being more frequent after allo SCT (P=0.09). Possible reasons for these differences are discussed.
Collapse
Affiliation(s)
- K Karrman
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Tefferi A, Dewald GW, Litzow ML, Cortes J, Mauro MJ, Talpaz M, Kantarjian HM. Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clin Proc 2005; 80:390-402. [PMID: 15757021 DOI: 10.4065/80.3.390] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic myeloid leukemia provides an illustrative disease model for both molecular pathogenesis of cancer and rational drug therapy. Chronic myeloid leukemia is a clonal stem cell disease caused by an acquired somatic mutation that fuses, through chromosomal translocation, the abl and bcr genes on chromosomes 9 and 22, respectively. The bcr/abl gene product is an oncogenic protein that localizes to the cytoskeleton and displays an up-regulated tyrosine kinase activity that leads to the recruitment of downstream effectors of cell proliferation and cell survival and consequently cell transformation. Such molecular information on pathogenesis has facilitated accurate diagnosis, the development of pathogenesis-targeted drug therapy, and most recently the application of molecular techniques for monitoring minimal residual disease after successful therapy. These issues are discussed within the context of clinical practice.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cytarabine/therapeutic use
- Genes, abl/genetics
- Humans
- Imatinib Mesylate
- In Situ Hybridization, Fluorescence
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplasm, Residual/diagnosis
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Prognosis
- Pyrimidines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cell Transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Ayalew Tefferi
- Department of Internal Medicine and Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Hung KS, Howng SL. Prognostic significance of annexin VII expression in glioblastomas multiforme in humans. J Neurosurg 2003; 99:886-92. [PMID: 14609169 DOI: 10.3171/jns.2003.99.5.0886] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor in adults. It is nearly uniformly fatal, with a median survival time of approximately 1 year, despite modern treatment modalities. Nevertheless, a range of survival times exists around this median. Efforts to understand why some patients live longer or shorter than the average may provide insight into the biology of these neoplasms. The annexin VII (ANX7) gene is located on the human chromosome 10q21, a site long hypothesized to harbor tumor suppressor genes associated with prostate and other cancers. To test whether ANX7 expression might be a predictor for GBMs, we examined ANX7 expression, p53 accumulation, and the MIB-1 labeling index in a retrospective series of 99 GBMs.
Methods. In all 99 cases, the patient's age, Karnofsky Performance Scale (KPS) score before surgery, extent of surgery, tumor location, and immunohistochemical features were analyzed using univariate and multivariate analyses to identify whether any significance exists among ANX7 expression, p53 accumulation, the MIB-1 labeling index, and survival time. Kaplan—Meier analyses demonstrated that a higher KPS score before surgery (< 0.0001), total tumor excision (p = 0.0072), young patient age (p = 0.03), and ANX7 expression (p = 0.0006) correlated with longer survival. Multivariate Cox regression analyses demonstrated that ANX7 expression was the strongest predictor of outcome (p < 0.0001), independent of all other variables. In addition, ANX7 expression correlated with higher MIB-1 immunostaining, but did not correlate with p53 accumulation. Moreover, a significant positive correlation was observed between p53 and MIB-1 staining.
Conclusions. These findings indicate that a higher KPS score before surgery, total tumor excision, young patient age, and ANX7 expression correlate with longer survival in patients with GBMs. Multivariate Cox regression analyses demonstrated that ANX7 expression was the strongest predictor of outcome (p < 0.0001) and was independent of all other variables.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | |
Collapse
|
9
|
Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB. ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci U S A 2001; 98:4575-80. [PMID: 11287641 PMCID: PMC31876 DOI: 10.1073/pnas.071055798] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 02/05/2001] [Indexed: 01/06/2023] Open
Abstract
The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression.
Collapse
Affiliation(s)
- M Srivastava
- Departments of Anatomy, Physiology, and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Law DJ, Du M, Law GL, Merchant JL. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem Biophys Res Commun 1999; 262:113-20. [PMID: 10448078 DOI: 10.1006/bbrc.1999.1180] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among transcription factors that regulate ornithine decarboxylase (ODC) gene expression are those that interact with GC-rich promoters, including Sp1 and ZBP-89. Sp1 functions as a transactivator and ZBP-89 as a transrepressor of both the ODC and gastrin promoters. This study reports the cloning and characterization of a second member of the ZBP family that also binds GC boxes. ZBP-99 contains four Krüppel-type zinc fingers that collectively share 91% amino acid sequence similarity and 79% sequence identity with those found in ZBP-89. In addition, there are highly conserved amino acid sequences in the carboxy-terminal segments of the two genes. In spite of their structural similarities, the two proteins are encoded at distinct loci, ZBP-89 on chromosome 3q21 and ZBP-99 on 1q32.1. The predicted open reading frame of ZBP-99 cDNA encodes a 99-kDa protein. Electrophoretic mobility shift assays showed that ZBP-99 protein specifically binds to the GC-rich promoter elements of gastrin and ODC genes. Northern blot analysis showed that a major ZBP-99 transcript of 5.6 kb is expressed ubiquitously at low levels, with elevated expression levels in placenta and in adult kidney, liver, and lymphocytes. Cotransfection of AGS gastric adenocarcinoma and HT-29 colon adenocarcinoma cells with a ZBP-99 expression construct and with an ODC reporter construct show that ZBP-99 repressed basal expression in the two cell lines by 80 and 60%, respectively. Collectively, the data suggest that ZBP-99 binds GC-rich promoters and may complement the activities mediated by ZBP-89.
Collapse
Affiliation(s)
- D J Law
- Department of Internal Medicine, Department of Physiology, University of Michigan, Michigan, Ann Arbor 48109-0650, USA
| | | | | | | |
Collapse
|
11
|
Hitoshi Y, Lorens J, Kitada SI, Fisher J, LaBarge M, Ring HZ, Francke U, Reed JC, Kinoshita S, Nolan GP. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 1998; 8:461-71. [PMID: 9586636 DOI: 10.1016/s1074-7613(00)80551-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fas is a surface receptor that can transmit signals for apoptosis. Using retroviral cDNA library-based functional cloning we identified a gene, toso, that blocks Fas-mediated apoptosis. Toso expression was confined to lymphoid cells and was enhanced after cell-specific activation processes in T cells. Toso appeared limited to inhibition of apoptosis mediated by members of the TNF receptor family and was capable of inhibiting T cell self-killing induced by TCR activation processes that up-regulate Fas ligand. We mapped the effect of Toso to inhibition of caspase-8 processing, the most upstream caspase activity in Fas-mediated signaling, potentially through activation of cFLIP. Toso therefore serves as a novel regulator of Fas-mediated apoptosis and may act as a regulator of cell fate in T cells and other hematopoietic lineages.
Collapse
Affiliation(s)
- Y Hitoshi
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mertens F, Johansson B, Mitelman F. Age- and gender-related heterogeneity of cancer chromosome aberrations. CANCER GENETICS AND CYTOGENETICS 1993; 70:6-11. [PMID: 8221614 DOI: 10.1016/0165-4608(93)90123-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The karyotype of a neoplasm is known to be associated not only with the histopathologic subtype of the tumor but also with previous cytotoxic exposure and with the geographic place of origin of the patient. Some data also indicate that cytogenetic patterns vary with age and gender. To further investigate whether the frequencies of cancer chromosome aberrations differ between children and adults or between men and women, clinical and karyologic data on 14,141 neoplasms with clonal chromosome changes reported in the literature were assessed. In cytogenetically well-characterized neoplasias, recognized primary and secondary chromosome aberrations were selected, and their frequencies were calculated in men, women, children (< or = 15 years), and adults (> 15 years). In general, the frequencies of the various aberrations did not differ between men and women or between children and adults, but a few exceptions were found. In refractory anemia (RA) and RA with excess of blasts or in transformation, del(5q) was more common among women. In acute lymphoblastic leukemia (ALL-L1 + L2), t(1;19) was more frequently detected in women and del(6q) more common among men. In Philadelphia chromosome positive chronic myeloid leukemia, gain of an extra der(22)t(9;22) occurred more frequently among men. Four primary aberrations were more common in children than in adults: t(8;21) in acute myeloid leukemia (AML-M2), -7 in AML-M4, der(11q) in AML-M5, and t(8;14) in ALL-L3. On the other hand, der(16q) in AML-M4 and t(9;22) in ALL-L1 + L2 were more common in adults. The only secondary cancer chromosome aberration showing a variation with age was loss of the Y chromosome in AML-M2 with t(8;21), being more common in children than in adults. These variations might be spurious and level out when more data are collected, but more probably they reflect, for reasons presently unknown, that different genetic mechanisms may be operative in children and adults--and even in men and women--in the development of some tumors.
Collapse
Affiliation(s)
- F Mertens
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | |
Collapse
|